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A B S T R A C T   

Human factors contribute to majority of maritime accidents. This study proposes an advanced methodology for 
maritime accident prevention strategy formulation from a human factor perspective. It is conducted by incor
porating Bayesian network (BN) and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) 
in a multi-criteria decision-making system. In order to develop rational accident prevention strategies, this work 
integrates Multiple Correspondence Analysis (MCA), Hierarchical Clustering (HC) and Classification Tree (CT) to 
generate strategies and describes accident types as criteria for a new multi-criteria risk-based decision-making 
system. Specifically, MCA is performed to detect patterns of contributory factors explaining maritime accident 
types. It is complemented by HC and a CT, aiming at creating different classes of vessels. Next, a Bayesian-based 
TOPSIS model is built to illustrate the features of multiple criteria and the relations among alternatives (i.e. 
strategies), so as to select the best-fit strategies for accident prevention. The results show that the information, 
clear order, and safety culture are the three most effective recommendations for maritime accident prevention 
considering human errors, which presents new insights for accident prevention practice for maritime authorities.   

1. Introduction 

Maritime accidents may cause loss of human lives, damage to the 
environment, and loss of economy (Zhang and Thai, 2016). Most 
maritime accidents are characterised by low probability but high 
consequence, which implies the significance of risk assessment for 
shipping activities. It is also recognised that organisation, working 
condition, and navigational environment are among the major driving 
forces to maritime accidents (García-Herrero et al., 2012). Although 
modern ships have been equipped with advanced technologies, 
including e-navigation technology, onboard information, bridge 
resource management systems, human factors still reveal a major 
contribution to maritime accidents. 

Generally, the International Maritime Organisation (IMO) focused 
on human factors much later than the studies and regulations in other 
transportation modes such as aviation or railway (Schroder-Hinrichs 
et al., 2011). The maritime sector initiated the studies on the contribu
tion of human and organisational factors (HOFs) from the occurrence of 
the capsizing of the Herald of Free Enterprise in 1987 (Transport, 1987). 

Since then, accident investigations pay more attention to human factors 
in maritime safety. Statistically, human failures/errors account for 
approximately 80% of maritime accidents, which play an essential role 
in terms of accident prevention (Trucco et al., 2008; Tzannatos, 2010; 
Fan et al., 2018). Human factors in maritime accidents are usually 
associated with other relevant factors, including workplace conditions, 
physical and natural environment, procedures, technology, training, 
organisation, management, as well as individual factors (e.g. fatigue, 
task load, mental state) (Psarros, 2015). Human factors are often viewed 
as causes behind anything that goes improperly at sea. 

IMO advocates accident investigations on a non-mandatory basis by 
its IMO Code of 1997. Once receiving the notification of an accident, 
maritime administrations may carry out the investigation in order to 
learn how safety-critical systems failed and why the specific accident 
happened (Schroder-Hinrichs et al., 2011). Many maritime administra
tions take this opportunity to review regulations, standards and man
agement associated with technical and non-technical skills related to 
navigation. To mitigate the risk and improve the safety of marine 
transportation, IMO introduced the Formal Safety Assessment (FSA) 
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methodology for its applications to the rule-making process (IMO, 2002; 
IMO, 2013). Moreover, the majority of marine accidents or incidents and 
hazardous events can be avoided by risk management and counter
measures such as operational procedures or training (Vander Hoorn and 
Knapp, 2015). 

Generally, accidents are investigated for serving as performance in
dicators for decision making or policy making, supporting data for 
research, dealing with responsibility allocation, or to take a disciplinary 
action against crews onboard (Stoop, 2003). It is significant to draw 
lessons from accidents to prevent reoccurrence of similar events, in
cidents, or accidents in the future. Maritime accident prevention stra
tegies have been proposed to reduce the risk level of navigation. And 
recommendations from maritime accident investigation may provide 
insight into the details of underlying actions or decisions of stakeholders 
(Stoop, 2003). Only focusing on better analysis methods for maritime 
accidents does not contribute to rational recommendations. Other issues 
like multi-criteria decision making bring new perspectives on in
vestigations (LIU et al., 2016; Othman et al., 2015), which reflects ad
justments to how factors control over the performance of systems, rather 
than analysing single factor that contributes to the causation of 
accidents. 

Some other research works reveal the human factors’ significance in 
accident prevention accounting for multiple criteria (Othman et al., 
2015; Ant~ao and Guedes Soares, 2019). Human factors have been pro
posed as the main contributor and significant issues to serious maritime 
accidents. However, the lack of effective information and poor quality of 
data restrain the steps of accident investigation in view of human fac
tors. For example, the databanks for maritime accidents are filled with 
uncertain records on the situations of accidents. Furthermore, working 
on extracting human factors from the accident reports which contain 
details on the process of accidents is time consuming. From this point of 
view, it is necessary to develop a methodology to incorporate human 
factors into decision making for effective accident prevention. 

A methodology for analysing the human factors and their contribu
tion to maritime accident prevention is proposed in this paper by 
incorporating Bayesian Network (BN) and TOPSIS. The rest of the paper 
is structured as follows. The literature review on accident investigation 
and multi-criteria decision-making systems used for accident prevention 
is conducted in Section 2. Section 3 demonstrates the methodology of 
integrating Multiple Correspondence Analysis (MCA) and Hierarchical 
Clustering (HC) to generate strategies, and BN modelling and TOPSIS 
method to prioritise the generated strategies. In section 4, the detailed 
data collection, generation of strategies, and the results of the Bayesian- 
based TOPSIS model are present and discussed with illustrative real 
cases. Finally, Section 5 concludes the paper. 

2. Literature review 

2.1. Accident investigation in maritime transportation 

By the end of the 19th century, it had been required to clarify the 
responsibility of the events by investigation of naval disasters. Such 
investigations were followed by disciplinary actions, focusing on the 
role of the captain and officers on board, but did not take organisational, 
policy and institutional factors into account. Then, independent acci
dent investigation agencies were established by law and act as an in
dependent organisation, avoid the contrary interest with maritime 
authorities. Besides clarification of the blame, they focused on under
standing what exactly happened by analysing system safety deficiencies. 
As the growing interest of the public after serious accidents, they also 
helped victims and their families come to terms with their suffering 
(Stoop, 2003). 

