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A B S T R A C T

Environmental disturbances and systematical uncertainties are the main obstacles for ship motion control. This
paper devotes to enhancing the control system robustness of underactuated surface ships with model
uncertainties and environmental disturbances. A novel nonlinear robust adaptive scheme with sliding mode
control is proposed for underactuated ships to track the desired path generated by the logical virtual ship in the
presence of unknown plant parameters and environmental disturbances. Compared with the existing results,
the proposed controller is designed based on the combination of PI sliding mode control and the upper bound
estimation of disturbances. With the proposed design, the control scheme could not only obtain a better
performance of the control system, the continuous scheme also reduce the chattering of system by a special
construction of the sliding manifolds. Numerical simulations are given to demonstrate the effectiveness of the
proposed method.

1. Introduction

Underactuated surface ships have played an important role in the
marine exploration and research, such as dynamic positioning for
offshore oil drilling (Tannuri et al., 2010), underwater pipe-laying
(Fossen, 1994) and so on. Over the last few years, ship motion control
has attracted lots of attention due to its practical applications and
theoretical challenges (Zhang et al., 2015). It is well known that
underactuated surface ships are equipped with propellers and rudders
for surge and yaw motions only, meaning that no actuator is used for
the control of sway motion directly (Zhang and Zhang, 2014), and it is a
challenge for the ship motion control. Control in the presence of
uncertainty is one of the main topics in modern control theory
(Shtessel et al., 2014), as well as in the marine control community.
In the ship motion dynamics, there always exist discrepancies between
the actual dynamics and its models. These discrepancies are mostly
caused by the environment disturbances, unknown plant parameters
and systematical uncertainties. In addition, when the number of
actuators are less than the degree of freedom (Dong and Guo, 2005;
Reyhanoglu, 1997; Pettersen and Egeland, 1997), it also generates the
non-integral constraints in the controller design.

With the above mentioned challenges in the field of ship motion

control, the so-called robust control algorithms have arose in the
control system community, such as robust adaptive control (Ioannou
and Sun, 2012; Lavretsky and Wise, 2013; Du and Shi, 2016), robust
neural damping (Zhang et al., 2015; Zhang and Zhang, 2015, H∞
control (Cheng et al, 2015; Zou et al., 2016; Chang et al., 2015,
backstepping techniques (Li et al., 2015; Liu et al., 2016; Wang et al.,
2015, Network-based technology (Wang and Han, 2016a, 2016b; Wang
and Xiong, 2015), multi-time scale methods (Yi et al., 2016), and
sliding mode control (Xu et al., 2015; Zhang and Chu, 2012; Fossen,
2002), probably, all those algorithms are successful to handle bounded
disturbances and uncertainties.

With the consideration of robustness, sliding mode control has
been widely applied in the field of ship motion control. In Xu et al.
(2015), a novel adaptive dynamic sliding mode control for the
trajectory tracking of underactuated unmanned underwater vehicles
is proposed to handle with environmental disturbances and systema-
tical uncertainties. However, the assumptions that the first-order
derivatives of environmental disturbances and the existence of thruster
are too restrictive. In addition, Li et al. (2008) develops a point-to-
point navigation for underactuated ships. Although such algorithm can
guarantee the closed-loop system to be uniformly ultimately bounded,
that is the trajectories converge to an invariant set rather than the
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equilibrium. Furthermore, in Li and Sun (2009), an adaptive sliding
mode control law combined with backstepping technique is proposed
to solve the trajectory tracking problem, but a simplified simple system
model is investigated. Under the design with rudder angle, it makes
tracking insensitive, especially for small-scale change yaw angle.

Motivated by the above research line, due to the high performance
of sliding mode control in dealing with parameter perturbations and
dynamic uncertainties (Zhang et al., 2014, 2013), a novel design is
developed to solve the problem of the trajectory tracking for under-
actuated surface ships based on the combination of sliding mode
control and backstepping technique. Unlike Li et al. (2008), a
continuous adaptive sliding mode surface term is derived to reduce
the chatting of the closed-loop system. With this proposed design, the
controller can not only guarantee the convergence of states to
equilibrium, but also reduce the chatting of the system. Furthermore,
the algorithm also enhances the robustness to the system uncertainty,
such as systematic uncertainties and unknown parameters. The main
contributions of this paper are twofold.
1). By combination of a novel nonlinear robust adaptive PI sliding mode
scheme and the upper bound estimation of the disturbances, the
proposed algorithm is developed to implement the trajectory tracking
task of underactuated vehicles.
2). An adaptive continuous PI sliding mode scheme is constructed to
stabilize the control system. By using this special property and
structure, the control method could not only eliminate the chattering
of the closed-loop system, but also relax some assumptions in Xu et al.
(2015) (Table 1).

