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A B S T R A C T

Methods of computational statistics allow efficient estimation of extreme ocean environments, and facilitate
optimal operational decision making. We describe estimation of extreme quantiles of total water level and
related quantities from a non-stationary hierarchical model for ocean storms. The model incorporates a
directional–seasonal extreme value model for occurrences of storm peak significant wave height, a conditional
directional model for within-storm evolution of sea states relative to storm peak, a conditional model for the
maximum crest within a sea state, and models for total water level. Importance sampling is used for efficient
computation of marginal total water level characteristics. We use the model to estimate an optimal un-manning
procedure for a notional North Sea offshore structure in severe conditions.
1. Introduction

Quantification of extreme ocean environments is critical to the
reliability assessment of offshore and coastal structures. Increasing
availability of data from measurements and hindcasts, coupled with
easy access to computing resources, has motivated the development
of sophisticated methods for statistical characterisation of extreme
ocean environments. These methods incorporate the effects of co-
variates (e.g. direction associated with met-ocean variables such as
significant wave height 𝐻𝑆 , wind speed and current speed) and ex-
tremal dependence (e.g. of extreme significant wave height 𝐻𝑆 in
space and time, and the dependence between extreme 𝐻𝑆 , wind speed
and current speed). These approaches also allow uncertainties to be
quantified and propagated through design calculations, in principle
allowing optimal decision-making (e.g. Jones et al. 2018).

Efficient estimation of extreme ocean environments

Design standards such as NORSOK N-006 (2015), ISO19901-1
(2015) and DNVGL-RP-C205 (2017) specify design requirements in
terms of return values for met-ocean variables. It is therefore impor-
tant that models for extreme ocean environments facilitate efficient
estimation of return values. The current article provides a description

∗ Corresponding author at: Shell Research Limited, London SE1 7NA, United Kingdom.
E-mail address: philip.jonathan@shell.com (P. Jonathan).

of one such estimation scheme, based on a hierarchical statistical
model, in Section 3. For simplicity of description here, the hierarchical
model assumes that extreme structural loading results from wave-
dominated conditions, and that wave-in-deck is of primary concern.
This would be relevant e.g. when sea bed subsidence is thought to
occur. That is, the main modelling task is to estimate the distributional
characteristics of extreme total water level at a location for return
periods of the order of 104 years; we emphasise however that the model
is easily generalised e.g. to assess reliability with respect to structural
loading and utilisation. The distribution of extreme total water level is
estimated in terms of (a) a non-stationary directional–seasonal extreme
value model for occurrences of storm peak 𝐻𝑆 (written 𝐻𝑠𝑝

𝑆 ) assumed
to quantify the peaks of independent ocean storms, (b) a conditional
model for within-storm evolution of sea state 𝐻𝑆 (and related sea state
variables) with direction in time relative to 𝐻𝑠𝑝

𝑆 , and (c) a conditional
model for maximum value 𝑍̃ of total water level 𝑍 within a sea state
with given values of sea state 𝐻𝑆 and related variables. The model has
been described in previous articles including Randell et al. (2015).

The marginal distribution of the annual maximum 𝑍̃𝐴 of 𝑍̃ (from
which return values and related quantities can be calculated) is then
estimated by integration over all the conditioning variables, includ-
ing covariates such as direction and season. This procedure can be
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computationally expensive; the speed and quality of inference can in
general be greatly improved using appropriate sampling techniques
such as importance sampling in place of naive Monte Carlo simulation,
or numerical integration.

The rationale for un-manning

The various design conditions for an offshore or coastal structure
are estimated and re-assessed during the lifetime of the structure.
Generally, on design and installation, the structure meets the required
design specification; e.g. the return period for wave-in-deck exceeds
104 years, or equivalently that the probability that 𝑍̃𝐴 exceeds the
deck height 𝑑 is less than 10−4. Occasionally, due to effects includ-
ing (a) improved understanding of the environment and its extremes
(e.g. Karmpadakis et al. 2019, 2020), (b) improved understanding of
physical processes responsible for structural loading (e.g. Schubert et al.
2020, Section 1), (c) changing environment (e.g. Meucci et al. 2020)
and (d) changing design requirements (e.g. Feld et al. 2019, Table 1),
the structure is found not to be compliant on re-assessment at a later
date. That is, Pr(𝑍̃𝐴 > 𝑑) > 10−4. In this case, mitigating action must be
taken to achieve compliance. One approach is to adopt an un-manning
strategy for the structure, under which personnel are removed from
the structure in certain conditions. Then, for the interval of time per
annum for which the structure is manned the corresponding annual
maximum 𝑍̃𝐴|Manned is such that Pr(𝑍̃𝐴|Manned > 𝑑) ≤ 10−4. The un-

anning strategy can achieve its ends in principle by a combination of
wo effects: (a) reduction in the number of manned structural exposure
ours per annum regardless of ocean conditions, and (b) un-manning
nly when ocean conditions are severe. From the safety perspective,
nd from the economic perspective of maintaining production, it is
ational to un-man as infrequently as possible for severe conditions
nly.

Intuitively, following Hagen and Solland (2009) and related publi-
ations (Hagen and Riise 2012, Hagen and Solland 2013 and NORSOK
-006 2015), the met-ocean modeller’s challenge is to establish the
ighest threshold ℎ∗ for sea state 𝐻𝑆 at a given location, such that
f the structure is un-manned when 𝐻𝑆 exceeds ℎ∗, the corresponding
anned 𝑍̃𝐴|(𝐻𝑆 < ℎ∗) is such that Pr(𝑍̃𝐴|(𝐻𝑆 < ℎ∗) > 𝑑) ≤ 10−4.
f course, for the un-manning strategy to be useful, knowledge that
𝑆 exceeds ℎ∗ is required ahead of time, so that the structure can be

n-manned prior to the severe weather arriving. This requires that un-
anning is based on forecast sea state 𝐻̂𝑆 at the location of interest.
he forecast model cannot be perfect; it is uncertain, and in general its
ncertainty (quantified e.g. in terms of bias and variance) will increase
ith forecast lead time. The un-manning challenge must therefore be

ecast: we seek to establish the highest threshold ℎ∗ for forecast 𝐻̂𝑆 of
ea state 𝐻𝑆 at a given location, such that if the structure is un-manned
hen 𝐻̂𝑆 exceeds ℎ∗, the corresponding manned 𝑍̃𝐴|(𝐻̂𝑆 < ℎ∗) is such

hat Pr(𝑍̃𝐴|(𝐻̂𝑆 < ℎ∗) > 𝑑) ≤ 10−4. The estimation of un-manning
hreshold ℎ∗ therefore requires the calculation of the distribution of 𝑍̃𝐴
estricted to sea states which are forecast not to be too large, so that
n the restricted set of sea states (forecast to be less severe), the actual
nnual probability of wave-in-deck is sufficiently small. This calculation
an be performed efficiently using the hierarchical model described
bove.

bjective and layout

The purpose of this article is to illustrate the efficient estimation
f extreme quantiles of met-ocean variables and related quantities,
rom a non-stationary hierarchical model for extreme ocean environ-
ents. We illustrate the estimation scheme in application to the out-

ine specification of an un-manning strategy for a notional offshore
latform.