There is not lacking of research on how to evaluate recommendations 
for accident preventions in the literature. For instance, strategies for 
dealing with resistance to recommendations derived from Swedish ac
cident investigators are developed. However, they did not find out how 

common or widespread the strategies are (Lundberg et al., 2012). Wan 
et al. (2019) developed a model to assess risk factors of maritime supply 
chains by integrating a fuzzy belief rule approach and Bayesian net
works for rational accident prevention. The investigations on 
multi-criteria decision making issues emerge for rational recommenda
tions (Liu et al., 2016; Othman et al., 2015). In addition, research sug
gested that significant work remained to be done after having the 
causations identified. Yang et al. (2018) proposed a Bayesian 
Network-based approach to analyse risk factors influencing Port State 
Control (PSC) inspections and predict the detention probabilities under 
different situations. The findings could support port authorities to 
rationalise their inspection regulations as well as the allocation of the 
resources. From this point of view, sorting out recommendations is 
based on to control the variables in the Multi Criteria Decision Making 
(MCDM) systems rather than just explaining the variables (Stoop, 2003). 

Moreover, human factors are significant issues among accident pre
ventions accounting for multiple criteria (Othman et al., 2015). For 
instance, Ant~ao and Guedes Soares (2019) suggested to proactively 
optimise accident prevention through the development of specific pro
cedures for fishing vessels and training for recreation vessels’ crews, and 
reactively reduce the consequences of occurrence through equipping 
more life-saving equipment to the areas more prone to specific acci
dents. However, it revealed limited information regarding the direct 
impact of a human error into an occurrence. Othman et al. (2015) 
introduced TOPSIS method to maritime accident investigation and 
found that Senior Deck Cadets (SDC) are the most affected by distrac
tions during the ship’s operation, but did not illustrate the relations 
among sub-criteria. From this point of view, it is worth developing a 
methodology to incorporate human factors into effective accident 
prevention. 

Also, there are several publications focusing on HOFs by analysing 
accident reports (Schroder-Hinrichs et al., 2011; Macrae, 2009; U�gurlu 
et al., 2015). Analysing maritime accident reports has been a rational 
option to generate insights for accident prevention (Fan et al., 2020). 
Chauvin et al., 2013 utilised MCA and hierarchical clustering to reveal 
three patterns of factors but was restricted by a small number of reports 
with a large number of variables. It had been developed as a rational 
way to explain the causations behind maritime accidents by statistical 
analysis. Moreover, it was associated with human factors or human 
performance into maritime accident modelling. Sotiralis et al. (2016) 
developed the BN model integrating elements from the Technique for 
Retrospective and Predictive Analysis of Cognitive Errors (TRACEr) and 
calculated the collision accident probability. It was applied to assess the 
collision risk of a feeder operating in Dover strait due to human error. 
Through the review of 41 accident investigation reports, Schro
der-Hinrichs et al. (2011) found that organisational factors were not 
identified by maritime accident investigators to the extent which the 
IMO guidelines expected. In addition, Fuzzy Cognitive Map (FCM)-based 
technique (De Maya et al., 2019) was applied to generating weight the 
importance of human factors as prior failure probabilities, which helped 
create the BN model. The accident scenario analysis showed that the 
lack of safety culture contributed the most to the system failure. 

In general, the maritime sector lacks critical mass in historical ac
cident data to support meaning statistical analysis of various factors 
contributing to maritime accidents. Besides, the uncertainty and 
incompleteness of database further contributes to the limitation of sta
tistical research, especially in view of human factors. 

2.2. Multi-criteria decision-making for accident prevention 

MCDM provides decision makers with a comprehensive approach to 
determine complex, poorly defined problems with multiple and inter
related criteria. Recommendations based on maritime accident investi
gation is in essence a MCDM issue involving reducing the risks of 
navigation considering frequencies and severities of different types of 
accidents, cost, social benefits, and their associations. Generally, some 
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criteria can be measured numerically, and others cannot, as each crite
rion may have different units of measurement, quality characteristics, 
and weights (Zavadskas et al., 2016). Individually, the decision maker of 
MCDM problem ranks alternatives after the qualitative or quantitative 
analysis of a set of criteria, and find the most desirable alternative based 
on the intersection of selected criteria (Yue, 2011). 

The MCDM methods provide solutions for a wide range of society, 
economics, engineering, and management (Ming et al., 2014; Efe, 
2016). MCDM has been applied to many sectors, such as system selec
tion (Sadeghi et al., 2013), location selection (Ker�sulien _e and Turskis, 
2014), technology selection (Ishizaka et al., 2013), and robot selection 
(Vahdani et al., 2013; Rashid et al., 2014). Besides, MCDM has been 
developed and applied to the maritime sector, especially for accident 
prevention. For instance, Hollnagel (2004) developed barrier functions 
and modelled barrier systems that will enable informed decisions for 
system changes for accident prevention rather than accident analysis. It 
was stated that accidents could be prevented through a combination of 
multiple criteria, including performance monitoring and barrier func
tions, rather than through the elimination of causes, which is a proactive 
approach. From this point of view, it provided insights for the recom
mendations in the cases of accidents and decision making of onboard 
operations for seafarers. 

TOPSIS has been one of most popular methods for solving the MCDM 
problem, which was initially designated to solve crisp valuated MCDM 
problems (Behzadian et al., 2012). Wu et al. (2016) introduced TOPSIS 
for final decision-making, integrated with consistency-based linear 
programming model to obtain the interval weights of attributes, which 
provided a practical decision framework for safety control of not under 
control ship. Then, Wu et al. (2018) incorporated evidential reasoning 
and TOPSIS into group decision making for handling ship without 
command. Othman et al. (2015) used a TOPSIS method to rank the al
ternatives in the order of how they are affected by the psychological 
problem of distraction. It proved that Senior Deck Cadets (SDC) are most 
affected by distractions when they are engaged in the ship’s operation. 

