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A B S T R A C T   

This study focuses on the development of a blended technique in moving frame which encompasses non
linearities and real time simulation of the vital early design parameters using combined exact nonlinear and 
quasi-nonlinear forcing terms. Generally, a full three-dimensional problem needs to be solved for the precise 
forward speed correction. However, in this paper the forward speed end corrections are calculated by converting 
the two dimensional velocity potential into a three dimensional mathematical function using radial basis 
function then partial differentiation is performed with respect to the longitudinal direction. The difference be
tween the forward speed correction used for time simulation in the blended method and the strip-theory in the 
frequency domain has been explained. The use of radial basis functions for the estimation of quasi-nonlinear 
combined radiation and diffraction pressures in moving frame and their conversion between two and three di
mensions has been demonstrated and validated experimentally.   

1. Introduction 

Rapid and repetitive assessment of seakeeping parameters is needed 
during an early design phase of sea-going vessel. Along with the accu
racy of modelling, time to complete the assessment cycle also becomes a 
dominant factor. Therefore, a fast and robust seakeeping code that must 
be capable of performing rigorous hydrodynamics calculations is always 
desirable. 

Over the past several decades, numerous investigations have been 
conducted on hydrodynamic analysis of hull behaviour. They are clas
sified into three major categories: analytical, experimental and numer
ical techniques. The numerical techniques are further divided into 
methods for boundary value problems and domain-dependent problems. 
Each technique is applicable only for a limited range of cases (Yousefi 
et al., 2013). Plethora of publications exists on the subject of BEMs 
applied for single hull hydrodynamics. Doctor et al. (Doctors, 1974) and 
Wang and Day (2007) utilized a distribution of pressure elements over 

planning surfaces while Lai and Troesch (1996) and Benedict et al. 
(2002) applied vortex lattice methods. Several CFD-type analyses of 
specific high-speed multihulls can be also found in the literature (e.g., 
Zhou, 2003 (Zhou, 2003); (Kandasamyet al., 2011); Yousefi et al., 2014 
(Yousefi et al., 2014)). Jiang et al. (2016) employed CFD code based on 
finite volume method to simulate and analyse the forward motion of the 
hull body with two degrees of freedom (heave and pitch). The main 
objective of the study was to analyse the flow mechanism and charac
teristics of the tunnel at different forward speeds. Predicted results were 
validated with experimental data and showed good agreement. Ghas
sabzadeh and Ghassemi (2014) used commercial software FLUENT to 
simulate a multi-hull tunnel vessel in calm water. The degrees of 
freedom in the simulation were pitch and heave motions and the hull 
position changed with a moving mesh. The simulated results of drag and 
trim were in good agreement with experimental data. 

The evaluation of structural responses is key element in the design of 
ships and off shore structures. The total pressure to examine hull 
behaviour comprises of incident wave Froude-Kriloff pressure, 
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hydrostatic pressure and radiation and diffraction pressures. Hirdaris 
et al. (Hirdariset al., 2014) presented a detailed review on the recent 
advances in the assessment of loads for ships and off shore structures for 
further understanding, validation and implementation by the academic 
and industrial communities. 

Many researchers have worked to solve the instantaneous boundary 
value problem using desingularized Euler-Lagrange methods. Finn 
(2003) solved the boundary value problem which satisfies body 
boundary condition in the near field. The free surface condition is only 
satisfied within the reasonably wide range of free space of water surface, 
in the vicinity of the piercing body. The matching of far field at infinity 
and near field solutions has not been considered by assuming that the 
impact of the far field condition on the near field solutions would not be 
significant. 

Kent (2005) used a pseudo-spectral method, where asymptotic 
technique is employed to seek the solution that satisfies the far field 
boundary conditions. This approach is close to the one used by Faltinsen 
(1971) for diffraction velocity potential for a piercing body in head seas 
where far field and near field conditions are matched asymptotically. 

Salvesen et al. (1970) used conventional strip theory for seakeeping 
analysis of normal displacement ships. However, its validity can be 
questioned when it is used for ships with higher maximum operating 
speeds, such as for semi-displacement vessels (Faltinsen, 2005). 

Savander et al. (2002) applied the boundary value problem to a 
planing plate and obtained relationships between potential perturbation 
and vortex distribution. They calculated the hydrodynamic pressure, lift 
and drag forces for the planning plate at different speeds. Ghassemi et al. 
(Ghassemi and Ghiasi, 2008; Ghassemi and Yu-min, 2008; Reza 
Kohansal and Ghassemi, 2010) have developed a computer code, based 
on BEM in conjunction with boundary layer, for hydrodynamic analysis 
of planing and non-planing hulls. This code was also utilized to study the 
wave pattern and pressure coefficients. However, the code was unable to 
take into account a two-phase flow model and cannot be applied for 
complex geometries and high Froude number cases. 

Kihara et al. (2005) presented computations of hydrodynamic forces 
when the ship oscillates in head seas, although their focus is on the 
added resistance in waves and they simplified the description of sprays. 

They simulated non-viscous flow separation from the knuckle of a ship 
section using 2D þ t method together with a nonlinear BEM solver. 

Giorgi and Ringwood (2018) discussed the importance and relevance 
of nonlinear Froude Kriloff force representation for axisymmetric wave 
energy converters, for vessels moving in surge, heave, and pitch. It is 
found that Froude-Kriloff integrals can be solved numerically by 
assuming small pitch angles which simplify the problem and achieve a 
considerably faster algebraic solution. 

Yuan et al. (2014) investigated the hydrodynamic interactions be
tween two ships arranged side by side with forward speed using 
boundary element program based on 3-D Rankine source method. The 
radiation condition is satisfied by using a modified Sommerfeld radia
tion condition which takes into account the Doppler shift of the scattered 
waves. This new radiation condition is applicable to a wide range of 
forward speeds. Yuan et al. (2015) also investigated the hydrodynamic 
interaction between two vessels with forward speed arranged side by 
side in shallow water. The motion responses of both ships were calcu
lated and compared to these obtained from commercial software and 
experimental results. 