The article is arranged as follows. Section 2 outlines the motivating
pplication and available data. Section 3 then describes the hierarchical
2

f

odel for the ocean environment, focussing on efficient methods for
omputation of integral properties of interest for un-manning. Section 4
hen describes the application of the hierarchical model to estimate
ptimal un-manning strategies, using the data from Section 2. Section 5
rovides discussion and conclusions.

. Motivating application

We use three sources of sea state data in the current work. The first
s a historical hindcast of approximately 60 years, used to estimate the
ierarchical model for extremes of storm peak 𝐻𝑠𝑝

𝑆 , sea state 𝐻𝑆 and
otal water level 𝑍. The second and third data sources correspond to

years of forecast and measured data used to estimate a calibrated
hort-term forecast model for sea state 𝐻𝑆 , and validate the hindcast,
espectively.

istorical hindcast

We use time-series for 𝐻𝑆 , (dominant) wave direction, season (de-
ined as day of the year, for a standardised year consisting of 360 days)
nd related wave period quantities for three hour sea states for the pe-
iod September 1957 to February 2018 at a northern North Sea location
rom the hindcast of Reistad et al. (2011). Storm peak characteristics
nd within-storm trajectories are isolated from these time-series us-
ng the procedure described in Ewans and Jonathan (2008). Briefly,
ontiguous intervals of 𝐻𝑆 above a low peak-picking threshold are
dentified, each interval corresponding to a storm event. The peak-
icking threshold corresponds to a directional quantile of 𝐻𝑆 with
pecified non-exceedance probability, estimated using quantile regres-
ion. The maximum of significant wave height during the interval is
aken as the storm peak significant wave height 𝐻𝑠𝑝

𝑆 for the storm.
he value of other variables at the time of the storm peak significant
ave height are referred to as storm peak values of those variables.
onsecutive storms within 24 h of one another are combined. Fig. 1
onsists of scatter plots of sea state 𝐻𝑆 on storm peak direction and
eason, with direction from which a storm travels expressed in degrees
lockwise with respect to north. The effect of fetch limitation with
irection is clear e.g. for storms emanating from the north-east. Typical
easonal variation is also present. Note that the development of a
ierarchical extreme value model for 𝐻𝑠𝑝

𝑆 , sea state 𝐻𝑆 and total water
evel 𝑍, using data from the same neighbourhood, has been reported
n Feld et al. (2015). For convenience we denote the hindcast data as
bservations {𝑥(𝑡)}, 𝑡 ∈ Hnd

𝑡 of random variables {𝑋(𝑡)}, where Hnd
𝑡 is

he period of the hindcast. The hindcast has been shown to provide
ery good estimates of 𝐻𝑆 at locations in the North Sea for which
easurements are available. Given this, we consider the hindcast data

o be equivalent to measured data for the purposes of this study.

ecent forecast

In addition to historical hindcast data, we also have access to more
ecent forecast values for sea state 𝐻𝑆 for a period of June 2014 to
une 2020, referred to as Clb

𝑡 . For each time point 𝑡 ∈ Clb
𝑡 , the forecast

ata takes the form of observations {𝑦(𝜏; 𝑡)} of hourly forecasts {𝑌 (𝜏; 𝑡)}
or lead times 𝜏 ∈ 𝜏 = {1, 2,… , 7 × 24} with a maximum lead time

of 7 days. Any missing hourly values in the forecast were imputed by
interpolation. The left panel of Fig. 2 illustrates forecast performance
in terms of estimated bias 𝐸𝑡[𝑌 (𝜏; 𝑡) −𝑋(𝑡+ 𝜏)] and estimated standard
eviation SD𝑡[𝑌 (𝜏; 𝑡)−𝑋(𝑡+𝜏)] as a function of lead time 𝜏, for 𝑡 ∈ Clb

𝑡 ∩
Hnd
𝑡 . The right panels of Fig. 2 gives scatter plots of the forecast 𝑦(𝜏; 𝑡)
n the hindcast 𝑥(𝑡+𝜏) for 𝜏 = 24, 96 and 168. As might be expected, the
eft panel suggests that the forecast is approximately unbiased for all
ead times 𝜏, but its uncertainty increases with 𝜏. There is also evidence
rom the right panel that the extent of bias changes with the forecast
alue, especially for larger 𝜏. Specifically, it appears that, when 𝜏 is
arge, the forecast tends to underestimate the largest values of 𝐻𝑆 at
he location under consideration. This in turn suggests some potential
o estimate an improved calibrated forecast for this location, explored

urther in Section 4.1.
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Fig. 1. Sea state significant wave height 𝐻𝑆 by direction (top) and season (bottom) for the location of interest. Direction is defined clockwise from North in degrees, as the
direction from which waves travel. Season is defined as the day of the year projected on to [0, 360) degrees.
Fig. 2. Comparing forecast (𝑦(𝜏; 𝑡)) and hindcast 𝐻𝑆 (𝑥(𝑡 + 𝜏)) for current time 𝑡 ∈ Clb
𝑡 ∩ Hnd

𝑡 and lead time 𝜏 ∈ 𝜏 . Left: bias 𝐸𝑡[𝑦(𝜏; 𝑡) − 𝑥(𝑡 + 𝜏)] and standard deviation
SD𝑡[𝑦(𝜏; 𝑡) − 𝑥(𝑡 + 𝜏)] as a function of forecast lead time 𝜏 at current time 𝑡. Right: forecast 𝑦(𝜏; 𝑡) for lead times 𝜏 = 24, 96 and 168 as a function of hindcast 𝑥(𝑡 + 𝜏).
3. Efficient estimation of optimal un-manning

3.1. The hierarchical model

The hierarchical model has a number of components as noted in the
introduction, involving the characterisation of (a) storm peak 𝐻𝑠𝑝

𝑆 using
non-stationary extreme value analysis, (b) non-stationary within-storm
3

evolution of 𝐻𝑆 (and related quantities) relative to 𝐻𝑠𝑝
𝑆 , and (c) the

estimation of the distribution of sea state maximum total water level
𝑍̃ given sea state 𝐻𝑆 and related quantities. Here, we describe the hi-
erarchical model qualitatively, referring the reader to previous articles
including Randell et al. (2015) for a fuller mathematical description.

The model assumes that occurrences of severe ocean storms, and
hence of storm peak 𝐻𝑠𝑝, can be considered to be approximately
𝑆
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independent in time, and that the magnitudes of exceedances of storm
peak 𝐻𝑠𝑝

𝑆 over a high threshold given covariates follow a generalised
Pareto distribution. These assumptions are demonstrated to be rea-
sonable during application using e.g. diagnostic plots. Given these
assumptions, the specification of the full hierarchical model for total
water level (composed of elements (a), (b) and (c) here) is relatively
straightforward.

3.1.1. Storm peaks
The non-stationary model for 𝐻𝑠𝑝

𝑆 as a function of one or more
covariates itself involves three steps: (i) a quantile regression model for
extreme value threshold estimation yielding threshold 𝜓 corresponding
to non-exceedance probability 𝛾, for values of 𝛾 on some interval
𝛾 ∈ (0, 1), (ii) a Poisson model for the rate of occurrence of threshold
exceedance yielding rate 𝜌, and (iii) a generalised Pareto model for
the size of threshold exceedance, characterised in terms of a shape
parameter 𝜉 and scale parameter 𝜎. We therefore estimate uncertain,
non-stationary estimates for a total of four quantities, written together
as 𝜂 = {𝜓, 𝜌, 𝜎, 𝜉} such that 𝜂1 = 𝜓 , 𝜂2 = 𝜌, etc. Note that all element
of 𝜂 vary with covariates (such as season and direction) and extreme
value threshold 𝛾.