Due to the advantage of its application in a fuzzy environment, Liu 
et al. (2016) proposed an extended TOPSIS model to compare fuzzy 
numbers with the same expected value and make the fuzzy number with 
lower expected value but higher reliability to outperform that with 
higher expected value but lower reliability. In addition, the fuzzy 
TOPSIS approach was applied to sort through alternative solutions to 
improve port safety (€Ozdemir, 2016). In this way, TOPSIS is well known 
for multi-criteria decision making problems but cannot represent the 
relations among alternatives, nor their effects to criterion of interest. 

Bayesian Network (BN) has been widely used for risk analysis and 
accident prevention. Yang et al. (2018) proposed a Bayesian-based 
approach to analyse risk factors influencing PSC inspections and simu
lated scenario to illustrate the multiple factors’ influences on vessel 
detention. It revealed BN’s advantages of representing causal relation
ships between variables and predicting the effect of factor changes to the 
criterion of interest. However, BN only focuses on single criteria of the 
system. Although it provides a powerful decision support tool and pre
dicts properties of safety systems, BN is not applicable for multi-criteria 
decision making cases. Combining the merits of BN and TOPSIS, Yang 
et al. (2009) developed a methodology to allocate all relevant decision 
attributes in the form of the nodes in BNs to produce certain associated 
attribute values and integrate with TOPSIS to rank a set of options. It was 
evidence that the BN-based TOPSIS method was applicable to the MCDM 
system. 

However, there are few studies on the later stages of the accident 
investigation process focusing on human factors where recommenda
tions are formulated and assessed. One novelty of this study lies in 
strengthening the significance of human factors in accident investiga
tion and generate related strategies to support the recommendations for 
accident prevention. That is to say, what risk factors contribute to 
human errors and how to formulate strategies from analysing risk fac
tors, are focal points of the study. Besides, research on potential 

correlations between alternatives in the maritime domain is scanty. In 
order to effectively select countermeasures, another novelty of this study 
lies in modelling the MCDM problem considering inter-relations among 
strategies and provide insights for the accident preventions accounting 
for human errors. 

3. Methodology 

In order to formulate the maritime accident prevention strategy from 
human factors perspective, several approaches have been applied to 
promote the study. Firstly, the raw database is sorted out from the 
maritime accident reports, followed by statistical analysis of contribu
tory factors in maritime accidents. This work integrates Multiple Cor
respondence Analysis (MCA), Hierarchical Clustering (HC) and 
Classification Tree (CT) to generate strategies and describes accident 
types as criteria for a new multi-criteria risk-based decision-making 
system. Specifically, MCA is performed to detect patterns of contribu
tory factors explaining maritime accident types. It is complemented by 
HC and a CT, aiming at creating different classes of vessels. Next, a 
Bayesian-based TOPSIS model is built to illustrate the features of mul
tiple criteria and the relations among alternatives (i.e. strategies), so as 
to select the best-fit strategies for accident prevention. 

3.1. Statistical analysis of risk factors and strategy formulation 

The risk factors contributing to human errors are selected from the 
investigation of 161 reports involving 208 vessels and thresholding ac
cording to the probability of occurrence in case of data distortion (Wan 
et al., 2017; Wang and Yang, 2018). The data is obtained from the 
case-by-case analysis of recorded maritime accidents from the Maritime 
Accident Investigation Branch (MAIB), and the Transportation Safety 
Board of Canada (TSB) that occurred from 2012 to 2017. MCA is per
formed to detect patterns of risk factors explaining accidents. Then it is 
completed with a Hierarchical Clustering, aiming at creating a Classi
fication Tree. In this way, the strategies are formulated based on risk 
factors analysis from the above investigation. 

There is a discussion that accident prevention strategies should focus 
on reforming the system by systematic thinking approaches rather than 
on fixing the broken poles. Although little guidance exists on how to 
translate incident data into accident prevention strategies that address 
the systematic causes of accidents (Goode et al., 2016), it has been a 
feasible approach to develop strategies by the statistical analyses of 
accidents or incidents. This study generates strategies for accident pre
vention based on the contributory factors analysis by conducting MCA 
associated with HC and CT. Such statistical analysis considers the pat
terns of causation factors so as to reveal the rational generation of 
strategies. 

MCA is a geometric data analysis method that explains the structure 
hidden in a data set for categorical data, which is the counterpart of 
Principal Component Analysis. It can represent data as points in low- 
dimensional Euclidean spaces, particularly applicable for a moderate 
number of individuals and a significant number of variables (Burt, 1950; 
Chauvin et al., 2013). Hierarchical Clustering is a clustering approach 
that classifies individuals in a hierarchy of clusters, while Classification 
Tree learning is a data mining method that uses input variables to pre
dict the class to which the data belong (Hastie et al., 2005; Chauvin 
et al., 2013). 

The above analyses presented are conducted using the R packages 
FactoMineR. It generated the criteria of maritime accidents in the form 
of accident types and the strategies for the countermeasures derived 
from above categorical data. 

3.2. A BN-based approach to reveal interrelations among strategies 

In order to facilitate the modelling of the relations among strategies, 
BN is applied into the analysis of the maritime accident types under 
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various risk factors. The data is obtained from the case-by-case analysis 
of recorded maritime accidents, and the risk factors in BN are from both 
maritime accident reports and the literature (Chauvin et al., 2013; 
Graziano et al., 2014; Kum and Sahin, 2015). 