Rajendran et al. (2015) investigated the effects of surge hydrody
namic forces and surge mode of motion on the vertical responses of a 
container ship and a chemical tanker in waves. It was found that the 
longitudinal forces have insignificant effect on the vertical moment 
about the lateral axis at the mean water level and on the flexural normal 
stress at the deck. Rajendran et al. (2016) also developed a code based 
on strip theory to calculate vertical ship responses of a containership in 
extreme sea conditions. The numerical method calculates the radiation 
forces based on Cummins formulation. Radiation, diffraction, Frou
de–Krylov and hydro static forces for instantaneous wetted surface area 
of the hull were calculated. It is observed that the body nonlinear 
radiation/diffraction forces significantly improve prediction of the ship 
responses in extreme waves. 

Khalid et al. (2016) investigated the role of blended method to solve 
two-dimensional boundary value problem for multi-bodies radiation 
and diffraction velocity potentials. It was found that blended technique 
is an efficient and accurate alternate method to provide time simulations 
of ship motion and other essential parameters for design optimization. 

Nomenclature 

U Mean forward speed/velocity 
X Ship absolute motions vector 
Fn Froude number 
fFRðtÞ Complex radiation force time series 
fFDðtÞ Complex wave load force time series 
x, y, z Inertial coordinate system 
η1 Surge 
η2 Sway 
η3 Heave 
η4 Roll 
η5 Pitch 
η6 Yaw 
x0 X –axis in earth fixed coordinate 
t0 Time in earth fixed coordinate 
n Normal vector 
t Surface tangent 
φR Radiation velocity potential 
φD Diffracted velocity potential 
φI Incident wave velocity potential 
F Force 
S Surface/Segment 
Φ Total Velocity potential 

r Laplace operator 
D Total/cumulative derivative 
φ Perturbation velocity potential 
φs Steady perturbation velocity potential 
φR Unsteady perturbation velocity potential 
W Velocity flow vector 
Ω Rotational velocity vector 
V Ship unsteady oscillatory velocity vector 
u,v,wSubscripts used for velocity in x, y and z directionsΨ(r) 

Subscripts used for velocity in x, y and z directionsΨ(r) 
Single basis function 

ξ Instantaneous wave profile 
p Dynamic pressure 
ωe Frequency of encounter 
κ Wave number 
β Heading angle 
z Complex points on the body surface 
zo Complex points in the fluid water domain 
L Linear 
N Quasi-Nonlinear 
E Experimental 
r Complex data (gain) 
i Complex data (imaginary)  
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Fig. 1. Two circular-sections, λi based on the original body-section to estimate the function corresponding to changed or final body-section, submergence ¼ .4R.  

Fig. 2. Comparing nodal values of an exact function f vs estimated function fr on a varying cylindrical section.  
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In this paper, blended technique using radial basis function has been 
developed and employed to calculate hydrodynamic forces in moving 
frame. This technique encompasses nonlinearities and real time simu
lation of the vital early design parameters using combined exact 
nonlinear and quasi-nonlinear forcing terms. The difference between the 
forward speed correction used for time simulation in the blended 
method and the strip-theory in the frequency domain has been 
explained. The use of radial basis functions for the estimation of quasi- 
nonlinear combined radiation and diffraction pressures in moving frame 
and their conversion between two and three dimensions has been 
demonstrated and validated experimentally. 

2. Radial basis function and convergence studies 

2.1. Radial basis function 

The functions expressed in the distance variable are usually termed 
as radial basis functions (RBFs) in the literature. The idea of radial-basis 
function derives from the theory of functions. A radial-basis function 
approach is formed by taking a linear combination of a single basis 
function Ψ(r), which is radially symmetric about its center. The only 
geometric property used in the radial basis function method is the 

pairwise distances between points. Wright and Fornberg (2006) have 
shown that the interpolation can be accurate for approximating de
rivatives. By imposing some mild restrictions on Ψ(r), the radial-basis 
function interpolation converges to polynomials. The radial basis func
tion is a weighted sum of the radially symmetric basic functions located 
at the centers/nodes and a low degree polynomial. The radial basis 
function evaluates the nodal value pressure by keeping track of the new 
relative position of all the other nodes in the domain of interest. It also 
saves an enormous amount of time by not solving the boundary value 
problem at each full and intermediate time step. Wide range of radial 
basis functions can be found in the literature with different kinds of 
constraints and utilities such as bi-harmonic, tri-harmonic, quadratic, 
multi-quadratic, inverse multi-quadratic, wend-land and generalized 
Duchon spline radially symmetric functions (Wright and Fornberg, 
2006; Carr et al., 2003; Carret al., 2001; Tolstykh and Shirobokov, 
2003). Khalid (2007) in his thesis evaluated dynamic and static pres
sures acting on a floating body while the body is experiencing large 
motions in six degrees of freedom and extreme random seas. A blended 
scheme is introduced to calculate total hydrodynamic pressure acting on 
an arbitrary body. The method employs quasi-nonlinear radiation and 
diffraction models while hydrostatic and Froude-Kirloff pressures are 
fully nonlinear. The quasi-nonlinear radiation and diffraction pressures 

Fig. 3. Comparing nodal values of an exact function df ¼ ∂fðx;y;zÞ
∂x vs. estimated function dfr ¼ ∂fr ðx;y;zÞ

∂x on a cylinder varying the number of station along length.  
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are estimated using radial-basis function without solving the 
boundary-value problems. 

2.2. Convergence studies 

In this study, radial-basis function is used for the estimation of body 
exact instantaneous radiation and diffraction pressures. There are two 
distinct applications, the first is to capture the changing sectional ge
ometries and the second is to evaluate partial derivative ∂

∂x of the radi
ation and diffraction velocity-potentials needed for the evaluation of 
forward-speed corrections. 

Typical convergence investigations are illustrated using real part of a 
three dimensional incident wave velocity-potential f (x, y, x) ¼ ez sin 
(� x � y), where the wave amplitude and wave number are assumed to 
be unity. The initial radial-basis coefficients λi are evaluated for the 
mean position of a half-submerged cylinder of radius R ¼ 1. The cylinder 
is then further submerged by a factor of 0.4R. The previously computed 
λ՜s corresponding to mean position are used to estimate the function fr 
(x, y, z) for the changed body-section; the variation of body geometry is 
shown in Fig. 1. 