Each of models (i–iii) is estimated using a spline representation
of model parameter variation with covariate on a set of combina-
tions of covariate values as discussed in e.g. Randell et al. (2015)
and Zanini et al. (2020) on full directional–seasonal covariate domain
 = [0, 360) × [0, 360). For example, we might estimate a directional–
seasonal model for each point 𝑑 on a regular 2-D lattice of 32 directions
(with spacing 11.25◦), and 24 seasonal points (with spacing of 15
seasonal degrees, corresponding to approximately 2 weeks) yielding an
index set 𝑑 with 32 × 24 = 768 members.

The uncertainty of estimated model parameters can be quantified
using a bootstrapping scheme in which the whole analysis (a) is re-
peated for multiple independent bootstrap resamples 𝑏 ∈ 𝑏 of the
original 𝐻𝑠𝑝

𝑆 sample. Note that uncertainty regarding the choice of non-
exceedance probability 𝛾 can also be incorporated at this stage, so that
a given value of 𝛾 is associated with each bootstrap resample 𝑏. We
can therefore write the set of estimates generated by analysis (a) as
{𝜂𝑗𝑑𝑏}, 𝑗 ∈ 𝑗 = {1, 2, 3, 4}, 𝑑 ∈ 𝑑 and 𝑏 ∈ 𝑏. Thus the array
of estimates 𝜂∙∙𝑏 fully characterises the non-stationary extreme value
model corresponding to bootstrap resample 𝑏.

In more mathematical notation, the quantile regression and Poisson
models (i–ii) are used to construct an estimate for the conditional joint
distribution 𝛩∗, 𝛷∗

| of peak direction 𝛩∗ and season 𝛷∗ for a storm,
given bootstrap sample . They also provide an estimate for 𝑅|,
the omni-covariate annual rate of occurrence of storms given . The
quantile regression and generalised Pareto model provide an estimate
for the conditional distribution 𝑋∗

|𝛩∗, 𝛷∗, of storm peak exceedances
∗ given storm peak direction, season and bootstrap sample. These

stimates for distributions of storm peak characteristics contribute to
he estimation of the annual distribution of maximum total water level
n Section 3.2.

.1.2. Within-storm evolution of sea states
Estimating the evolution of 𝐻𝑆 (and related quantities; (b) above)

n time and direction relative to 𝐻𝑠𝑝
𝑆 using a simple statistical model is

hallenging (but see e.g. Tendijck et al. 2019). For this reason, we adopt
n empirical approach using a look-up table. Simply, we isolate histori-
al storm trajectories with similar given storm peak characteristics, and
se this sample of trajectories (potentially adjusted to maintain some
onditions such as peak direction, peak season and peak steepness)
s an empirical description of the joint conditional distribution of sea
tate𝐻𝑆 (and related quantities) given those storm peak characteristics.
his has proven a useful pragmatic approach, especially for simulation
f joint evolution of sea state variables using the hierarchical model.
he approach gives a means to sample from the joint distribution

∗ ∗ ∗
4

𝑋𝑠, 𝛩𝑠, 𝛷𝑠,𝜴𝑠}|𝑋 ,𝛩 ,𝛷 of the (time series) of sea state 𝐻𝑆 (𝑋𝑠), 1
torm direction 𝛩𝑠, season 𝛷𝑠 and other variables 𝜴𝑠 given storm peak
characteristics 𝑋∗, 𝛩∗ and 𝛷∗ for each of 𝑠 ∈  sea states of the
storm, exploited in Section 3.2. The vector 𝜴𝑠 contains all other sea-
state variables needed for the analysis, and might (e.g.) include spectral
information for the sea state, or surge and seasonal tide.

3.1.3. Maximum total water level within a sea state
Finally, the conditional distribution of total water level 𝑍 (and

hence of maximum total water level 𝑍̃ in a sea state; (c) above) is
taken to follow the parametric form of Forristall (2000) for maxi-
mum crest, with corrections as appropriate for sea state surge and
tide. This provides an estimate for the distribution 𝑍̃𝑠|𝑋𝑠, 𝛩𝑠, 𝛷𝑠,𝜴𝑠 of
maximum total water level given sea state 𝐻𝑆 , direction, season and
other variables, also used in Section 3.2. Note that a number of other
distributional forms for maximum crest are available.

In more general applications of the hierarchical model, we might
consider replacing maximum total water level within a sea state with
some other variable related to structural loading or utilisation of an
offshore structure. In this sense, maximum total water level can be
viewed as the ‘‘response’’ of interest in the current work.

3.2. The annual distribution of maximum total water level

Using the hierarchical model, the annual distribution of the maxi-
mum total water level 𝑍̃ over all sea states and storms can be expressed
in terms of the distributions estimated in Section 3.1. For clarity we
present the result first in terms of the distribution of maximum total
water level within a storm.

3.2.1. The distribution of maximum total water level within a storm
Integration over the distributions introduced in Section 3.1 gives

𝐹𝑍̃|(𝑧|𝑏) = ∫𝜙∗ ∫𝜃∗ ∫𝑥∗ ∫{𝑥𝑠 ,𝜃𝑠 ,𝜙𝑠 ,𝝎𝑠}

[ ∗
∏

𝑠∈|𝑋∗ ,𝛩∗ ,𝛷
𝐹𝑍̃𝑠 |𝑋𝑠 ,𝛩𝑠 ,𝛷𝑠 ,𝜴𝑠

(𝑧|𝑥𝑠, 𝜃𝑠, 𝜙𝑠,𝝎𝑠)

]

× 𝑓{𝑋𝑠 ,𝛩𝑠 ,𝛷𝑠 ,𝜴𝑠}|𝑋∗ ,𝛩∗ ,𝛷∗ ({𝑥𝑠, 𝜃𝑠, 𝜙𝑠,𝝎𝑠}|𝑥∗, 𝜃∗, 𝜙∗)

× 𝑓𝑋∗
|𝛩∗ ,𝛷∗ ,(𝑥∗|𝜃∗, 𝜙∗, 𝑏)

× 𝑓𝛩∗ ,𝛷∗
|(𝜃∗, 𝜙∗

|𝑏) 𝑑{𝑥𝑠, 𝜃𝑠, 𝜙𝑠,𝝎∗} 𝑑𝑥∗ 𝑑𝜃∗ 𝑑𝜙∗ (1)

for bootstrap resample 𝑏. The integrand involves the storm distribution
of peak direction and season, the conditional distribution of 𝐻𝑠𝑝

𝑆 given
torm peak direction and season, the joint distribution of sea state 𝐻𝑆 ,
irection and season (for all sea states 𝑠 ∈  in the storm) given
torm peak characteristics, and finally distribution of maximum total
ater level in each of the sea states given sea state characteristics. The

ntegral is taken over all sea state variables (for all sea states in the
torm), and over all storm peak variables. The result is the distribution
f maximum total water level 𝑍̃ on the full covariate domain  given
ootstrap resample 𝑏.