2. Problem formulation

According to Fossen (2002); Li et al. (2008), the kinematic and
dynamical equations of underactuated surface ship can be described as
Eq. (1). It has two control inputs: the force in surge degree and the
control torque in the yaw degree (Jiang, 2002).
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where (x,y) denotes the position coordinates of the underactuated
surface vessel model in the earth-fixed frame and ψ is the yaw angle.
η R ψ u v r˙ = ( )( , , )⊤ and u v r( , , ) are the velocities in surge, sway and yaw
directions. The surge force τu and the yaw moment τr are considered as
two available control inputs with the known nonzero constant control
coefficients ζu and ζr. Θ ∈u

nuR , Θ ∈v
nvR and Θ ∈r

nrR are unknown
constant vectors with known dimensions nu,nv and nr. f η η( ˙, ) ∈u

nuR ,
f η η( ˙, ) ∈v

nvR and f η η( ˙, ) ∈r
nrR are all known smooth vector fields. τw1,

τw2 and τw3 are the environmental disturbance acting on the surge, sway
and yaw axes, respectively.

For path-following control of underactuated surface ships, we
define the control objectives in Fig. 1. The error variables have been
define as follows (Zhang et al., 2015):

x x x y y y

z x y ψ ψ ψ

= − , = −

= + , = −

e d e d

e e e e r
2 2

(2)

where x y ψ( , , )d d d denotes the desired position and orientation of an
underactuated surface vessel model in earth-fixed frame, ze denotes the
position error. ψd is the ships's azimuth angle, which is defined as
follows (Li et al., 2008):

ψ
x y π y x z

ψ z
=

0.5[1 − sign( )]sign( ) + arctan( / ), when ≠ 0
, when = 0r

e e e e e

d e

⎧⎨⎩ (3)

where sign (·) is a sign function, which is defined as follows:

x x
x x
x x

sign( ) = −1, < 0
sign( ) = 0, = 0
sign( ) = 1, > 0

⎧
⎨⎪
⎩⎪ (4)

Assumption 1.

1) The environmental disturbances are bounded satisfying
τ τ| | ≤w w max1 1 , τ τ| | ≤w w max2 2 , τ τ| | ≤w w max3 3 .

2) The states of the reference model xd, ẋd , ẍd , yd, ẏd , ÿd and ψ̇d are all
bounded.

Assumption 2. From the Fig. 1, it can be seen that the control
objective is to develop a sliding mode control scheme to let the
underactuated ship track the reference path, which is generated by a
virtual ship as (5): Zhang et al. (2015)

x u cos ψ
y u sin ψ
ψ r

˙ = ( )
˙ = ( )
˙ =

d d d

d d d

d d

⎧
⎨⎪
⎩⎪ (5)

Remark 1. Assumption 2 is introduced in the existing reference
(Zhang et al., 2015), different from given the reference path by xd and
yd. The advantage of this design not only satisfies the condition 2 of
Assumption 1, but also obtains the reference path just by the variables
ud and rd of the virtual ship, as Fig. 1.

3. Controller design

In this section, a practical integral sliding mode controller for path-
following control of underactuated surface ships is proposed. Through
the description of kinematic and dynamic expressed as (1) with
Assumptions 1–2, all the states are guaranteed to be uniformly
ultimately bounded in the closed-loop system. In order to prove the

Table 1
Notations.

|·| is the norm of a scalar
‖·‖ is the norm of a vector

Σ‖·‖ = (·) ·(·)i j i j i j2 , ,
2

, the element of (·) in row i and column j

(·) = (·) − (·)͠ ; (·) is the estimate of (·); (·)͠ is the estimation error

Fig. 1. General framework for path-following control of underactuated surface ship.
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main results of the design of the controller, the Lyapunov Candidate
Function LCF( ) is given as follows:

V z δ= 1
2

( − )e Δ1
2

(6)

Remark 2. By choosing the LCF of Eq. (6), the design is to let z δ( − )e Δ

respect the error of ze, that means when t → ∞, z δ→e Δ. According to
Eq. (3), if we use the ze to design the Eq. (1) directly, it cannot
guarantee the ψ π| | ≤ /2e (Yi et al., 2016). The proposed design is
effective in the field of engineering.Based on the description of Eq.
(3), it is obvious to get the derivative of V1 with respect to time as:

V z δ z
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z δ

z
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u ψ v ψ
z δ x ψ y ψ u ψ v ψ
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= ( − )( ̇ cos + ̇ sin − cos − sin )

e Δ e

e Δ e e e e e

e Δ

e
e d d e d d

e Δ d d d d e e

1

(7)

If we define u α u= −e u , and select the αu as the form:

α x ψ y ψ v ψ k z δ ψ= (˙ cos + ˙ sin − sin + ( − ))(cos )u d d d d e e Δ e1
−1 (8)

where k1 is a positive constant, and needs to be chosen later.
Substituting Eq. (8) into Eq. (7), Eq. (7) can be rewritten as:

V k z δ z δ u cosψ˙ = − ( − ) + ( − )e Δ e Δ e e1 1
2 (9)

Consider the following LCF as:

V V ψ= + 1
2 e2 1

2
(10)

Then the time derivative of V2 can be expressed as:

V V ψ ψ˙ = ˙ + ˙e e2 1 (11)

In order to stabilize of re, the stabilizing function rd is introduced.
While, according to Eq. (2), the state variables are defined as follows:

ψ ψ r
r α r
α k ψ ψ

˙ = ˙ −
= −
= + ˙

e d
e r
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⎧
⎨⎪
⎩⎪ (12)

Thus, Eq. (11) can be rewritten as:

V V ψ k ψ r
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Then, consider the LCF as follows:

V V u= + 1
2 e3 2

2
(14)

Based on Eq. (1) and (8), the time derivative of ue can be expressed
as:

u α u
α Θ f ζ τ τ

˙ = ˙ − ˙
= ˙ − − −

e u

u u
T

u u u w1 (15)

To this end, a practical proportional integral sliding mode control
law can be designed in terms of tracking errors and also can stabilize
the error variable ue. Therefore, the sliding manifold S1 can be designed
with the form:

∫ ∫S u k u dτ z δ cosψ dτ= + + ( − )e
t

e
t

e Δ e1 3
0 0 (16)

According to Eq. (15), its derivative becomes:

S u k u z δ ψ
α Θ f ζ τ τ k u z δ ψ

˙ = ˙ + + ( − )cos
= ˙ − − − + + ( − )cos

e e e Δ e

u u
T
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1 3

31 (17)

Remark 3. It can be observed that the sliding manifold S1 is made up
of the trajectory tracking error ze and the surge velocity error ue.

Therefore, when the sliding manifold converges to zero, with the design
of control law, the trajectory tracking error ze and the surge velocity
error ue all converge to zero. This novel design is effective to stabilize
the state variables.

According to Eq. (17), it is obvious that
u S k u z δ cosψ˙ = ˙ − − ( − )e e e Δ e1 3 , therefore, the derivative of V3 in (14)
can be expressed as:

V V u u
k z δ k ψ z δ u ψ r ψ

u S k u z δ ψ
k z δ k ψ k u r ψ u S

˙ = ˙ + ˙
= − ( − ) − + ( − ) cos +

+ ( ˙ − − ( − )cos )
= − ( − ) − − + + ˙

e e

e Δ e e Δ e e e e

e e e Δ e

e Δ e e e e e

3 2

1
2

2
2

1 3

1
2

2
2

3
2

1 (18)

In order to stabilize S1, the error variables of the unknown constant
vectors Θi

T i u v r( = , , ) and the error variables of unstructured un-
certainties τj j w w w( = , , )1 2 3 , consider the LCF as follows:
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γ
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2

+ 1
2

+ 1
2

∼∼ ∼
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2
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Thus, based on Eq. (17), the derivative of V4 with respect to time is
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In this part, the control law of standard sliding mode control can be
divided into two parts. An equivalent control law τnom is used to deal
with the tracking errors, and a disturbance control law τd to solves the
problem of environment disturbances.