The extent of change in the body geometry relative to its mean po
sition is also investigated. For the same function and cylindrical body, 
various emersions and immersions are shown in Fig. 2 using 25 nodal 
points on a section. The estimates compare reasonably well for extreme 
geometry changes. The estimate for extreme geometry reduction due to 
emersion of 0.7R of the cylinder is 10% of the exact value; for an im
mersion of � 0.7R, the error is 30% of exact value. In general for mod
erate changes of geometry the error in estimates remains below 3% of 
exact values. 

Convergence studies for the second application of radial-basis func
tion to evaluate ∂

∂x , is demonstrated using the partial derivative ∂f
∂x of the 

previously used function f (x, y, z) for a cylindrical ship-shape. The ship’s 
length equals the length of the wave, i.e L ¼ λ ¼ 2π and the radius of the 
each section is R ¼ λ

10. The exact ∂fðx;y;zÞ
∂x is known at different nodes on 

various sections along the ship’s length. 
The radial-basis coefficients λi are evaluated for the function f (x, y, 

z). Then the estimated function fr (x, y, z) is constructed using these 
coefficients. The partial derivative dfr ¼ ∂frðx;y;zÞ

∂x , is performed on the 
mathematical or algebraic form of the function fr (x, y, z). The estimates 
are increasingly good for an increase in number of stations and the 
convergence is fast as shown in Fig. 3. The relative error is reasonably 
small for moderate numbers of stations along the ship’s length. 

3. Mathematical formulation 

3.1. Fully nonlinear steady perturbation problem 

To account for the forward speed corrections, a steady perturbation 
velocity potential φs is found through solving a steady flow problem in 
moving frame. The velocity vector W of steady flow relative to the 
moving frame is defined in Equation (1). Since the dynamic pressure 
given by Bernoulli’s Equation holds for all time, setting its substantial 
derivative equal to zero gives an alternative fully nonlinear free surface 
boundary condition (2). Substituting U (φs � x) for velocity potential Φ 
in Eq. (2), one may write the free surface, zo ¼ ξ(x, y, t) boundary and 
body boundary conditions at mean body position in terms of steady 
velocity vector W as in Eqs. (3) and (4), where n is unit normal vector. In 
this text n is vector unless written subscripted as nj. 

W ¼Urðφsðx; y; zÞ � xÞ (1)  

∂2Φ
∂t2 þ rΦ⋅ ​ rΦt þ

1
2
rΦ ​ ⋅ ​ rðrΦ ⋅ ​ rΦÞ þ gΦzo ¼ 0 on zo ¼ ξ

(2)  

1
2

W ⋅r
�
W2�þ g

∂φs

∂zo
¼ 0 on zo ¼ ξ (3)  

W ⋅ n ¼ 0 on So (4) 

To include all the nonlinearities, one should solve for the combined 
steady and unsteady φs R ¼ U φs þ φR velocity potential subject to 
combined free surface and instantaneous body boundary conditions (6 & 
7) in terms of the ship absolute velocity and steady flow vector W. 
However, the assumption of small motions leads to decomposition of 
unsteady velocity potential φR into its components for each of six de
grees of rigid body motions. Under such conditions, one may solve the 
steady flow problem separately and the unsteady velocity potential 
separately with the free surface boundary condition (5) and the body 
boundary condition (7). This is accomplished by replacing velocity flow 
vector W with bUi and neglecting the steady perturbation velocity po
tential φs, 
��

∂
∂t
� U

∂
∂x

�2

þ g
∂
∂z

�

φR¼ 0 (5)  

∂2φR
∂t2 þ 2W⋅r

∂φR
∂t
þ

1
2
ðW þrφRÞ⋅rW2

þW⋅rðW⋅rφRÞ þ g
∂ðφRþ φsÞ

∂z
¼ 0 on zo ¼ ξ

(6)  

∂φR
∂n
¼ rφR⋅n ¼ ðV � WÞ⋅n on SðtÞ (7) 

Newman (1979) mentioned two first order contributions of W⋅n in 
the instantaneous body boundary condition (7) as (a) rotation of the ship 
fixed coordinate system and (b) gradient of the steady flow. Therefore, 
one may express the last term W⋅n used in Eq. (7) as vectorial repre
sentation of coordinate rotation and gradient of the steady flow. Using 
Eq. (8), where Ω is the rotational velocity vector representing roll, pitch 
and yaw velocities and X represents the ship absolute motions vector. 
After substitution of Eq. (8) into Eq. (7), the body boundary condition 
(7) can be applied to steady state body position and to the instantaneous 
body position. Eq. (8) is valid on both steady state and instantaneous 
body positions. By invoking Eq. (4) and using vector equalities Ω �W ¼
(W⋅r) X, the alternative of Eq. (8) may be written as Eq. (9) 

W ⋅ n ffi ðW � Ω ​ �W þ ​ ðX ⋅ rÞWÞ⋅n (8)  

W ⋅ n ffi ð � ðW ⋅rÞXþ ​ ðX ⋅ rÞWÞ⋅n (9) 

Bernoulli’s equation for dynamic pressure in the coordinate system 
moving with velocity vector W will be written as in Eq. (10). The radi
ation velocity potential φR in Eq. (10) should be obtained by solving a 
boundary value problem subject to fully nonlinear boundary conditions 
(6 & 7) after substitution of Eq. (9) into Eq. (7) 

p¼ � ρ
�

∂φR
∂t
þW ⋅rφRþ

1
2
rφR ⋅ rφRþ gzo

�

þ pa (10)  

3.2. Linear approximation and decomposition 

To avoid the complexities of the three-dimensional problem, one 
may tend to neglect the steady flow field due to the ship presence. 
Assuming φs ¼ 0 the velocity flow vector will be W ¼ � bUi, the body 
boundary condition (7) will reduce to Eq. (11). It is observed here that 
with the assumption of φs ¼ 0, one of the two first order contributions of 
W⋅n is lost completely. The only first order contribution retained in the 
body boundary condition is due to the rotation of the coordinate system. 
The flow velocity vector is constant W ¼ � bUi; its gradient will vanish. 