Human factors in maritime accidents are usually combined with 
other external factors, such as sea condition, weather condition, fairway 
traffic, and vessel condition that affect the safety procedure in naviga
tion. From this perspective, it is beneficial to combine human factors 
with such external factors to investigate their combined effect on 
maritime safety. Therefore, the common factors with frequencies higher 
than average value, 19.35%, combined with the factors identified from 
the literature (Wang and Yang, 2018), encompass a collection of 25 risk 
factors, as present in Table 1. Most of the definitions of variables’ states 
can be extracted from accident investigation reports from MAIB or TSB, 
including ‘accident type’, ‘ship type’, ‘hull type’, ‘ship operation’, and 
‘voyage segment’. Some variables are degraded according to the litera
ture (Wang and Yang, 2018), including ‘ship age’, ‘length’, and ‘gross 
tonnage’. Then, ‘vessel condition’, ‘communication’, ‘supervision’, 
etcetera, are grading based on whether it is blamed for the faults in 
accidents, as data characteristic described in the reports. In addition, 
accident types are present in Table 2. 

A data-driven method, Tree Augmented Network (TAN), which relies 
on the learning algorithm in the BN model, was developed to generate 
BN structure and CPTs calculation by Netica software package (Norsys, 
http://www.norsys.com). After sensitivity analysis, this model was used 

to illustrate the relations among the strategies, and provide the inter
section of strategies under various criteria by adjusting the BN. 

From this point of view, the strategies derived from Section 3.1 are 
revealed as risk factors with multiple states in the BN. By giving state to 
the risk factors in BN, the strategies are assumed to be given, the findings 
of the node of accident types are revealed as changeable values in the 
crisp values for the TOPSIS. The results of the networks are demon
strated in Fig. 1. 

Fig. 1 presents the results of TAN involving all the retained 25 risk 
factors. Among the accidents, grounding and collision are among the 
most frequent accident types, accounting for 20.3% and 21.2%, 
respectively. In addition, the relationships among various factors are 
generated by this data-driven approach. By adjusting one state of the 
variable, the differences of the findings will be reflected in BN. 

3.3. TOPSIS for the formulation of accident prevention strategies 

In this section, TOPSIS method is applied to explaining the priorities 
among different strategies and the formulation of maritime accident 
prevention decisions. TOPSIS was proposed as an alternative to the 
ELECTRE method (Yoon, 1981; Yoon and Hwang, 1995), which was 
generated based on the idea that if an alternative has the shortest dis
tance to the ideal solution within the Euclidean space (Streimikiene 
et al., 2012), and can be considered as the best one in the system. 
However, it is possible that such a solution that has the shortest 

Table 1 
The risk factors identified from the literature and accident reports.  

Source RFs Notation Description and corresponding values in BN 

Weng and Yang (2015) Ship type RST  Passenger vessel (1), tug (2), barge (3), fishing vessel (4), container ship (5), bulk carrier (6), RORO (7), tanker or 
chemical ship (8), cargo ship (9), others (10). 

Balmat et al. (2009) Hull type RHT  Steel (1), wood (2), aluminium (4), others (5) 
Zhang et al. (2013) Ship age (years) RSA  (0 5] (1), [6 10] (2), [11 15] (3), [16 20] (4), >20 (5), NA (6) 
MAIB19-2017, 

TSBM16P0362 
Length (m) RL  �100 (1), >100 (2), NA (3) 

Zhang et al. (2013) Gross tonnage 
(GT) 

RGT  �300 (1), 300 to 10000 (2), >10000 (3), NA (4) 

MAIB19-2017 Ship operation RSO  Towing (1), Loading/unloading (2), Pilotage (3), Manoeuvring (4), Fishing (5), At anchor (6), On passage (7), others (8) 
MAIB19-2017 Voyage segment RVS  In port (1), Departure (2), Arrival (3), Mid-water (4), Transit (5), others (6) 
Balmat et al. (2011) Ship speed RSS  Normal (1), fast (2) 
MAIB23-2017 Vessel condition Rvc  The condition of vessel has nothing to do with the accidents (1); 

Increasing complexity of propulsion arrangements, modification made to vessels, size contributes to the accidents (2) 
MAIB23-2017 Equipment/ 

device 
RE  Devices and equipment onboard operate correctly (1); 

Devices and equipment not fully utilised or operated correctly (e.g., Bridge Navigational Watch & Alarm System 
(BNWAS) switched off, alarm system not in the recommended position or not noticed) (2) 

TSBM16P0362 Ergonomic design RED  Ergonomic friendly or ergonomic aspects have nothing to do with accidents (1); 
Ergonomic impact of innovative bridge design (e.g., visual blind sector ahead, motion illusion) (2) 

TSBM16P0362 Information RI  Effective and updated information provided (1); 
Insufficient or lack of updated information (e.g., poor quality of equipment data, falsified records of information, relies 
on a single piece of navigational equipment, without working indicators or light for necessary observing) (2) 

MAIB8-2013 Weather 
condition 

RWC  Good (1)/poor (2) considering rain, wind, fog, visibility 

MAIB22-2017 Sea condition RSC  Good (1)/poor (2) considering falling/rising tide, current, waves 
MAIB22-2017 Time of day RTD  07:00 to 19:00 (1), other (2) 
MAIB23-2017 Fairway traffic RFT  Good (1) or poor (2) considering complex geographic environment, dense traffic, or receptive nature of the route 

contributing to ignorance 
MAIB 25-2017 Communication A1 Good (1) or poor (2) communication and coordination 
MAIB 24-2017 Supervision A2 Effective (1) or ineffective (2) supervision and supports 

(lone watchkeeper or working isolated, improper supervision of loading operation) 
MAIB 23-2017 Clear order A6 Good (1) or unclear (2) order from documents 

(not accurately interpret and apply the requirements of a safe manning document) 
MAIB 20-2017 Experienced A11 Familiar (1) or unfamiliar (2) with/lack of equipment knowledge, experienced or inexperienced, good or ill-prepared; 
MAIB 22-2017 Complacent A12 Properly understand (1) or complacent about (2) the duties/underestimation of the severity of the condition (low state 

of alertness) 
MAIB 26-2017 Regulation A18 Good (1) or inappropriate/ambiguous (2) code, endorsement, regulations, procedure, instructions, formal published 

guidance; operation manual, requirement 
MAIB 14-2015 Risk assessment A19 Good (1) or lack of (2) risk assessment 
MAIB 14-2017 Management A20 Good (1) or dysfunctional (2) management system 

(including shore management, maintenance management, bridge source management, onboard management, safety 
management systems, port service, qualification examination, inadequate training, practice, emergency drill) 

MAIB 17-2017 Safety culture A21 Good (1) or lack of (2) safety culture, precautionary thought  
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Euclidean distance to the ideal solution also has a shorter distance to the 
negative ideal solution (Tzeng et al., 2002). Therefore, the TOPSIS 
method considers both the above distances. Moreover, modified TOPSIS 
method utilised the ‘city block distance’ (Yoon and Hwang, 1995) 
instead of the Euclidean distance, so that any solution that has the 
shortest distance to the positive ideal solution (PIS) can be guaranteed to 
have the farthest distance to the negative ideal solution (NIS) (Tzeng 
et al., 2002). 