.3. Optimal un-manning

As motivated in Section 1, un-manning can be appropriate for
ffshore structures which, when manned throughout the year, do not
atisfy safety conditions. The objective of optimal un-manning is to
n-man the structure as infrequently as possible, in such a way that
hen manned, the structure satisfies the required safety condition.
therwise when un-manned, the structures would need to comply with

ess stringent regulatory requirements for un-manned structures. It is
ogical, based on safety considerations, to un-man for time periods cor-
esponding to severe environments; therefore, the optimal un-manning
trategy must be based on forecasts of upcoming severe events. In the
urrent work, we focus on wave-in-deck as the condition of interest,
nd assume that the safety condition takes the form Pr(𝑍̃𝐴|Manned >
) ≤ 𝛿, where 𝑍̃𝐴 is the annual maximum total water level, 𝑑 is the deck
eight and 𝛿 is the appropriate threshold probability, assumed to be 𝛿 =
−4 4
0 here; this corresponds to a return period 𝑇 = 1∕𝛿 = 10 years. More
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formally therefore, optimal un-manning seeks to establish the highest
threshold ℎ∗ for forecast 𝐻̂𝑆 of sea state 𝐻𝑆 at the location of interest,
uch that if the structure is un-manned when 𝐻̂𝑆 exceeds ℎ∗, the
orresponding manned maximum annual total water level distribution
s such that Pr(𝑍̃𝐴|(𝐻̂𝑆 < ℎ∗) > 𝑑) ≤ 𝛿.

.3.1. Integral for un-manning
Adopting the notation of Section 3.1, with 𝑌 referring to a specific

orecast 𝐻̂𝑆 of any sea state 𝐻𝑆 , for example using a particular com-
ination of forecast model and lead time 𝜏, optimal un-manning seeks
∗ such that
∗ = argmax

ℎ

[

𝐹𝑍̃𝐴|𝑌≤ℎ(𝑑|ℎ) ≥ (1 − 𝛿)
]

(2)

for return period 𝑇 = 1∕𝛿 years and deck height 𝑑, where 𝐹𝑍̃𝐴|𝑌≤ℎ is
the distribution of annual maximum total water level, restricted to cases
where forecast 𝐻𝑆 does not exceed ℎ. For any bootstrap resample 𝑏, the
onditional distribution function of 𝑍̃𝐴|𝑌 ≤ ℎ, can be derived directly
y adapting Eq. (1), as

𝑍̃|𝑌≤ℎ,(𝑧|ℎ, 𝑏) = ∫𝜙∗ ∫𝜃∗ ∫𝑥∗ ∫{𝑥𝑠 ,𝜃𝑠 ,𝜙𝑠 ,𝝎𝑠}
(3)

[

∏

𝑠∈|𝑋∗ ,𝛩∗ ,𝛷∗
𝐹𝑍̃𝑠|𝑋𝑠 ,𝛩𝑠 ,𝛷𝑠 ,𝜴𝑠

(𝑧|𝑥𝑠, 𝜃𝑠, 𝜙𝑠,𝝎𝑠)I(𝑌𝑠≤ℎ)
]

× 𝑓{𝑋𝑠 ,𝛩𝑠 ,𝛷𝑠 ,𝜴𝑠}|𝑋∗ ,𝛩∗ ,𝛷∗ ({𝑥𝑠, 𝜃𝑠, 𝜙𝑠,𝝎𝑠}|𝑥∗, 𝜃∗, 𝜙∗)

× 𝑓𝑋∗
|𝛩∗ ,𝛷∗ ,(𝑥∗|𝜃∗, 𝜙∗, 𝑏)

× 𝑓𝛩∗ ,𝛷∗
|(𝜃∗, 𝜙∗

|𝑏) 𝑑{𝑥𝑠, 𝜃𝑠, 𝜙𝑠,𝝎∗} 𝑑𝑥∗ 𝑑𝜃∗ 𝑑𝜙∗ (4)

where 𝑌𝑠 refers to the forecast 𝐻𝑆 for storm sea state 𝑠 ∈ . The
indicator function I returns zero if its argument is false, and unity
otherwise. Hence the exponent term I(𝑌𝑠 < ℎ) only admits sea states for
which forecast𝐻𝑆 does not exceed ℎ; this is the basis of the un-manning
calculation.

3.3.2. The distribution of the annual maximum total water level
Using Eq. (4), the distribution of the annual maximum total water

level 𝑍̃𝐴|𝑌 ≤ ℎ, can now be calculated as

𝐹𝑍̃𝐴|𝑌≤ℎ,(𝑧|ℎ, 𝑏) = exp[−𝜆(𝑏)(1 − 𝐹𝑍̃|𝑌≤ℎ,(𝑧|ℎ, 𝑏))] (5)

where 𝜆(𝑏) is the omni-covariate annual rate of occurrence of storms for
bootstrap resample 𝑏. The bootstrap average (predictive) distribution
of annual maximum total water level on the full covariate domain  is
then simply estimated as

𝐹𝑍̃𝐴|𝑌≤ℎ(𝑧|ℎ) =
1
𝑛𝑏

∑

𝑏∈𝑏

𝐹𝑍̃𝐴|𝑌≤ℎ,(𝑧|ℎ, 𝑏) (6)

where 𝑛𝑏 (= |𝑏|) is the number of bootstrap resamples. Expression (6)
incorporates all the covariate variation in storm peaks and in storm
evolution, as well as sampling uncertainty, in the estimated distribution
𝐹𝑍̃𝐴|𝑌≤ℎ, in a principled manner. Using Eqs. (2), (5) and (6) we can then
estimate the optimal un-manning threshold ℎ∗. By further restricting
the calculation in Eq. (4) to some subdomain  ′ ⊆  (i.e. by replacing
the exponent I(𝑌𝑠 ≤ ℎ) by I(((𝜃𝑠, 𝜙𝑠) ∈  ′) ∩ (𝑌𝑠 ≤ ℎ))), the distribution
𝑍̃| ′, 𝑌 ≤ ℎ, of annual (restricted) maximum total water level in a
storm for covariate subdomain  ′ can also be evaluated (interesting
e.g. for calculation of directional and seasonal design and un-manning
criteria).