τ τ τ= +u nom d (21)

Based on Eq. (20) and (21), we choose the τnom as follows:

τ k u z δ cosψ Θ f u S α ζ= [ + ( − ) − − + + ˙ ]nom e e Δ e u
T
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Thus, Eq. (20) can be rewritten as:
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In Eq. (23), based on Assumption 1, we obtain that τ τ| | ≤w w max1 1 , so
the equation u S ζ τ τ( + )(− − )e u d w1 1 can be transferred into the form
below:

u S ζ τ τ
u S τ u S ζ τ

τ u s δτ u S ζ τ
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where δ is a small positive constant gain.
If we choose the τd as:

τ
ζ

δ
τ u s=

4
( + )d

u
w e

−1

1max1 (25)

The dynamical sliding mode control law τu has the following form:
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τ τ τ
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Therefore, the derivatives of V4 in (23) can be expressed as:
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Based on the description above, the parameters' update laws are
selected as:
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Substituting Eq. (28) into the derivatives of V4, Eq. (27) can be
rewritten as:
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In a similar way, consider the LCF as:

V V r= + 1
2 e5 4

2
(30)

According to Eq. (1) and (12), it can be easy to obtained the
derivative of re with the form:

r α r
α Θ f ζ τ τ

˙ = ˙ − ˙
= ˙ − − −

e r
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T

r r r w3 (31)

To this end, a practical proportional integral sliding mode control
can stabilize the error variable re. Therefore, the sliding manifold S2
can be designed with the form

∫ ∫S r k r dτ ψ dτ= + +e
t

e
t

e2 4
0 0 (32)

According to Eq. (31), its derivative becomes:
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Remark 4. It can be observed that the sliding manifold S2 is made up
of the yaw error re and the attitude error ψe. Therefore, when the
sliding manifold converges to zero, with the design of control law, the
trajectory tracking error ze and the surge velocity error ue all converge
to zero.

Based on (33), the derivative of re in (31) can be rewritten as:
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Therefore, the derivative of V5 in (30) can be expressed as:
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Consider the LCF as:

V V S Θ Γ Θ
γ

τ= + 1
2

+ 1
2

+ 1
2

∼∼ ∼
r
T

r r w6 5 2
2 −1

2

2
max3 (36)

Therefore, based on (33) and (35), the derivative of V6 in (36) can
be rewritten:
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2
2

2
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−1
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max

max max

max max max

max max

max max

max max max

max max

3

1 1

1 1 1

3 3

1 1

1 1 1

3 3

3 (37)

In a similar way, the control law of standard sliding mode control
can be divided into two parts. An equivalent control law τrnom to deal
with the tracking errors, and a disturbance control law τdr to solve the
problem of environmental disturbances.

τ τ τ= +r rnom dr (38)

Based on (37) and (38), we choose the τrnom as follows:

τ k r ψ Θ f α re S ζ= [ + − + ˙ − + ]rnom e e r
T

r r r4 2
−1 (39)

Substituting (39) into (37), the derivative V6 can be rewritten:

V k z δ k ψ k u k r S S

δτ a Θ a Θ Θ Θ

a τ a τ τ τ

Θ Γ Θ
γ

τ τ r S Θ f

r S ζ τ τ

˙ ≤ − ( − ) − − ( − 1) − ( − 1) − −

+ − ∥ ∥ + 1
2

(∥ ∥ + ∥ − (0)∥ )

− ∥ ∥ + 1
2

(∥ ∥ + ( − (0)) )

+ ˙ + 1 ˙ + ( + )

+ ( + )(− − )

∼ ∼

∼

∼ ∼

∼ ∼

e Δ e e e

w u u u u u u

r w r w w w

r
T

r r w rmax e u
T

r

e r dr w
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2

1
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2
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2
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2
2

2
2

2
2

2
2 2

−1

2
2

2 3

max

max max max max

max

1

1 1 1 1

3

(40)