In this study, the nine states of accident types are treated as multiple 
criteria, and the strategies selected by statistical analysis are as alter
natives in the TOPSIS. The procedures of TOPSIS include the following 
steps. 

Step 1. Based on the crisp values obtained from BN model, an evalu
ation matrix consisting m alternatives and n criteria, where m ¼ 9 rep
resenting nine strategies, n ¼ 9 representing nine accident types is 
created, with the intersection of each alternative and criterion given as 
Xij, therefore a matrix ðXijÞm�n. Each intersection is obtained from each 

state value of the node of accident type in BN model developed in Sec
tion 3.2. 

Step 2. is normalised to form the matrix R ¼ ðrijÞm�n, using the 
following equation: 

rij¼
xij
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i¼1x2
ij

q ; i ¼ 1; 2; :::;m; j ¼ 1; 2; :::; n 

In this way, the normalisation of the matrix for the performance of 
strategies is obtained. 

Step 3. Calculate the weighted normalised decision matrix V ¼
ðvijÞm�n ¼ ðwjrijÞm�n; i ¼ 1; 2; :::;m , where wj ¼

WjPn
j¼1

Wj
; j ¼ 1;2; :::; n . 

So that 
Pn

j¼1wj ¼ 1 , and Wj is the original weight given to the cri
terion, representing initial correspondence value for the states of acci
dent type in BN. That is to say, in this study, the weight of each criterion 
is given based on the occurrence probability of the accidents. 

Step 4. Determine the NIS A� and the PIS Aþ .  

Where, Jþ ¼ fJ¼ 1;2; :::; ng is associated with the criteria having a 
positive impact, and J� ¼ fJ¼ 1;2; :::; ng is associated with the criteria 
having a negative impact. However, the criteria including nine types of 
accidents proposed herein all have negative impact. 

Step 5. Calculate the Euclidean distance (commonly in most applica
tions) measurements between target strategies i and the worst condition 
NIS A�

Sþ ¼

 
Xp

j¼1

�
�
�vij � v�j

�
�
�
2
!0:5

; i¼ 1; 2; :::;m; j¼ 1; 2; :::; n;

And the distance measure between target alternative i and the best 
condition PIS Aþ: 

S� ¼

 
Xp

j¼1

�
�
�vij � vþj

�
�
�
2
!0:5

; i¼ 1; 2; :::;m; j¼ 1; 2; :::; n;

Where S� and Sþ are the distance from the target alternative, i to the 
worst and best strategies, respectively. 

Step 6. Calculate the similarity to the worst condition, representing 
the performance of strategies. 

Ci ¼
S�

ðSþ þ S� Þ
; 0 � Ci � 1; i ¼ 1; 2; :::;m:

Ci ¼ 1 if and only if the alternative solution has the best condition; and 
Ci ¼ 0 if and only if the alternative solution has the worst condition. 

Step 7. Rank the strategies for maritime accident prevention according 
to the value of Ciði ¼ 1; 2; :::;mÞ. 

4. Case study 

4.1. Maritime accident prevention strategy generation 

Based on the statistical analysis in Section 3.1, the top 14 risk factors 
are selected for MCA according to the frequency threshold value of 0.19, 
which is the average value among all frequencies. That is to say, the 
variable with a frequency larger than 0.19 is selected as one of the 14 
risk factors, as shown in Table 3. 

In order to point out patterns of contributory factors (Chauvin et al., 
2013), these risk factors are employed into MCA (see Fig. 2). 

Axis 1 explains 12.01% of the inertia. It is determined by attributes 
Information (no), weather_condition (no), sea_condition (no), A18 (no). 
It opposes: 

● The modalities: Information (no), weather_condition (no), sea_
condition (no), A18 (no), on the positive side, to  

● The opposite modalities on the negative side. 

As far as individual vessels are concerned, it opposes:  

● Vessels experiencing an accident without sufficient information, in 
poor condition of sea and weather, having problems with ambiguous 
code, endorsement, regulations, procedure, or instructions, to  

● Vessels experiencing an accident the opposite conditions. 

This axis quantifies the intensity of environmental and management 
problems. 

Axis 2 explains 10.33% of the inertia. It is determined by attributes 
A19 (no), A11 (no), A2 (no), Equipment (yes). It opposes:  

● The modalities: A19 (no), A11 (no), A2 (no), Equipment (yes), on the 
positive side, to  

● The opposite modalities on the negative side. 

Table 2 
Accident type identification.  

No. Accident type 

S1 Collision 
S2 Grounding 
S3 Flooding 
S4 Fire/explosion 
S5 Capsize 
S6 Contact/crush 
S7 Sinking 
S8 Overboard 
S9 Others  

A� ¼
�

〈max
�
tijji ¼ 1; 2; :::;m

�
jj∍J� 〉; 〈min

�
tijji ¼ 1; 2; :::;m

�
jj∍Jþ〉

�
�
�

twjjj ¼ 1; 2; :::; n
�
;

Aþ ¼
�

〈min
�
tijji ¼ 1; 2; :::;m

�
jj∍J� 〉; 〈max

�
tijji ¼ 1; 2; :::;m

�
jj∍Jþ〉

�
�
�

tbjjj ¼ 1; 2; :::; n
�
;

S. Fan et al.                                                                                                                                                                                                                                      



Ocean Engineering 210 (2020) 107544

6

As far as individual vessels are concerned, it opposes:  

● Vessels experiencing an accident without risk assessment, where 
seafarers are ill-prepared or inexperienced for the navigation, 
without enough supervision or working isolated, with equipment 
operating properly, to  

● Vessels which are experiencing an accident with sufficient risk 
assessment, where experienced seafarers had enough equipment 
knowledge and are well-prepared, with effective supervision and 
supports, where devices and equipment on board are not fully uti
lised or operated correctly. 