3.3.3. A predictive model for forecast 𝐻𝑆 using the hindcast
The hierarchical model fitted to hindcast data provides a means to

estimate all the distributions required to evaluate the integral in Eq. (4).
However, we also need to know the forecast 𝑌 corresponding to any sea
state of any possible storm. Unfortunately, this data is not available as
part of the hindcast. Instead, for the time period over which forecast
and hindcast data are available, we estimate a simple statistical model
for the 𝑌 as a functions of 𝑋.
5

m

In the notation of Section 2, for the time period 𝑡 ∈ Clb
𝑡 ∩Hnd

𝑡 over
which both forecast and hindcast data are available, we assume that
the forecast 𝑌 (𝜏; 𝑡) at lead time 𝜏 ∈ 𝜏 is related to the hindcast value
𝑋(𝑡 + 𝜏) by

𝑌 (𝜏; 𝑡)|(𝑋(𝑡 + 𝜏) = 𝑥) = 𝛼(𝜏) + 𝛽(𝜏)𝑥 + 𝜖𝜎(𝜏) (7)

ith intercept 𝛼, slope 𝛽 and error standard deviation 𝜎, where 𝜖 is
random variable from a standard Gaussian distribution, drawn inde-
endently for any 𝑡 and 𝜏. All of 𝛼, 𝛽 and 𝜎 are functions of lead time 𝜏,
ut independent of 𝑡. We expect that forecast variability increases with
ead time, and hence that 𝜎(𝜏) is an increasing function. Similarly, we
xpect good agreement between 𝑌 (𝜏; 𝑡) and 𝑋(𝑡 + 𝜏) for small 𝜏; hence
he value of 𝛽(𝜏) should be near unity here, and the corresponding
alue of 𝛼(𝜏) near zero. With increasing 𝜏, the value of 𝛽(𝜏) reduces,
ith a compensatory increase in 𝛼(𝜏) required to maintain the mean
alue of forecast 𝐻𝑆 . Illustrations of fitted models for the North Sea
pplication are given in Section 4.1. Using the model in Eq. (7) in
he un-manning calculation outlined in Section 3.3.1, we are able to
stimate the optimal un-manning threshold ℎ∗ for each lead time 𝜏 of
nterest.

.4. Efficient integration

The integral in Eq. (4) is computationally challenging to evalu-
te. Moreover, solution of Eq. (2) requires repeated evaluation of the
ntegral in Eq. (4) for different choices of ℎ. Efficient evaluation of
ntegrals such as those in Eqs. (4) and (1) is clearly therefore of some
elevance. In this section we describe two approaches to achieve this.
he first approach, based on straightforward Monte Carlo sampling,

s conceptually easier to understand but computationally inefficient.
he second computationally-efficient approach based on importance
ampling is used in practice.

.4.1. Monte Carlo sampling
The most intuitively obvious approach to evaluation of the integral

n Eq. (4) is Monte Carlo sampling. The calculation is straightfor-
ard but laborious. We choose to summarise it as Algorithm 1, the

teps of which mirror sampling form the different distributions in the
alculation described by Eq. (4).

The procedure in Algorithm 1 can be refined when interest lies in
pecific covariate subdomains, such as all-season directional octants.
owever, to estimate the tail of the distribution of 𝑍̃𝐴|𝑌 < ℎ well,

his simple Monte Carlo scheme would need to sample the tail region
ufficiently frequently. For small return periods 𝑇 , this is generally not
n issue; hence Monte Carlo works relatively well. However, for large
, a large number of Monte Carlo iterations would be necessary. For
xample, to sample 100 values from the tail at approximately 104-year
evel, we need to simulate 106 years of observations. For this reason,
ore computationally-efficient approaches are needed.

.4.2. Importance sampling
When return period 𝑇 is large, importance sampling (e.g. Gelfand

994, Davison 2003, Northrop et al. 2017) is more efficient than
imple Monte Carlo: importance sampling reduces the uncertainty in
stimation of the distribution of 𝑍̃𝐴|𝑌 ≤ ℎ relative to Monte Carlo
ampling (from a similar number of samples).

The motivation for importance sampling is that certain values of
he random variables 𝑋∗, 𝛩∗, 𝛷∗, {𝑋,𝛩𝑠, 𝛷𝑠} have more impact on the
stimation of the distribution of 𝑍̃𝐴|𝑌 ≤ ℎ than others. Specifically,
xtreme values of 𝑋∗ are likely to be associated with large values
f 𝑍̃𝐴|𝑌 ≤ ℎ. Therefore sampling such that we characterise the tail
f the distribution of 𝑋∗ well will likely reduce our uncertainty in
stimation of the tail of the distribution of 𝑍̃𝐴|𝑌 ≤ ℎ. We therefore
et out deliberately to sample particular values of variables such as 𝑋∗
ore frequently than others; a uniform proposal density is typically
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Input: Estimated extreme value models for bootstrap resamples
indexed by 𝑏 ∈ 𝑏 for set of non-exceedance probabilities
𝛾 ∈ 𝛾 , set of forecast 𝐻𝑆 thresholds ℎ ∈ ℎ;

1 for each ℎ in ℎ do
2 for each 𝑏 in 𝑏 do
3 for 𝑖 = 1, 2, ... Monte Carlo iterations do
4 Sample storm peak direction 𝜃∗ and season 𝜙∗ from

the estimated Poisson model (ii) for the rate of
occurrence of storm peak events exceeding threshold
𝜓 for non-exceedance probability 𝛾;

5 Sample 𝐻𝑠𝑝
𝑆 value 𝑥∗ from the estimated generalised

Pareto (iii) model for 𝐻𝑠𝑝
𝑆 ;

6 Select and adjust a historical storm trajectory that
provides a good empirical match (based on some
measure of distance of historical storm peak to
sampled 𝑥∗, 𝜃∗ and 𝜙∗; see Section Section 3.1.2).
This provides a time series of {𝑥𝑠, 𝜃𝑠, 𝜙𝑠,𝝎𝑠} for 𝑠 ∈ ,
and is equivalent to sampling from the joint
distribution {𝑋𝑠, 𝛩𝑠, 𝛷𝑠,𝜴𝑠}|𝑋∗, 𝛩∗, 𝛷∗;

7 For each sea state 𝑠 in the storm, sample maximum
total water level 𝑐𝑠 (Section Section 3.1.3);

8 For each sea state 𝑠 in the storm, sample forecast 𝐻𝑆
value 𝑦𝑠 using 𝑥𝑠 for lead time 𝜏 using the regression
model in Equation (7);

9 Identify those sea states for which forecast 𝐻𝑆 is such
that 𝑦𝑠 < ℎ;

10 Estimate the maximum total water level
𝑧̃𝑖 = max𝑠 |𝑌𝑠<ℎ{𝑐𝑠}. Retain 𝑧̃𝑖 as a sample from the
distribution of 𝑍̃|𝑌 < ℎ, 𝑏 for iteration 𝑖, for the given
𝛾 and ℎ;

11 end
12 Accumulate the empirical distribution 𝐹𝑍̃|𝑌 <ℎ,(𝑧|ℎ, 𝑏);
13 end
14 Estimate the bootstrap-average distribution 𝐹𝑍̃|𝑌 <ℎ(𝑧|ℎ) of

restricted annual maximum total water level using
Equations (5) and (6);

15 end
16 Identify the un-manning threshold ℎ∗ using Equation (2);
Output: Optimal un-manning threshold ℎ∗

Algorithm 1: Monte Carlo sampling algorithm for estimation of
un-manning threshold.

uitable. This procedure of course introduces bias, since we deliberately
ample in a biased way. It is critical therefore to correct for this bias.
he basic methodology for importance sampling can be thought of as
ollows. First, we choose a proposal distribution (usually denoted by
density ‘‘𝑔’’) which promotes increased sampling of more impactful

alues relative to sampling from the true or target distribution (usually
enoted by density ‘‘𝑓 ’’) for the variables of interest (which we would
mploy for simple Monte Carlo sampling). Then we weight the contri-
utions of the sampled points in estimation of 𝐹𝑍̃𝐴|𝑌≤ℎ to correct for
he use of the biased proposal distribution, resulting in an unbiased
stimate. Critically, a given precision of estimation can usually be
chieved considerably more efficiently when importance sampling is
pplied well.