∂φR
∂n
¼ rφR ⋅n ¼

�

V � U
∂X
∂x

�

⋅n on SðtÞ (11) 
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The assumption of small unsteady motions leads to decomposition of 
φR into separate six degrees of freedom and the body boundary condi
tions for six cases would be as follows: 

∂φR
∂n
¼ rφR ⋅n ¼ _η1n1 on So (12)  

∂φR
∂n
¼ rφR⋅n ¼ _η2n2 on So (13)  

∂φR
∂n
¼ rφR ⋅n ¼ _η3n3 on So (14)  

∂φR
∂n
¼ rφR ⋅n ¼ _η4n4 on So (15)  

∂φR
∂n
¼ rφR ⋅n ¼ _η5n5 þ Uη3n3 on So (16)  

∂φR
∂n
¼ rφR⋅n ¼ _η5n5 � Uη2n2 on So (17) 

The term proportional to U may be interpreted as the product of the 
ship forward speed and angle of attack due to pitch and yaw motions. 
With the additional restriction that unsteady motions are sinusoidal 
oscillations with ωe as the frequency of encounter, the velocities and 
displacements are related as V ¼ iωeX, Eq (16, 17) and Bernoulli’s Eq. 
(10) may be further linearized as follows: 

∂φR
∂n
¼ rφR ⋅n ¼ _η5n5 þ

U
iωe

_η3n3 on So (18)  

∂φR
∂n
¼ rφR⋅n ¼ _η5n5 �

U
iωe

_η2n2 on So (19)  

p¼ � ρ
�

∂φR
∂t
� U

∂φR
∂x
þ gzo

�

þ pa (20)  

∂φRj

∂n
¼ rφRj⋅n ¼ iωenj (21)  

�
∂2

∂t2
o
þ g

∂
∂zo

�

φRj¼ 0 at Z ¼ ζ (22) 

The last terms in each of Eqs. (18) and (19) represent the body 
boundary conditions (13 & 14) with a constant multiplier � U

iωe 
respec

tively. One may intend to solve the six boundary value problems, 
without explicit involvement of forward speed, using a simple two- 
dimensional Green’s function given by (Frank, 1967) and subjected to 
simple free surface and body boundary conditions (21 & 22). However 
doing so will result in an inherent anomaly in free surface pressure. The 
free surface pressure would be slightly different than absolute zero value 
because of not satisfying the consistent linearized free surface boundary 
condition (5) involving the forward speed U after neglecting the steady 
perturbation velocity φs in the boundary value problem. After solving 
the boundary value problem for φ o

R using body boundary conditions (12 
through 17) with U ¼ 0 and consistent linearized free surface boundary 
condition (5), the pitch and yaw radiation potentials then may be cor
rected for the constant multiplier as shown in Eqs. (23) and (24). There 
is additional forward speed correction present in linearized dynamic 
pressure Eq. (20) due to moving frame of reference. 

φR5 ffi φ o
R5
þ

U
iωe

φ o
R3

(23)  

φR6 ffi φ o
R6
�

U
iωe

φ o
R2

(24)  

4. Blended method for radiation forces in moving frame 

In blended method, fully nonlinear Euler equations of motion are 
solved with nonlinear hydrodynamic forces acting on multi-hulled ves
sels. Lid is employed over the body segment to suppress the eigenvalue 
mode, thus eliminating singularities in source strength being used on 
multi-hull bodies presenting geometrical discontinuities (Khalid et al., 
2016). In the nonlinear time simulation, added-mass and damping co
efficients are not used. Instead, total nodal radiation pressure is esti
mated using an appropriate radial-basis function for exact instantaneous 
body position. Six boundary value problems are solved separately 
without involving forward speed. Then after correcting the φRj for pitch 
and yaw modes by invoking Eqs. (23) and (24), the total radiation ve
locity potential in rotating frame may be expressed as shown in Eq. (25). 
The substitution of this φRin Eq. (20) gives the dynamic pressure in 
moving-coordinates. 

φR¼
X6

j¼1
φRjηj (25) 

The diffracted velocity potential φD is also solved for simple free 
surface and body boundary conditions (21 & 22). For the diffraction 
boundary value problem, the body is held in steady state position against 
the incident wave, the forward speed correction � U ∂X

∂xin the body 
boundary condition (11) for a rotating frame will vanish, as there is no 
rotation of the coordinate system. However the forward speed correc
tion U ∂

∂x of linearized dynamic pressure Eq. (20) due to steady moving- 
coordinate is absolutely applicable for the diffracted velocity potential 
as well. Similarly, due to the moving frame of reference for the incident 
velocity potential, the only forward speed correction needed is U ∂

∂xin the 
linearized dynamic pressure Eq. (20). In the blended method, an 
appropriate radial-basis function is used to convert two-dimensional 
radiation and diffraction velocity potentials into their three- 
dimensional equivalents and the partial derivative U ∂

∂xin Eq. (20) is 
performed explicitly for the combined radiation and diffracted velocity 
potentials. 

4.1. Validations 

For the purpose of validation a comparison is presented between 
linear strip-theory of (Salvesen et al., 1970) and the blended method 
adopted in this research. In strip theory (Salvesen et al., 1970), the 
added-mass and damping coefficients may be written as in Eq. (26), 
where φRj has been corrected for rotation of coordinate system as in Eqs. 
(23) and (24). 

ω2
eAij � iωeBij ¼ � ρ

ZZ �

iωeφRj � U
∂φRj

∂x

�

nidS (26) 

For ease of understanding, one may split the φRj into two parts as 
Rj ¼ φo

Rj
þ φu

j . Where φ o
Rj 

is the solution of the boundary value prob
lem obtained from six body boundary conditions (12 through 17) with U 
¼ 0 and free surface boundary condition (5) and φ u

j is forward speed 
correction occurring in the body boundary condition due to rotation of 
the coordinate system. Considering Eqs. (23) and (24), the velocity po

tential φ u
j ¼ 0 for j ¼ 1, 2, 3, 4 and is nonzero for pitch φ u

5 ¼ ​ ​
φ o

R3
iωe 

and 

yaw φ u
6 ¼ ​ ​

φ o
R2

iωe 
modes. 