In Eq. (40), based on the Assumption 1, we obtain that τ τ| | ≤w w max3 3 ,
then the equation r S ζ τ τ( + )(− − )e r dr w2 3 can be transferred into the
form below:
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r S ζ τ τ
r S τ r S ζ τ

τ r S δ τ r S ζ τ

( + )(− − )
≤ | + | − ( + )

≤ | + | + − ( + )

e r dr w

e w e r dr

δ w e w e r dr

2 3

2 2
1

4 2
2

2 2

max

max max

3

2 3 3 (41)

if we choose the τdr as:

τ
ζ
δ

τ r S=
4

( + )dr
r

w e

−1

2
2max3 (42)

Thus, the dynamical sliding mode control law τr has the following
form:

τ τ τ

k r ψ Θ f α re S ζ

τ r S

= +

= [ + − + ˙ − + ]

+ ( + )

r rnom dr

e e r
T

r r r

ζ
δ w e

4 2
−1

4 2
r

max

−1

2 3 (43)

Substituting Eq. (43) into Eq. (40), the derivative V6 can be
rewritten:

V k z δ k ψ k u k r S S

δτ a Θ a Θ Θ Θ

a τ a τ τ τ

Θ Γ Θ τ τ r S Θ f

τ r S δ τ

˙ ≤ − ( − ) − − ( − 1) − ( − 1) − −

+ − ∥ ∥ + (∥ ∥ + ∥ − (0)∥ )

− ∥ ∥ + (∥ ∥ + ( − (0)) )

+ ˙ + ˙ + ( + )

− ( + ) +

∼ ∼

∼

∼

∼ ∼

∼ ∼

e Δ e e e

w u u u u u u

r w r w w w

r
T

r r γ w w e r
T

r

δ w e w

6 1
2

2
2

3
2

4
2

1
2

2
2

2
2 1

2 2
2

2
2

2
2 1

2 2
2 2

−1 1
2

1
4 2

2
2

max

max max max max

max max
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1

1 1 1 1

2 3 3

2 3 3 (44)

Therefore, the parameters' update laws are selected as:

Θ Γ f r S b Θ Θ

τ γ r S b τ τ

˙ = [− ( + ) − ( − (0))]
˙ = [ ( + ) − ( − (0))]

r r r e u r r

w δ e r w w

2

2
1

4 2
2

max max max3 2 3 3

⎧
⎨⎪
⎩⎪ (45)

Substituting Eq. (45) into Eq. (44), the derivative V6 can be
rewritten as

V k z δ k ψ k u k r S S

δτ a Θ a Θ Θ Θ

a τ a τ τ τ

r S Θ f
δ

τ r S δ τ

Θ f r S b Θ Θ Θ Θ

δ
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(46)

Theorem 1. Consider the uncertain system (1) with Assumptions (1)
– (2) and the control laws (26), (43), and the parameters updating
laws (28), (45), therefore, all the variables are guaranteed to be
uniformly ultimately bounded stable in the closed-loop system.

Proof. Consider the LCF of the closed-loop system

V V z δ ψ u S

Θ Γ Θ
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τ r

S Θ Γ Θ
γ

τ

= = 1
2
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(47)

Based on Eq. (46), the derivative of V with respect to time is

V k z δ k ψ k u k r S S
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Therefore, it is obvious that the derivative of V with respect to time
can be rewritten as:

V λV˙ ≤ − + ϱ (49)

where λ and ϱ are positive constants satisfying

λ k k k a a γ k b b γ

δτ δ τ a Θ Θ Θ

a τ τ τ

b Θ Θ Θ

b τ τ τ

= min{ , , ( − 1), 1, , , ( − 1), 1, , }
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∼

∼

∼

∼

u r u r
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u r r r

r w w w

1 2 3 1 4 2
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max max
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1 3

1 1 1

3 3 3

⎧

⎨

⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪
(50)

□

4. Analysis the passive-boundedness of sway motion

In this part, we will discuss the boundedness of the velocity of sway
velocity. As we known, the dynamical equations of the sway have been
proposed in existing work (Zhang et al., 2015; Li et al., 2008). In this
paper, based on our previous work (Zhang et al., 2015), we will discuss
the boundness of the sway velocity with a similar procedure.
Nevertheless, this paper and Zhang et al. (2015) had different back-
ground. In this paper, we focus on the system uncertainty and
unknown parameters in the ship motion control, while Zhang et al.
(2015) only considered known parameters.