We exploit importance sampling multiple times in estimating the cu-
ulative distribution function in Eq. (6), as outlined in the steps below.

ince we do not have a statistical model for {𝑋𝑠, 𝛩𝑠, 𝛷𝑠,𝜴𝑠}|𝑋∗, 𝛩∗, 𝛷∗,
e adopt a Monte Carlo approach to sample appropriate storm trajec-

ories from a set of historical storm trajectories; the overall approach
ight therefore be better described as hybrid Monte Carlo-importance

ampling. The step-by-step sampling procedure follows Algorithm 1 in
6

e

broad terms, exploiting importance sampling whenever possible. The
procedure is as follows.

Step 1: Sample covariate bin index 𝑑 ∈ 𝑑 uniformly (with proposal
density 𝑔(𝑑) = 1∕𝑛𝑑) where 𝑛𝑑 (= |𝑑 |) is the number of covariate
bins covering the full covariate domain  . Calculate the target density
𝑓|(𝑑|𝑏) for the sampled covariate bin index using the estimated
oisson model for rate 𝜌|(𝑑|𝑏) of occurrence of storm peak covari-
tes over directional–seasonal threshold 𝜓𝛾 for bootstrap resample 𝑏.
he proposal–target pair for the importance sampling calculation is
herefore

 = 1∕𝑛𝑑 , 𝑓|(𝑑|𝑏) =
𝜌|(𝑑|𝑏)

∑

𝑑′∈𝑑 𝜌|(𝑑′|𝑏)
. (8)

The effect of importance sampling at this stage is to increase the rate of
sampling from covariate bins with lower storm occurrence rates. This is
beneficial from the perspective of characterising extreme environments
corresponding to rarer covariate bins, but may be detrimental consid-
ering that the most severe events tend to occur from within the most
populous covariate bins.

Step 2: Sample the values of storm peak 𝜃∗, 𝜙∗ uniformly at random
from the corresponding covariate bin. This is a simple Monte Carlo sam-
pling step which introduces no bias, for which no importance sampling
correction is needed; the proposal–target pair for the corresponding
importance sampling calculation are equal.

Step 3: Sample a storm peak value 𝑥∗ uniformly on a proposal in-
terval [𝜓𝛾 (𝜃∗, 𝜓∗), 𝑥+max(𝜃

∗, 𝜙∗)] where 𝜓𝛾 (𝜃∗, 𝜙∗) is the extreme value
hreshold for storm peak extreme value modelling for non-exceedance
robability 𝛾, and 𝑥+max(𝜃

∗, 𝜙∗) is the finite upper end point for 𝑋∗ for
he covariate bin when it exists, or a pre-specified large quantile of
he omni-covariate distribution of return value otherwise. Calculate the
arget density 𝑓𝑋∗

|𝛩∗ ,𝛷∗ ,(𝑥∗|𝜃∗, 𝜙∗, 𝑏) using the estimated generalised
areto extreme value model for size of occurrence of storm peaks.
he proposal–target pair for this importance sampling calculation is
herefore

𝑔𝑋∗
|𝛩∗ ,𝛷∗ ,(𝑥∗|𝜃∗, 𝜙∗, 𝑏) = 1

𝑥+max(𝜃∗, 𝜙∗
|𝑏) − 𝜓𝛾 (𝜃∗, 𝜙∗

|𝑏)
,

𝑓𝑋∗
|𝛩∗ ,𝛷∗ ,(𝑥∗|𝜃∗, 𝜙∗, 𝑏) = extreme value model.

(9)

he effect of importance sampling at this stage is to increase sampling
rom the tail of the distribution of 𝑋∗

|𝛩∗, 𝛷∗, relative to simple Monte
arlo, which improves the estimation of this region of the distribution.

tep 4: Select and adjust a historical storm trajectory that provides a
ood empirical match (based on some measure of distance of historical
torm peak to sampled 𝜃∗, 𝜙∗ and 𝑥∗). This step provides a time series
f {𝑥𝑠, 𝜃𝑠, 𝜙𝑠,𝝎𝑠} for 𝑠 ∈ , and is identical to that used in Algorithm
, an unbiased Monte Carlo sampling step, for which no importance
ampling correction is needed.

tep 5: Calculate the product ∏𝑠∈𝑖 𝐹𝑍̃𝑠|𝑋𝑠 ,𝛩𝑠 ,𝛷𝑠 ,𝜴𝑠
(𝑧|𝑥𝑠, 𝜃𝑠, 𝜙𝑠,𝝎𝑠)I(𝑌𝑠≤ℎ)

xplicitly over the set 𝑖 of sea states of the storm (now indexed by 𝑖
or completeness). Finally, calculate the integral in Eq. (6) using

𝑍̃𝐴|𝑌≤ℎ,(𝑧|ℎ, 𝑏) =
1
𝑛𝑖

𝑛𝑖
∑

𝑖=1

{[

∏

𝑠∈𝑖

𝐹𝑍̃𝑠|𝑋𝑠 ,𝛩𝑠 ,𝛷𝑠 ,𝜴𝑠
(𝑧|𝑥𝑠, 𝜃𝑠, 𝜙𝑠,𝝎𝑠)I(𝑌𝑠≤ℎ)

]

× fog𝑖(𝑑𝑖, 𝜃∗𝑖 , 𝜙
∗
𝑖 , 𝑥

∗
𝑖 )

}

(10)

here 𝑛𝑖 is the number of storm samples generated, and

og𝑖(𝑑𝑖, 𝜃∗𝑖 , 𝜙
∗
𝑖 , 𝑥

∗
𝑖 ) =

𝑓|(𝑑𝑖|𝑏)
𝑔(𝑑𝑖)

𝑓𝑋∗
|𝛩∗ ,𝛷∗ ,(𝑥∗|𝜃∗𝑖 , 𝜙

∗
𝑖 , 𝑏)

𝑔𝑋∗
|𝛩∗ ,𝛷∗ ,(𝑥∗|𝜃∗𝑖 , 𝜙

∗
𝑖 , 𝑏)

(11)

s the importance sampling likelihood ratio for bias correction for storm
. Once 𝐹𝑍̃𝐴|𝑌≤ℎ, is estimated, optimal un-manning thresholds can be
stimated as for simple Monte Carlo using Eqs. (2) and (6).
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Fig. 3. Calibration regression parameter estimates as a function of lead time 𝜏. Intercept 𝛼(𝜏) (red, m), slope 𝛽(𝜏) (blue, []) and error standard deviation 𝜎(𝜏) (green, m) estimates
shown (solid) with accompanying bootstrap 95% uncertainty bands (dashed). When viewing in greyscale, red, blue and green become dark, medium and light grey respectively.
4. Un-manning application

In this section, we describe the application of the methodology
given in Section 3 to wave impact on a notional structure in the
North Sea, using the hindcast and forecast data described in Section 2.
Section 4.1 shows results of the weather forecast calibration, and
Section 4.2 summarises some of the output of the hierarchical storm
model analysis. The main results concerning un-manning threshold
estimation are given in Section 4.3. Section 4.4 outlines a possible
operational un-manning alert system. Finally, an assessment of the
historical implications of un-manning using the estimated un-manning
thresholds is provided in Section 4.5.