The forward speed correction for the radiation velocity potential 
arises because of axes rotation, this correction is applied to the mean 
position of the body in the strip theory (Salvesen et al., 1970) while in 
the blended method the same correction is estimated for the instanta
neous position of the body by using an appropriate radial-basis scheme 
with similar inconsistencies with regard to free surface boundary con
dition. The unsteady velocity potentials φ o

Rj 
are calculated using zero 

speed Green’s function given in (Frank, 1967). The actual difference 
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between the linear strip-theory (Salvesen et al., 1970) and the blended 
method is because of the partial derivative term, U ∂

∂x present in the 
linearized dynamic pressure Eq. (20). In the blended method the partial 
derivative U ∂

∂x is performed explicitly, while in the linear strip theory of 
(Salvesen et al., 1970), this derivative is circumvented using an alternate 
form of Stoke’s theorem as proposed by Ogilvie (Ogilvie and Tuck, 
1969). Ogilvie (1977) suggested to evaluate the surface integral term 

U∬
�

∂φRj
∂x

�

nidS of Eq. (26) as follows: 

U
ZZ �∂φRj

∂x

�

nidS¼ � U
ZZ

φRj midS � U
Z

φRj ½ðt� nÞ ⋅ W� nidl (27) 

The last term in Eq. (27) is a line integral over the boundary of mean 
position of the body at the intersection of the ship hull and the calm 
water line; where t and n are surface tangent and normal vectors 
respectively. 

Newman (1979) showed that for a wall-sided ship ½ðt � nÞ ⋅W� ¼
∂φs
∂z ffi 0 at z ¼ 0, the vertical velocity due to the steady perturbation 
potential is of higher-order at the intersection of body and calm water 
line. This line integral is of higher-order and therefore may be neglected. 
Salvesen et al. (1970) have also suggested to neglect the line integral 
along the water line and retaining the line integral of the end section 
only. There is experimental evidence also, which strongly suggest 
completely ignoring the line integral present in Eq. (27). If the steady 
perturbation velocity potential φs ¼ 0 then the line integral in Eq. (27) 
should be identically zero. In the linear part of the code developed for 
this study, the line integral shown in Eq. (27) has been completely 
neglected. 

It may be recognized that the term U ∂
∂x has reduced from W.r due to 

setting φs ¼ 0 and linear approximations and decomposition of the full 
three-dimensional problem. Using the theorem given in appendix A of 
(Ogilvie and Tuck, 1969), it can be shown 
that∬ W⋅ ðrφRÞndS ffi ∬ φRðn ⋅rÞWdS. The term mi of Eq. (27) may be 
written in vector from as ðm1;m2;m3Þ ¼ � n⋅rW and ðm4;m5;m6Þ ¼ �

n⋅rðr�WÞ ¼ r � ðm1;m2;m3Þ þW � n , where r is the 
three-dimensional position vector. If the steady-perturbation velocity 
potential is neglected by setting φs ¼ 0 and let U ¼ 1, then from the 
above mentioned vector operations it can be shown that mi ¼ 0 for i ¼ 1, 
2, 3, 4 and m5 ¼ n3, m6 ¼ � n2. Eq. (26) can be rewritten in terms of φoRj ;

ni ;φu
j and mi for i ¼ 1 … 6 and j ¼ 1 … 6 as following: 

ω2
eAij � iωeBij ¼ � ρiωe

ZZ �

φoRj ni þU
�

φu
j ni �

φoRj

iwe
mi

�

�
U2

iwe
φu

j mi

�

dS

(28) 

As already defined the φ u ¼ 0 for j ¼ 1 … 4, φu
5 ¼

φ3
iwe 

and φu
6 ¼ �

φ2
iwe

. Similarly m ¼ 0 for j ¼ 1 … 4, m5 ¼ n3 and m6 ¼ � n2. The velocity 
potential φu

j has resulted from body boundary condition in a rotating 
frame of reference. The term mi is the consequence of replacing the 
integrand term bUi⋅rðφoRjþφu

j Þn of Eq. (26) inside the vectorial surface 
integral of the linearized dynamic pressure given in Eq. (20) due to 
moving frame, with the term ðφoRj þφu

j Þðn ⋅rÞbUi for surge, sway and 

heave modes. For roll, pitch and yaw modes, the integrand term bUi⋅ 
rðφoRj þφu

j Þðr�nÞ is replaced with the term ðφoRj þ φu
j Þ½ðr � n ⋅rÞbUi þ

bUi � n�. Ogilvie et al. (Ogilvie and Tuck, 1969) showed mathematical 
validation for the interchangeability of the two terms inside a surface 
integral using the properties of velocity flow vectorcUi. For the explicit 
evaluation of pressure one cannot take the advantage of interchange
ability of these two terms. In the case of pressure, the partial derivative 
U ∂

∂x needs to be performed explicitly on the velocity potentials φoRjþ φu
j . 

The comparison between the radiation forces due to blended method 
and strip theory of (Salvesen et al., 1970) depends on how closely the 

numerical equivalence ∬ U
∂ðφoRjþφu

j Þ

∂x nidS ffi ∬ Uðφjþφu
j ÞmidS holds be

tween the interchangeable two terms discussed above in the light of 
theorem given in (Ogilvie and Tuck, 1969). 

Fj ¼

Z L
2

� L
2

� Z

SðtÞ
P njdδ

�

dx (29) 

The blended scheme presented in this study focuses on explicit 
evaluation of dynamic pressures. The forces are then calculated by using 
a surface integral on the product of pressures and the body normal as 
shown in Equation (29). For the purpose of a comparison between the 
blended method and (Salvesen et al., 1970) strip-theory, Wigley-hull 
offsets were generated using Equation (30), where B ¼ 2m, L ¼ 20m, T ¼
� 1 m are the beam, length and the draft of the ship respectively. 