This axis opposes personnel and management factors to vessel 
factors. 

Then, hierarchical clustering is carried out from the coordinates of 
individuals on all the axes. The analysis shows three different classes of 
cases, as shown in Fig. 3. Associated with a classification tree (see 
Fig. 4), it shows the variables that best explain vessel allocation to the 
different classes among the above factors, which is helpful for the gen
eration of strategies. Each tree distinguishes a class, where there are 
three classes. The left side of each branch corresponds to a “yes” to the 
question in the root, whereas the right side corresponds to a “no”. Under 
each leaf, the class type and percentages of elements of each class in the 
leaf appear; the first line ‘1’ means first class and 0.23/.67/.10 means 
that there are 23% of accidents belonging to the first class, 67% of 

accidents belonging to the second class and 10% of accidents of the third 
class. The presence of weather condition appears to be a characteristic of 
the first class, which means many accidents are caused by rain, wind, 
fog, or poor visibility. Moreover, weather condition factor is always 
associated with a lack of safety culture, poor sea condition, unclear 
order, and dysfunctional management system. Class 1 is well charac
terised by lack of safety culture, and integration of poor sea condition 
and unclear order. Class 2 is revealed to be connected with weather 
condition or sea condition, which is less affected by human factors. Class 
3 is reasonably characterised by the dysfunctional management system. 

Fig. 4 illustrates the significant factors and the combination of them 
which classify the accidents. By doing this, such factors can be selected 
to support generating strategies for maritime accident prevention. There 
are strategies derived from the above results considering human factors. 
It should be noted that although weather and sea condition are signifi
cant factors from the statistical analysis, it reveals less information for 
the accident prevention countermeasures. Therefore, attention is given 
to factors associated with such environmental factors so as to propose 
the strategies to solve the safety issues.  

(1) A21 (Safety culture): vessels should keep and maintain a good 
safety culture, and seafarers onboard should have precautionary 
thought. 

Fig. 1. Results of BN by TAN learning.  
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(2) A6 (Clear order): good and clear order from documents is sup
posed to be accurately interpreted, and the requirements of a safe 
manning document should be applied.  

(3) A20 (Management): appropriate management system should 
include shore management, maintenance management, bridge 
source management, onboard management, safety management 
systems, port service, qualification examination, inadequate 
training, practice, emergency drill. 

(4) Information: sufficient and updated information should be pro
vided; any insufficient or lack of updated information (e.g., poor 
quality of equipment data, falsified records of information, relies 
on a single piece of navigational equipment, without working 
indicators or light for necessary observing) should be avoided.  

(5) A18 (Regulation): appropriate code, endorsement, regulations, 
procedure, instructions, formally published guidance, operation 
manual, requirement are required, and any ambiguous docu
ments should be revised.  

(6) A19 (Risk assessment): ship owners and ship authorities should 
keep enough risk assessment for the ship and crews.  

(7) A11 (Experienced): crews should be familiar with equipment 
knowledge; experienced and well-prepared seafarers are 
required.  

(8) A2 (Supervision): adequate supervision and supports should be 
given when on duty, and lone watchkeeper or working isolated, 
improper supervision of loading operation should be eliminated.  

(9) Equipment: devices and equipment onboard should be operated 
correctly before the voyage; any circumstances for problematic 
equipment (e.g., Bridge Navigational Watch & Alarm System 
(BNWAS) switched off, alarm system not in the recommended 
position or not noticed) should be eliminated. 

4.2. Calculation of TOPSIS matrices derived from BN 

Each accident type is seen as a criterion for the multiple criteria 
decision making. According to the BN structure and results in Section 
3.2, the weight of each criterion was given based on the probability of 
occurrence of the accidents, which is revealed as initial correspondence 
value for the state of accident type in BN. Moreover, the evaluation 
matrix consisting of nine alternatives and nine attributes, with the 
intersection of each alternative and criterion was given in Table 4, which 
generated Step 1 of the TOPSIS method, where S1–S9 represent different 
types of accidents. 

With regards to the intersection of each alternative and criterion, 
crisp values in TOPSIS are generated from BN rather than the fuzzy 
environment or vague information, which utilises the advantages of the 
data-driven approach of BN accounting for the inter-relations among 
criteria. To be specific, this step overcomes the drawback of the TOPSIS 
method, considering the interaction among strategies in BN model, 
which is more rational in the real word. Besides, the weight of each 
criterion is determined by the initial probabilities of accident types, 
which implies that accident type with higher probability accounts for 
higher weight for MCDM. 

4.3. Maritime accident prevention strategy selection 

In order to obtain the normalised matrix, calculations have been 
conducted to generate Table 5, where S1–S9 represent different types of 
accidents. 

Then weighted normalised matrix is obtained, followed by calcu
lating the ideal best and ideal worst values. After that, the Euclidean 
distances from the ideal best solution and the ideal worst solution are 
calculated by the equations in Section 3.3. At last, TOPSIS calculates the 
performance score and ranks the strategies, which is shown in Table 6. 

From this table, it is evidence that strategies about equipment, in
formation, and clear order are the top three recommendations for 
maritime accident prevention considering human factors. To be specific, 
these strategies are as follows.  

(1) Effective and updated information should be provided. Any 
insufficient or lack of updated information (e.g., poor quality of 
equipment data, falsified records of information, relies on a single 
piece of navigational equipment, without working indicators or 
light for necessary observing) should be avoided. 

(2) Good and clear order from documents is supposed to be accu
rately interpreted, and the requirements of a safe manning 
document should be applied.  