4.1. Calibrating the weather forecast

Using the overlapping period of hindcast and forecast data, the
calibration model in Eq. (7) was estimated. The model estimates fore-
cast 𝐻𝑆 for current time 𝑡 a given lead time 𝜏 as a function of the
hindcast 𝐻𝑆 at time 𝑡 + 𝜏 as a linear regression, the parameters of
which are functions of 𝜏. Parameter estimates with bootstrap 95%
uncertainty bands are illustrated in Fig. 3. Unsurprisingly, the error
standard deviation 𝜎(𝜏) (green) is estimated to be an increasing function
of 𝜏, and the slope parameter 𝛽(𝜏) (blue) a decreasing function. To
compensate, the intercept term 𝛼(𝜏) (red) increases with 𝜏.

Fig. 4 illustrates the effect of calibration on four typical samples of
time series of sea state 𝐻𝑆 . For each panel of the figure, hindcast 𝐻𝑆
is shown in blue, and the uncalibrated forecast in red. Corresponding
calibrated time-series are shown in green, in terms of a 95% prediction
band (thicker lines) and individual calibrated forecast trajectories (thin
lines). Agreement between uncalibrated forecast and hindcast is already
good for short lead times 𝜏. The calibration model provides better
improves agreement between hindcast and forecast for longer lead
times, and quantifies how forecast uncertainty increases with 𝜏.

4.2. Hierarchical model

Details of the hierarchical model are withheld, since the model
has been reported a number of times in the literature already. For
motivation of the un-manning calculation, however, Fig. 5 illustrates
7

the cumulative distribution of maximum total water level, including
the effects of waves, tides and surge, for a period of 104 years of
observation. The solid black line in both left and right panels is the
(common) omni-covariate distribution. Other lines in the left panel
provide all-year distributions per directional octant. Other lines in
the right panel provide omni-directional distributions per month of
the year. Not surprisingly for the location under consideration, the
directional distribution is dominated by storms from the north, north-
west and west; the seasonal distribution is dominated by the winter
months.

Intuitively, assuming that the 104 year return value is defined as the
exp(−1) ≈ 0.37 quantile of this distribution, we infer at this location,
that structures with deck heights below 21m are at risk from wave-
in-deck events. We can also see that un-manning the structure during
(e.g.) November would have a material effect on the omni-covariate
distribution of maximum total water level restricted to the remaining
11 months.

4.3. Un-manning threshold estimation

Using the estimated hierarchical model, Eqs. (4) and (5) are used
to estimate the 1 − 1∕𝑇 quantile of the annual distribution maximum
total water level with 𝑇 = 104, restricted to forecast 𝐻𝑆 below some
threshold ℎ, for each bootstrap resample 𝑏 ∈ . This level could be
estimated directly by finding the 1 − 1∕𝑇 quantile of the predictive
distribution in Eq. (6). However, to minimise bias (see e.g. Jonathan
et al. 2021), this level is actually estimated by solving

𝐹𝑍̃𝐴|𝑌≤ℎ,(𝑧
∗
𝑏 (ℎ)|ℎ, 𝑏) = 1 − 1

𝑇
(12)

per bootstrap resample 𝑏, and then averaging the quantile estimates
𝑧∗𝑏 (ℎ) over bootstraps so that

𝑧∗(ℎ) = 1
𝑛𝑏

∑

𝑏∈𝑏

𝑧∗𝑏 (ℎ). (13)

The resulting estimate 𝑧∗(ℎ) is referred to as the 𝑇 -year mean quantile
of total water level, restricted to forecast 𝐻𝑆 threshold ℎ. Clearly, this
quantile is also conditional on forecast lead time 𝜏: 𝑧∗(ℎ|𝜏). Estimates
for 𝑧∗(ℎ|𝜏) are shown in the left panel of Fig. 6 as a function of ℎ for
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Fig. 4. Illustrating forecast calibration. Panels show four examples of intervals of time-series, for which the maximum hindcast 𝐻𝑆 exceeds 8m. The hindcast {𝑥(𝑡0+𝜏)}, 𝜏 ∈ [0, 𝜏Mxm]
is shown in blue. The corresponding forecast {𝑦(𝜏; 𝑡0)}, 𝜏 ∈ [0, 𝜏Mxm] made at time 𝑡0 is shown in red. The calibrated forecast {𝑦∗(𝜏; 𝑡0)}, 𝜏 ∈ [0, 𝜏Mxm] is shown in green in terms of a
predictive 95% uncertainty band (bold) and individual realisations (thin) under the fitted model. When viewing in greyscale, red, blue and green become dark, medium and light
grey respectively.
Fig. 5. Estimated distribution of the 10,000-year maximum total water level by directional octant (left) and by month (right). Individual lines correspond to estimated distributions
for directional or seasonal intervals. Black curves correspond to the (common) ‘‘omni’’ all-season-direction estimate.
different forecast lead times 𝜏 from 0 h to 168 h for 𝑇 = 104 years. For
a given value of threshold ℎ, the 𝑇 -year mean quantile level increases
with increasing 𝜏 due to the increasing uncertainty in forecast 𝐻𝑆 . The
values of 𝑧∗ asymptote with increasing ℎ and 𝜏 to the exp(−1) quantile
of the ‘‘omni’’ all-season-direction quantile of the distribution of the
104-year maximum shown in black in Fig. 5.
8

The right panel of Fig. 6 gives the resulting un-manning threshold
ℎ∗ obtained by solving

𝑧∗(ℎ∗(𝜏|𝑑)|𝜏) = 𝑑 (14)

for deck height 𝑑. The figure shows ℎ∗(𝜏|𝑑) for 7 different choices of
deck height.
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Fig. 6. Illustration of un-manning curves. The left hand panel shows bootstrap mean effective ‘‘manned’’ 10,000-year return value 𝑧∗(ℎ|𝜏) for total water level as a function of
ℎ, the un-manning threshold 𝐻𝑆 , for different lead times 𝜏. The right hand panel shows the resulting un-manning threshold ℎ∗(𝜏|𝑑) as a function of 𝜏 for assumed deck heights
𝑑 = 8, 10,… , 20 m. Line colours and styles in the right hand panel are also used in Fig. 8 for ease of comparison. When viewing in greyscale, red, blue and green become dark,
medium and light grey respectively.
The lowest 5 deck heights are included to illustrate the behaviour
of ℎ∗ with 𝜏 and 𝑑 for ℎ∗ levels which are encountered multiple times
during the period Hnd of the hindcast. The highest level 𝑑 = 20m is
a more realistic value for a notional structure at the location under
consideration, since this corresponds approximately to the asymptote
in the left panel of the figure.

4.4. A notional alert system

With a deck height of 16m, Fig. 6 suggests that un-manning at a
forecast lead time of 𝜏 = 100 h would be necessary when forecast 𝐻𝑆
exceeds 8m. At 160 h, the corresponding un-manning threshold reduces
to approximately 5m. Fig. 7 shows a notional alert system that might be
adopted operationally, with action thresholds shown for hypothetical
deck height 𝑑 = 16m (solid curve) and an alert deck height of 12m
(dashed curve).