Y ¼
� B
2

�

1 � 0:95
�

X
0:5L

�2��

1 �
�

Z
T

�2�

(30) 

For the forced oscillation in sway mode, the comparison between 
linear and blended method is shown in Fig. 4. It can be seen that sway 
into sway and sway into roll compare well, while sway into yaw does 
not. In sway into yaw mode, the linear complex force is significantly 
bigger than the radiation force predicted by blended method. In the 
(Salvesen et al., 1970) strip theory model, the cross coupling radiation 

force is coming from the term iωeU
�

φu
j ni �

φRj
iωe

mi

�

of Equation (28), for i 

¼ 6, j ¼ 2 this term reduces to � Uφ2m6. This forward speed correction is 
only due to dynamic pressure in moving frame. Body boundary forward 
speed correction would be zero, because rotation of axis-system is zero. 
For the reduced term � UφR2m6 ¼ UφR2n2, effectively the partial de
rivative has been performed only on n6. While in the blended method, 
the partial derivative U ∂

∂xis performed on φR2 and n6 remains un
changed. Numerically, ∬ U ∂φR2

∂x dS 6¼ ∬ UφR2n2dS. This explains the 

Fig. 4. 0.05 m Forced sway radiation, linear L vs quasi-nonlinear N, ωe ¼ 1.066 
rad/s, V ¼ 1 m/s, Fn ¼ 0.0714, Wigley-hull. 

Fig. 5. 0.05 m Forced heave radiation, linear L vs quasi-nonlinear N, ωe ¼

1.066 rad/s, V ¼ 1 m/s, Fn ¼ 0.0714, Wigley-hull. 
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difference in sway into yaw mode shown in Fig. 1 between linear and 
blended method. 

For the forced heave oscillation, the comparison between linear and 
blended method is shown in Figs. 5 and 6, respectively for resulting 
radiation and hydrostatic heave forces. The radiation and hydrostatic 
forces in all the modes compare well except for heave into pitch as in the 
linear model the partial derivative U ∂

∂x is performed only on n5 instead of 
taking the partial derivative U ∂

∂x of φR3. 

Similarly the forced roll oscillation, comparison between linear and 
blended method is shown in Figs. 7 and 8 respectively for resulting ra
diation and hydrostatic forces. In Fig. 8, the roll and heave hydrostatic 
forces are not in good agreement. The Wigley-hull being non wall-sided is 
the reason for this small difference. When forced roll motion is given to a 
non-wall-sided body about a fixed axis, the vertical hydrostatic would 
not be in balance, unless the body is allowed to heave. In Fig. 7, the 
radiation forces of roll into roll and roll into sway are in good agreement. 
However, in case of roll into yaw, the blended method has predicted 
lower radiation force. The forward speed correction due to the body 
boundary condition in rotating-frame of reference is zero because of φ s 
¼ 0. In (Salvesen et al., 1970) strip theory, the only forward speed 
correction captured is due to linearized dynamic pressure in the moving 
coordinate. It can be shown again using similar reasoning already dis
cussed for the case of sway into yaw radiation mode, that the partial 
derivative U ∂

∂x is performed only on n6 instead of taking the partial de
rivative U ∂

∂x of φ4 in (Salvesen et al., 1970) strip theory. 
In Figs. 9 and 10, the comparison between linear and blended 

method is shown for resulting radiation and hydrostatic forces respec
tively for the forced pitch oscillation. In Fig. 10, the pitch into heave 
force is not in good agreement. The reason for this vertical unbalanced 
hydrostatic is the non-wall-sided hull form is forced to pitch about a 
fixed axis without allowing to heave. This vertical unbalanced hydro
static will vanish if the ship is allowed to heave freely. In Fig. 9 the 

Fig. 6. 0.05 m Forced heave hydrostatic, linear L vs quasi-nonlinear N, ωe ¼

1.066 rad/s, V ¼ 1 m/s, Fn ¼ 0.0714, Wigley-hull. 

Fig. 7. 0.05 rad Forced roll radiation, linear L vs quasi-nonlinear N, ωe ¼ 1.066 rad/s, V ¼ 1 m/s, Fn ¼ 0.0714, Wigley-hull.  

Fig. 8. 0.05 rad Forced roll hydrostatic, linear L vs quasi-nonlinear N, ωe ¼ 1.066 rad/s, V ¼ 1 m/s, Fn ¼ 0.0714, Wigley-hull.  
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radiation force pitch into pitch and pitch into surge are in good agree
ment. But the blended method has predicted higher force in pitch into 
heave mode. In the case of the linear model, the cross coupling radiation 

force is a result of the term iωeU
�

φu
j ni �

φRj
iωe

mi

�

of Equation (28). For i ¼

3, j ¼ 5 this term reduces to iωeUφu
5n3 ¼ UφR3n3. This forward speed 

correction is coming from the body boundary condition in the rotating 
axis-system. It is observed that the forward speed correction arising from 
dynamic-pressure due to moving frame of reference could not be 
captured appropriately in (Salvesen et al., 1970) linear strip-theory 
model. However, the blended method is adequately taking care of 
both the forward speed corrections arising from the rotating body 
boundary condition and dynamic pressure in moving frame of reference. 
This is the reason that the blended method is predicting higher pitch into 
heave radiation force than (Salvesen et al., 1970) linear strip theory. 

For the forced yaw oscillation in Fig. 11, the comparison is shown 
between the linear strip theory and blended method. The resulting ra
diation forces for the modes yaw into sway and yaw into roll are not in 
good agreement, the blended method predicts higher forces. The reason 
for these higher cross coupling terms can be explained based on the 
argument presented in the previous paragraph for the pitch into heave 
mode. In linear strip theory model, the forward speed corrections 
resulting from dynamic-pressure in moving frame have been almost 
neglected in yaw into roll and yaw into sway modes. The blended 
method by comparison, partially accounts for the forward speed cor
rections in the moving frame after setting φs ¼ 0. 

4.2. Blended method for diffraction and Froude-Kriloff forces in moving 
frame 

The scattered or diffracted velocity potential φD is obtained by 
solving the Laplace Equation (31) with the free surface and body 
boundary conditions 22 and 33. The scattering phenomenon may be 
described as the restrained body in the steady moving frame with the 
velocity U 6¼ 0 or in the earth fixed coordinate with the velocity U �
0 exposed to incident waves. There is no rotation of the axis-system; the 
forward speed correction arising in the body boundary conditions 
should vanish. This can be seen from Equation (34), where the term 
½ðW ⋅rÞX�⋅n vanishes explicitly for X ¼ 0 or for the non-rotating body. 
The nonlinear body boundary condition for the scattered velocity po
tential including the steady perturbation potential would be as follows: 

r2Φðx; y; z; tÞ¼ 0 (31)  

D
Dt

Sðx; y; z; tÞ¼ 0 at z ¼ ζ (32)  

where r2is Laplace operator and D is the total/cumulative derivative. 