(3) Vessels should keep and maintain a good safety culture, and 
seafarers onboard should have precautionary thought. 

Besides, the first strategy about equipment shows most prospects 
among all strategies, based on the comparison of Ci values. These values 
represent the similarity to the worst condition, which are used as the 
indicators for strategy ranking, as demonstrated in Section 3.3. It can be 
seen from Table 6 that Ci (0.528) of ‘Information’ which ranks first, 

Table 3 
The frequencies of risk factors selected for MCA.  

Code Risk factors Problem 
(No) 

Not a problem 
(Yes) 

Frequency 
(%) 

Sea_condition falling tide, current, waves 111 97 53.3654 
Information insufficient or lack of updated information (poor quality of equipment data, falsified records of information, 

relies on a single piece of navigational equipment); no automatic means or without indicators for necessary 
observing (working indicators, light) 

95 113 45.6731 

A20 dysfunctional management system (shore management, maintenance management, bridge source 
management, on board management, safety management systems, port service, qualification examination, 
inadequate training, practice, emergency drill) 

85 123 40.8654 

Weather_condition wind, visibility(dense fog) 82 126 39.4231 
Equipment 

/device 
devices and equipment on board not fully utilised or operated correctly (BNWAS switched off, alarm system 
not in the recommended position or not noticed) 

79 129 37.9808 

A6 no clear order (not accurately interpret and apply the requirements of a safe manning document) 78 130 37.5000 
A2 ineffective supervision and supports (lone watchkeeper or working isolated, improper supervision of 

loading operation) 
68 140 32.6923 

A11 unfamiliar with/lack of equipment knowledge, inexperienced, ill-prepared 68 140 32.6923 
A1 poor communication and coordination with team 64 144 30.7692 
Vessel_condition the poor condition of the vessel, the increasing complexity of propulsion arrangements, and modifications 

made to vessels, size 
60 148 28.8462 

A19 lack of risk assessment 56 152 26.9231 
A21 lack of safety culture, precautionary thought 51 157 24.5192 
A12 complacent about the duties or underestimation of the severity of the condition (low state of alertness) 45 163 21.6346 
A18 inappropriate or ambiguous code, endorsement, regulations, procedure, instructions, formal published 

guidance; operation manual, requirement 
41 167 19.7115  
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Fig. 2. MCA factor map for contributory factors.  

Fig. 3. Hierarchical clustering for different classes of cases.  
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indicates significant performance in order to prevent accidents, 
compared to the second or other strategies. 

4.4. Model evaluation 

4.4.1. Sensitivity analysis 
To validate the model, it is examined by testing the combined effect 

of multiple RIFs to the accident types in BN model, because it contrib
utes crisp values into TOPSIS matrix. 

According to the literature, there are two axioms to be satisfied in the 
sensitivity analysis (Fan et al., 2020). For example, the ‘information’ in 
Fig. 1 is selected as the first node, the state generating the highest 
changed value of ‘collision’ (S1) in ‘accident type’ is increased by 10%, 
while the state generating the lowest changed value of ‘collision’ in 

‘accident type’ is decreased by 10%. This procedure is written as 
‘~10%‘. And the same approach is applied to the next RIF ‘vessel con
dition’, and the integrated changed value is obtained and updated. From 
Table 7, the updated values of ‘S1’are gradually increasing when more 
RIFs are included. Similarly, the same updating procedures are applied 
into the state 2, 3 … 9 in ‘accident type’ respectively, until all states are 
included. In this way, the updated values of the target node are gradu
ally increasing or decreasing along with the continuously changing RIFs, 
so that two axioms are examined. 

4.4.2. Reliability test for TOPSIS 
The reliability test for BN-based TOPSIS method is conducted by 

adjusting the human factors, which includes more strategies in the 
model to observe updated results of the ranking. Firstly, the less 

Fig. 4. Classification tree for variables explaining vessel allocation to different classes.  

Table 4 
Create an evaluation matrix for 9 alternatives and 9 attributes.  

Weight 0.203 0.212 0.037 0.055 0.111 0.106 0.042 0.092 0.143 

S1 S2 S3 S4 S5 S6 S7 S8 S9 

A21 0.214 0.235 0.026 0.045 0.104 0.117 0.030 0.069 0.161 
A6 0.230 0.205 0.033 0.052 0.105 0.102 0.034 0.102 0.136 
A20 0.221 0.228 0.029 0.041 0.114 0.107 0.039 0.085 0.137 
Information 0.218 0.158 0.033 0.062 0.132 0.073 0.043 0.106 0.176 
A18 0.202 0.226 0.042 0.055 0.114 0.079 0.037 0.101 0.143 
A19 0.238 0.221 0.034 0.048 0.092 0.107 0.038 0.087 0.136 
A11 0.211 0.231 0.032 0.048 0.082 0.109 0.039 0.091 0.156 
A2 0.186 0.217 0.035 0.056 0.112 0.100 0.042 0.093 0.159 
Equipment 0.215 0.193 0.036 0.056 0.108 0.106 0.033 0.103 0.150  
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important human factor A12 has been added into maritime accident 
prevention strategies, which formulates a new evaluation matrix for 10 
alternatives and 9 attributes, shown in Table 8. The 10th alternative 
represent the strategy A12:The duties and the severity of the condition 
should be appropriately estimated with enough alertness. 

Secondly, the corresponding weighted normalised matrix, Euclidean 
distances from the ideal best and ideal worst have changed accordingly. 
At last, the performance score and the strategies ranking are found in 
Table 9. 

Compared to the results of Table 6, it is evidence that the input of 
strategy A12 does not influence the ranking of strategies in Section 4.3, 
although the values of Ci change slightly. In this way, it shows the 
reliability test of the above BN-based TOPSIS method. 

With regard to the results of BN-based TOPSIS model, it demon
strates the rational selection of alternatives, as well as the decision 
making of multiple criteria considering the relations among multiple 
strategies. Compared to the approach that proposed countermeasures by 
scenario simulation using BN (Yang et al., 2018), this method reveals 
some advantages. Although being able to reduce the probability of one 
state of the node by scenario simulation, BN cannot reflect the best 
scenario to reduce the overall probability of all accident types in this 
study by adjusting single factor or the combined factors. Therefore, 
TOPSIS method is applied into the final step for MCDM. 