Consider the dynamical equation of sway in (1). v̇ can be rewritten
as follows:

v Θ f η η τ˙ = ( ˙, ) +v
T

v w2 (51)

Θ ∈v
nvR is an unknown constant vector with a known dimension nv.

f η η( ˙, ) ∈v
nvR is a known smooth function vectors. τw2 is the environ-

mental disturbance, which has effects on sway.
Considering the LCF as:

V v= 1
2v

2
(52)

According to Eq. (51), differentiate Eq. (52) as follows:

V Θ f η η τ v˙ = ( ( ˙, ) + )v v
T

v w2 (53)

From the references (Fossen, 1994; Zhang et al., 2015; Zhang and
Zhang, 2014), we know that Θ f η η ur v( ˙, ) = − −v

T
v

m
m

d
m

11
22

22
22

, where the

inertia and damping parameters m11, m22 and d22 are all positive
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constants. According to the kinematic and dynamical equations of the
underactuated surface ship, the environment disturbance τw2 in Eq. (1)

can be defined as
d
m

w2
22
.

Thus, Eq. (53) can be written as follows (Zhang et al., 2015).

V m
m

urv d
m

v
d
m

v

d
m

v
d
m

m
m

ur v

˙ = − − +

= − + −

v
w

w

11

22

22

22

2

22

22

22

2

22

11

22

2

2⎛
⎝⎜

⎞
⎠⎟ (54)

Based on the design of the control system, the variables u and r are all
uniformly ultimate bounded, and according to the Assumption 1, the

environmental disturbances in the sway satisfy τ τ| | = | | ≤w
d
m w

w
max2

2
22 2 . It

is easy to get the upper bound ξ d m ur≥ | − |w 112 , where ξ is a positive
constant.

Thus,

d
m

m
m

ur v ξv
m

v
m

ξ
m

− ≤ ≤
4

+w

22

11

22 22

2

22

2

22

2⎛
⎝⎜

⎞
⎠⎟ (55)

Therefore, Eq. (54) can be written as

V m
m

urv d
m

v
d
m

v

d
m m

v ξ
m

d
m m

V ξ
m

˙ = − − +

≤ − − 1
4

+

= − 2 − 1
4

+

v
w

v

11

22

22

22

2

22

22

22 22

2
2

22

22

22 22

2

22

2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ (56)

According to Eq. (56), if v| | ≥ d m ur

d

| − |

( − 0.25)

w2 11

22
1
2
, V̇ ≤ 0v , therefore, v satisfies the

passive-boundedness property, and when t → ∞, the v can be guaran-
teed uniformly ultimately bounded.

Remark 5. Based on Assumption 1, we haveanalyze the passive-
boundedness of sway motion. According to (1), Θ ∈v

nvR is a unknown
constant vector with known dimensions nv, but in the ship motion
control system, Θ f η η ur v( ˙, ) = − −v

T
v

m
m

d
m

11
22

22
22

, where the inertia and

damping parameters m11, m22 and d22 are all positive constants.
Therefore, Based on this property, we have expanded in our previous
work (Zhang et al., 2015) to analysis the passive-boundedness of sway
motion.

5. Numerical simulations

In this Section, the experiments of the control system are executed
in MATLAB R2016a on the computer. Some numerical simulations are
included to demonstrate the efficiency and effectiveness of the pro-
posed scheme. Consider an underactuated surface vessel model with
the model parameters (Zhang et al., 2015; Li et al., 2008; Do et al.,
2004). The physical properties of the underactuated surface ship is
38 m length, and the mass is 118 × 10 kg3 , comparative example with
the reference (Li et al., 2008), and following the design parameters in
Li et al. (2008). The parameters of the ship are m = 1.2 × 10 kg11

5 ,
m = 1.779 × 10 kg22

5 , m = 6.36 × 10 kg33
7 , d = 2.15 × 10 kg/s11

4 ,
d = 1.47 × 10 kg/s22

5 , and d = 8.02 × 10 kg/s33
6 . The environmental dis-

turbances in the simulations are choose as: τ = 1.1 × 10 [1w
5

1
sin t cos t+0.35 (0.2 ) + 0.15 (0.5 )] , τ cos t sin t= 2.6 × 10 [1 + 0.3 (0.4 ) + 0.2 (0.1 )]w2