∂φD
∂n
¼rφD⋅n ¼ � rφI⋅n (33)  

∂φD
∂n
¼rφD⋅n ¼ � rφI⋅nþ ½ðW ⋅rÞX � ðX ⋅rÞW�⋅n (34) 

In the steady moving frame, the terms involving W and X would be 
identically zero if φs is neglected. Effectively Equation (34) reduces to 
Equation (33). For the diffraction problem in a moving frame of 

Fig. 9. 0.05 rad Forced pitch radiation, linear L vs quasi-nonlinear N, ωe ¼

1.066 rad/s, V ¼ 1 m/s, Fn ¼ 0.0714, Wigley-hull. 

Fig. 10. 0.05 rad Forced pitch hydrostatic, linear L vs quasi-nonlinear N, ωe ¼ 1.066 rad/s, V ¼ 1 m/s, Fn ¼ 0.0714, Wigley-hull.  

Fig. 11. 0.05 rad Forced yaw radiation, linear L vs quasi-nonlinear N, ωe ¼

1.066 rad/s, V ¼ 1 m/s, Fn ¼ 0.0714, Wigley-hull. 
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reference, the only forward speed correction would be from dynamic- 
pressure Equation (10) or its linearized version in Equation (20) after 
substituting φD for φR. For the blended method, the diffraction force is as 
follows: 

FD
j ¼ � ρ

ZZ �∂φD
∂t
þW ⋅rφDþ

1
2
rφD ⋅rφD

�

njdS (35) 

The surface integral in Equation (35) is for the instantaneous sub
merged body. If the steady perturbation velocity potential is neglected 
φS, the term W⋅rφD in Equation (35), may be simplified as � bUi⋅ r
φD ¼ � U ∂φD

∂x . In the blended method, the partial derivative � U ∂
∂x is 

performed numerically using radial basis function. 

FDj ¼ ρ
Z L=2

L=2

� Z

So

rφI ⋅ nj φRdδ
�

dx (36) 

In case of the linear strip-theory model, the scattering velocity po
tential is not known explicitly. The linear diffraction forces are calcu
lated from the incident and radiation velocity potentials after applying 
Green’s second identity on the surface integral involving all the 
bounding surfaces of the linear boundary value problem, as shown in 
Haskind-relation 36 for zero forward speed. For the problem involving 
forward speed, one may assume that the speed dependent terms in the 
linearized free surface boundary condition are of higher-order and 
therefore could be neglected. The linear approximation of Equation (35) 
may be rewritten as: 

FD
j ¼ � ρ

ZZ

½ iωeφD � bUi ⋅rφD�njdS (37)  

rφðx; y; z; tÞ ⋅ n ¼ V⋅n at So (38)  

where V denotes ships unsteady oscillatory velocity in the moving 
frame. 

Considering body boundary condition 38, the first term ½iωeφD�nj of 
Equation (37) can be replaced by ð � rφRj ⋅nÞφD . The equality ​ rφRj⋅ 
nφD ¼ rφD⋅nφRjfor the integrand of surface integral holds because of 
the second identity of Green’s theorem applied to all the bounding 
surface of the boundary value problem. From the body boundary con
dition 33 of the scattering problem rφD⋅n ¼ � rφI⋅n, where φI is 
incident wave velocity potential defined in Equation (39). The first term 
½iωeφD�njin Equation (37) represents exactly the Haskind-relation of 
Equation (36) for zero speed. 

φI¼
ig∝
ω ekze� ikðxcosβþysinβÞeiωet at z ¼ ζ (39)  

where k ¼ 2π=λ is the wave number and β is the heading angle. 
The second term of Equation (37) may be written in vector notation 

as ½ � bUi ⋅rφD�n. The equality ∬ ½� bUi ⋅rφD�ndS ¼ ∬ ½φDðn ⋅rÞ�ð� bUiÞdS 
can be shown by using properties of flow vector W and theorem given in 
appendix A of (Ogilvie and Tuck, 1969). The term ½φDðn ⋅rÞ�ð� bUiÞ is 
identically zero for surge sway and heave modes of motion. For roll, 
pitch and yaw, the second term of Equation (37) may be written in 
vector form as ½ � bUi ⋅rφD�ðr � nÞ:Again, using (Salvesen et al., 1970) 
theorem, one can show the equivalence ∬ ½� bUi ⋅rφD�ðr�nÞdS ¼
∬ φD½ððr�nÞ ⋅rÞð� bUiÞþðn� � bUiÞ�dS;which is zero for roll, and in pitch 
and yaw modes are UφDn3 ¼ � UφDn2 respectively. 

Using body boundary condition 33, and Green’s second identity for 
surface integral over all the linearized bounding surfaces, the forward 
speed correction can be written in terms of radiation and incident ve
locity potentials for pitch and yaw as U

iωe
ðrφI ⋅nÞφR3 and �

U
iωe
ðrφI ⋅nÞφR2 , respectively. These are the same forward speed cor

rections as given by (Salvesen et al., 1970) derived from the body 
boundary condition due to rotation of axis-system. The forward speed 
corrections derived here are arising from dynamic pressure in moving 

frame of reference. 
Similarly, the Froude-Kriloff forward speed corrections are also from 

the dynamic-pressure due to the moving frame. It can be derived 
analytically from incident velocity potential as given in Equation (39). 
The comparison between blended and (Salvesen et al., 1970) linear 
strip-theories for Froude-Kriloff and diffraction forces are shown in 
Figs. 12 and 13 respectively. The Froude-Kriloff forces compare well in 
all six modes. However, the diffraction forces are significantly different 
for the pitch and yaw modes. The reason for the difference is the nu
merical inequality between the term � U ∂φD

∂x and the terms used in the 
pitch and yaw modes U

iωe
ðφI ⋅nÞφR3 and � U

iωe
ðφI ⋅nÞφR2 respectively. 