Overall, this method overcomes the drawback of the BN method that 
cannot determine the best scenario in multiple criteria system and the 
disadvantage of TOPSIS method that cannot reflect the crisp value by 
considering the correlations among alternatives. The results present the 
ranking order of strategies in view of human factors, which illustrates 
strategies that should be taken priority for maritime accident 
prevention. 

5. Conclusion 

This study proposes an advanced methodology for human factors 
analysis and maritime accident prevention by incorporating BN and 
TOPSIS in the MCDM system. In order to generate the prevention stra
tegies, it integrates MCA, HC and CT to generate alternatives for MCDM. 
MCA is performed to detect patterns of contributory factors explaining 
maritime accident types. It was also completed with HC, aiming at 

creating different classes of vessels, and a CT. Then, Bayesian-based 
TOPSIS model is built to illustrate the values of criteria and the re
lations among strategies for accident prevention. Specifically, TOPSIS is 
adopted for the strategies selection to generate new insights for accident 
prevention recommendations for transport authorities given human 
factors. 

The results convey that strategies about information, clear order, and 
safety culture are the top three recommendations for maritime accident 
prevention considering human factors. In order to prevent accidents 
related to human factors, these strategies should be developed with 
higher priority to provide insights for the improvement of maritime 
safety. From these perspectives, transport authorities obtain insights 
from past accidents to generate significant strategies for accident pre
vention. Moreover, it would contribute to the accident investigation and 
human factors research in the maritime field to provide effective stra
tegies or recommendations for the maritime industry and policymakers. 
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Table 5 
The normalised matrix for the performance of strategies.   

S1 S2 S3 S4 S5 S6 S7 S8 S9 

A21 0.331 0.366 0.258 0.290 0.321 0.386 0.267 0.246 0.355 
A6 0.356 0.319 0.327 0.335 0.325 0.337 0.303 0.363 0.300 
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Information 0.337 0.246 0.327 0.399 0.408 0.241 0.383 0.377 0.389 
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Equipment 0.333 0.301 0.357 0.360 0.334 0.350 0.294 0.367 0.331  

Table 6 
Calculation of performance score and the rank of strategies.   

S1 S2 S3 S4 S5 S6 S7 S8 S9 Siþ Si- Ci Rank 

A21 0.067 0.068 0.012 0.018 0.036 0.036 0.013 0.033 0.043 0.023 0.020 0.475 3 
A6 0.072 0.052 0.012 0.022 0.045 0.026 0.016 0.035 0.056 0.027 0.028 0.506 2 
A20 0.069 0.075 0.015 0.019 0.039 0.028 0.014 0.033 0.045 0.028 0.017 0.381 9 
Information 0.068 0.052 0.012 0.022 0.045 0.026 0.016 0.035 0.056 0.025 0.028 0.528 1 
A18 0.063 0.075 0.015 0.019 0.039 0.028 0.014 0.033 0.045 0.027 0.020 0.430 6 
A19 0.075 0.073 0.012 0.017 0.032 0.037 0.014 0.028 0.043 0.029 0.021 0.416 8 
A11 0.066 0.076 0.012 0.017 0.028 0.038 0.015 0.030 0.049 0.029 0.022 0.427 7 
A2 0.058 0.072 0.013 0.020 0.038 0.035 0.016 0.030 0.050 0.026 0.020 0.440 5 
Equipment 0.068 0.064 0.013 0.020 0.037 0.037 0.012 0.034 0.047 0.023 0.021 0.473 4 
Aþ 0.058 0.052 0.012 0.017 0.028 0.026 0.012 0.028 0.043     
A- 0.075 0.076 0.015 0.022 0.045 0.038 0.016 0.035 0.056      

Table 7 
Accident rate of minor change in RIFs.  

Information / ~10% ~10% ~10% ~10% ~10% 

Vessel condition / / ~10% ~10% ~10% ~10% 
Voyage segment / / / ~10% ~10% ~10% 
Ship operation / / / / ~10% ~10% 
Ship age / / / / / ~10% 
S1 20.3 20.4 21.2 21.5 22 22.2  
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Table 9 
Performance score and strategy ranking after adding A12.   

S1 S2 S3 S4 S5 S6 S7 S8 S9 Siþ Si- Ci Rank 

A21 0.067 0.068 0.012 0.018 0.036 0.036 0.013 0.033 0.043 0.023 0.020 0.475 3 
A6 0.072 0.052 0.012 0.022 0.045 0.026 0.016 0.035 0.056 0.027 0.028 0.506 2 
A20 0.069 0.075 0.015 0.019 0.039 0.028 0.014 0.033 0.045 0.028 0.017 0.381 9 
Information 0.068 0.052 0.012 0.022 0.045 0.026 0.016 0.035 0.056 0.025 0.028 0.528 1 
A18 0.063 0.075 0.015 0.019 0.039 0.028 0.014 0.033 0.045 0.027 0.020 0.430 6 
A19 0.075 0.073 0.012 0.017 0.032 0.037 0.014 0.028 0.043 0.029 0.021 0.416 8 
A11 0.066 0.076 0.012 0.017 0.028 0.038 0.015 0.030 0.049 0.029 0.022 0.427 7 
A2 0.058 0.072 0.013 0.020 0.038 0.035 0.016 0.030 0.050 0.026 0.020 0.440 5 
Equipment 0.068 0.064 0.013 0.020 0.037 0.037 0.012 0.034 0.047 0.023 0.021 0.473 4 
A12 0.054 0.075 0.015 0.021 0.038 0.030 0.015 0.030 0.038 0.119 0.025 0.175 10 
Aþ 0.058 0.052 0.012 0.017 0.028 0.026 0.012 0.028 0.043     
A- 0.075 0.076 0.015 0.022 0.045 0.038 0.016 0.035 0.056      
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