5

and τ cos t sin t= 9.5 × 10 [1 + 0.3 (0.3 ) + 0.1 (0.5 )]w
7

3 (Zhang et al., 2015).
The desired reference trajectories are generated by the virtual ship (5),
and we assume that the value of u = 6 m/sd , and the value of rd can be
divided into three scenarios, which are shown below (Zhang et al.,
2015):

r
exp t t

t
t

=
(0.005 /300) rad/s, ≤ 30s

0 rad/s, 30s < ≤ 70s
0.05 rad/s, > 70s

d

⎧
⎨⎪
⎩⎪ (57)

The initial conditions of the closed-loop system are similar to the

one used in Li et al. (2008), which is defined as follows:

x y ψ u v r

Θ Θ Θ Θ
τ τ τ
τ τ τ

[ (0), (0), (0), (0), (0), (0)]
= [−80, 20, 0, 0, 0, 0]

(0) = 0.7 , (0) = 0.7
(0) = 0.7 , = 2
(0) = 0.7 , = 3

u u r r

w w w

w w w

max max max

max max max

1 1 1

3 3 3 (58)

and the design parameters are considered as:

k k k k
Γ I Γ γ γ
a a b b

= 0.001, = 15, = 1.1, = 1.1
= 3 × 10 , = 5 × 10 , = = 1
= 0.2, = 0.05, = 2 × 10 , = 1

u r

u r u r

1 2 3 4
−6 −2

1 2
5 (59)

The simulation results are shown in Figs. 2–4. Fig. 2 shows the
path-following trajectory in the comparative reference (Li et al., 2008)
and the proposed algorithm, and we observe that the underactuated
surface ship can follow the reference trajectories accurately and
smoothly under the nonzero-mean time-varying disturbances and the
systematical uncertainty. The desired reference paths consist of
straight lines and circles can make the simulation experiment more
suitable with the practice requirements. The desired reference trajec-
tories can represent somewhat realistic performance in the problem of
trajectory tracking or path following. Fig. 3 shows the tracking error
between the actual and the desired vehicle, which is defined as

e x y= ( + )e e
2 2 , it can be seen that the tracking error e can quickly

converges to the origin in presence of the nonzero-mean time-varying
disturbances. Furthermore it can be also observed that the tracking
error in sway direction ψe converges to the equilibrium, and it reduces

Fig. 2. The trajectory tracking path with perturbations effect.

Fig. 3. Tracking error and attitude error with perturbations effect.
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the chattering of ψe than Li et al. (2008). The control inputs are shown
in Fig. 4, simulation results show that the thruster outputs are smooth,
it can reduce the consumption of thrust, and also reduce the damage of
the propeller thrust through the continuous scheme in special con-
struction of the sliding manifolds. All of the above simulation results
show that the effective of the proposed method are sufficiently
demonstrated, especially in the practice of marine engineering.

6. Conclusion

In this paper, a practical proportional sliding mode controller is
designed to solve the problem of trajectory tracking of underactuated
surface vessels. By combining the adaptive continuous sliding mode
control with backsteeping technique, the method can effectively solve
the problem of system chattering and trajectory tracking. In the design
of control scheme, in order to solve the unknown disturbances in the
ship motion control, the method of estimating the upper bound of
unknown disturbances is explored. In the design of controller, the
sliding mode control is used to enhance the robustness of the control
system to the systematical uncertainties, and the special construction
of the continuous sliding manifold can reduce the chattering of the
system. In order to reduce the complexity of the feedback law, the
output of the controller is divided into two parts, which includes an
equivalent control part to solve the systematical uncertainty and a
disturbance control part to solve the unknown disturbances. The global
stabilization of the overall system is discussed based on the Lyapunov
stability theory. In comparison with the controller design in Li et al.
(2008), the control algorithm can not only reduce the chattering of the
error variable of ψe, but also make the ψe have a better performance
and a small error, thus being more effective to be applied in the
practical ship motion control.
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