The alert system proposed is multi-tiered: if forecast 𝐻𝑆 falls in the
green area of the figure, no action is required. However, if the forecast
𝐻𝑆 falls into either the grey or red areas, an un-manning alert would
be issued for preparation of execution of un-manning respectively. For
the illustration in Fig. 7, there are two instances of forecast 𝐻𝑆 entering
the grey area. For one instance, forecast 𝐻𝑆 exceeds the un-manning
thresholds for 𝜏 > 100 h for both the full and alert deck heights. For this
lead time, it is probably feasible to un-man the facility safely. However,
the second instance corresponds to an exceedance of the alert level at
lead time of 𝜏 = 24 h. Depending on the circumstances, shut-down
or (partial) un-manning might be deemed necessary. It is clear that if
forecast 𝐻𝑆 for small 𝜏 occurs within the red area, then full un-manning
might not be feasible, emphasising the importance of high-quality 𝐻𝑆
forecasts for lead times up to 5 days, and minimising the number of
such occurrences.
9

4.5. Outline of historical performance of alert system

Using the 61 years of hindcast data and the calibration model
from Eq. (7), it is possible to identify occurrences of historical un-
manning for the notional North Sea structure. We assume for illus-
tration that un-manning is triggered when the forecast 𝐻𝑆 for some
lead time 𝜏 exceeds the un-manning threshold ℎ∗ illustrated in Fig. 6.
Further, an un-manning event here is assumed to require the facility to
be un-manned for at least one week. Hence, subsequent exceedances
of the un-manning threshold within an existing un-manning period
are assumed therefore not to trigger further un-manning. Results for
different deck heights 𝑑 (lines) and forecast lead times 𝜏 are given in
Fig. 8.

The left panel of Fig. 8 illustrates the annual rate of forecast
occurrence of individual (sea state) up-crossings of the un-manning
threshold. As expected, the rate of up-crossings increases with decreas-
ing deck height. The centre panel indicates the annual rate of triggered
un-manning events as a function of 𝑑 and 𝜏. For deck height 𝑑 = 8, 10, 12
m, this rate is of the order of 2 to 4. For 𝑑 = 14 m (16 m), the rate of
un-manning increases from approximately 0.1 (0.7) (at 𝜏 = 0) to 4 (for
large 𝜏). At 𝑑 = 18 m, un-manning would only be considered for large
𝜏, and in reality probably not triggered because of the large value of 𝜏.
There are be no historical triggered un-manning events for 𝑑 = 20 m.
The rates of triggered un-manning events are clearly lower than those
for up-crossings of un-manning threshold.

The right panel shows the annual rate of correctly-detected wave in
deck events for 𝑑 = 8, 10, 12m. The corresponding actual rate of wave
in deck is indicated by the black discs at 𝜏 = 0. All observed wave
in deck events trigger un-manning events based on the forecast, for
all values of 𝜏. The reason for this is that the un-manning threshold
has been estimated using the procedure described in Sections 3 and 4
for this specific forecast model, for each value of 𝜏 of interest. For a
relatively poor forecast model, the un-manning threshold for a given 𝜏
will be lower than for a better forecast model. As a result, the rate of
unnecessary (of ‘false positive’) un-manning will be higher for poorer
forecast models. For instance, referring to right hand panel of Fig. 6,
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Fig. 7. Illustration of a notional alert system. Alert threshold as a function of lead time 𝜏 shown in dashed black. Action threshold shown in solid black. Forecast 𝐻𝑆 shown in
solid black. Coloured zones represent lead times at which forecast exceedances of thresholds are viewed as ‘‘for preparation’’ (grey) and ‘‘for action’’ (red). Vertical black line
represents critical lead time (the largest value of 𝜏 for which immediate action is not required). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
Fig. 8. Illustration of historical performance of action strategy. Left: Historical annual rates of occurrence of individual exceedances of un-manning threshold as a function of lead
time 𝜏 for deck heights 𝑑 = 8, 10,… , 20m. Centre: Historical annual rate of triggered un-manning events. Right: Historical annual rate of correctly-triggered un-manning events for
𝑑 = 8, 10, 12 m. The corresponding actual rate of wave in deck is indicated by black discs at 𝜏 = 0. The legend relevant for all panels is given in the centre panel; the line labelling
scheme is the same as that used in the right panel of Fig. 6. The return period (in years) of a particular event is simply the reciprocal of the corresponding annual rate.
the un-manning threshold for 𝜏 = 24 h and a deck height of 16 m
corresponds to approximately 10 m. Using the current forecast model,
it is extremely unlikely that an actual occurrence of wave in deck
(i.e. true 𝐻𝑆 > 16m) would correspond to a calibrated forecast 𝐻𝑆
< 10m: hence all actual wave in deck events trigger un-manning based
on the forecast. However, the forecast also triggers a relatively large
number of undesirable ‘false positive’ un-manning events. Clearly, as
the quality of the forecast improves, the un-manning threshold for a
given 𝜏 will increase, and the rate of unnecessary un-manning will
reduce ultimately to zero.

5. Discussion and conclusions

In this article we present a computationally efficient approach to
estimation of extreme ocean environments, illustrated by application
to construction of an un-manning strategy for a notional North Sea
structure. The approach exploits a hierarchical model for the ocean
environment to estimate the tail of the distribution of annual maximum
total water level. The un-manning strategy is premised on our ability
to remove personnel from the structure during the severest conditions,
so that the reliability of the structure whilst manned is acceptable.
The computational efficiency of the approach is achieved by judicious
10
use of importance sampling in place of Monte Carlo sampling in the
evaluation of multidimensional integrals.

Wave in deck is the focus of the current work, and hence maxi-
mum total water level the ‘‘response’’ variable of concern. However,
the un-manning approach presented here (described by Eq. (4)) is
applicable generally to any structural response 𝑍 of interest. The
computational tools described have also been applied successfully to
the direct estimation of Morison-type loading and hence probability
of failure, utilisation, etc. for full-scale structural models. There is
cause for concern that too much modelling effort is dedicated to the
estimation of environmental return values, as opposed to thorough
quantification of probability of structural failure subject to an uncertain
ocean environment (Serinaldi 2015, Jonathan et al. 2021).

An alternative approach to un-manning is to trigger an un-manning
event when the characteristics of an individual severe storm are such
that the probability of wave in deck (or some other extreme structural
response) exceeds some threshold. The difficulty with this approach is
the decision to un-man does not guarantee a given level of structural
reliability per annum, unless the rate of occurrence of the severe
storm is also incorporated in the decision-making procedure. Hagen
and Solland (2009) and NORSOK N-006 (2015) argue for a composite
approach, with extra conditions on individual forecast events which
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do not trigger un-manning based on annual criteria. Hence, individual
extreme forecasted storms may also trigger un-manning.

Establishing an effective operational procedure for un-manning an
offshore structure is a complex task. In the current work, we have only
considered risk reduction from the perspective of reducing the exposure
time of personnel to the most extreme environments to an acceptable
level. However, the decision to un-man a structure incurs other risks to
personnel (e.g. from helicopter flights in severe conditions). In addition,
it is likely that the severest storms will trigger un-manning events at
multiple platforms, placing constraints on resources; experiences from
hurricane and cyclone-dominated regions including the Gulf of Mexico
and South China Sea provide useful guidance. The computational tools
discussed in this article provide some of the methodology required to
optimise the un-manning procedure.
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