4.3. Comparison between blended method and experimental data 

As shown in the previous two sections, the cross coupling terms for 
radiation forces resulting from the blended method developed in this 
study, do not compare well with Ogilvie (Ogilvie and Tuck, 1969) and 
Salvesen (Salvesen et al., 1970) results. Similarly, diffraction forces in 
pitch and yaw modes also shows disagreement with Ogilvie (Ogilvie and 
Tuck, 1969) and Salvesen (Salvesen et al., 1970) findings. In this section 
the blended method for the forward speed correction is compared with 
the available experimental data. 

Journee (I. J and Journee, 1992) conducted experiments on four 
different Wigley-hull forms for three different ship speeds corresponding 
to Froude numbers Fn ¼ 0.2, Fn ¼ 0.3 and Fn ¼ 0.4 in head seas. The 
author also gave his judgement on reliability of experimental data. A 
comparison between blended method and experimental data for 
Wigley-hull-III for the radiation and wave loads in head seas has been 
demonstrated in this section. For the forced oscillations, the experi
mental data is given in terms of added-mass and damping coefficients. 
For the purpose of comparison with the blended method, a complex 
radiation force time series is generated using the relationshipfFRðtÞ ¼

Fig. 12. Froude-Kriloff forces, Linear L vs quasi-nonlinear N, α ¼ 0.05m, β ¼
130�, ω ¼ 1 rad/s, V ¼ 1 m/s, Fn ¼ 0.0714, Wigley-hull. 

Fig. 13. Diffraction forces, Linear L vs quasi-nonlinear N, α ¼ 0.05m, β ¼ 130�, 
ω ¼ 1 rad/s, V ¼ 1 m/s, Fn ¼ 0.0714, Wigley-hull. 
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ðω2
e A � iωeBÞeiωet. Similarly, the wave load data is given as normalized 

amplitude and phase, and a complex wave load force series is generated 
using the relationship fFDðtÞ ¼ jFj eiðωe tþθÞ. The offsets for the Wigley-
hull-III are obtained using Equation (40) as given in (I. J and Journee, 
1992). 

Y ¼ �
B
2

�

1 �
�

X
0:5L

�2��

1 �
�

Z
T

�2��

1þ 0:2
�

Z
T

�2�

(40) 

Radiation and wave loads calculated by the blended method are in 
good agreement with the experimental data given in (I. J and Journee, 
1992), for the various forward speeds. For the forced heave motion 
given to Wigley-hull-III moving with Froude number Fn ¼ 0.2, the 
resulting radiation forces are comparing well as shown in Fig. 14. A 
similar comparison for the forced pitch motion and Froude number Fn ¼

0.4 is shown in Fig. 16. The cross coupling terms obtained from the 
blended method developed in the present research and experiments by 

Journee (I. J and Journee, 1992) are in good match as seen in Figs. 14 
and 16. The comparison between linear and blended method, for the 
accompanying hydrostatic forces is shown in Figs. 15 and 17. A good 
agreement between the blended method and experiments by Journee (I. 
J and Journee, 1992) for the wave loads with forward speed corre
sponding to Froude number Fn ¼ 0.3 is found as shown in Fig. 18. The 
wave loads shown in Fig. 18 are the sum of diffraction, Froude-Kriloff 
and hydrostatic forces in the head seas. In the wave loads, the 
Froude-Kriloff is the dominating force, the diffraction and hydrostatic 
forces are approximately 20 and 1 percent of the total wave loads as 
found numerically using the blended method. 

It may be noticed that in case of cross coupling terms, the blended 
method is comparing well with the experimental data and not with the 
results obtained using slender body forward speed corrections suggested 
by Ogilvie et al. (Ogilvie and Tuck, 1969). To find the reason for this 
somewhat surprising outcome, one needs to explore the underlying 

Fig. 14. 0.05m Forced heave radiation, experimental E vs blended N, ωe ¼ 5.0076 rad/s, V ¼ 1.0848 m/s, Wigley-hull-III.  

Fig. 15. 0.05m Forced heave hydrostatic, linear L vs blended N, ωe ¼ 5.0076 rad/s, V ¼ 1.0848 m/s, Wigley-hull-III.  
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assumptions, conditions and properties of different functions used in the 
derivation to prove the equality of the integrals ∬ bUi⋅rðφ o

Rj
þ φ u

j Þðr � nÞ

dS ¼ ∬ ðφ o
Rj
þ φ u

j Þ½ðr � n ⋅rÞbUi þ bUi � n�dSof a surface integral by 
Ogilvie et al. (Ogilvie and Tuck, 1969). This equality does not hold in 
general for all surface integrals or their integrands. 

5. Discussion 

For the mode, heave into heave, the first component of the forward 
speed correction is evidently zero. After integrating along the ship 
length, the net effect of the second component of the forward speed 
correction U ∂φR3

∂x also becomes zero. The velocity potential φR3 is an even 

function with respect to x, its derivative ∂φR3
∂x would be an odd function. 

The n3, a component of the normal n is an even function with respect to 
x. The product ∂φR3

∂x n3 is an odd function with respect to x. Therefore its 
integration along the longitudinal axis of the ship is zero. Effectively, 
there is no forward speed correction in the mode heave into heave. The 
slender-body theory, experiments and the blended method are all in 
good agreement. However in the blended method, the derivative ∂φR3

∂x is 
calculated to predict the nodal pressure inclusive of the forward speed 

effects. After integration of the pressures along the ship length, the 
forward speed effects vanish. 

In case of pitch into heave, the forward speed correction comprises 
both of the components. In the blended method, the integrand of this 

correction may be expressed as the product U
�

∂φR5
∂x þ

∂φR3
∂x

�

n3. φR3 is the 

correction due to body boundary condition and the derivative with 
respect to x accounts for the evaluation of pressure in the moving frame. 
The second term of the integrand ∂φR3

∂x n3 is an odd function with respect 
to x, the net effect vanishes after integrating along the ship length. Thus 
in the blended method, the net effective forward speed correction is 
proportional to the surface integral of the term ∂φR5

∂x n3. By 
assuming φR5 � � xφR3ðy; zÞ, one can show that this is identically 
equal to � φR3 n3 , which is the same as suggested by slender body 
theory. This approximation holds only if φR3 is assumed to be the 
function y, z only. There is no explicit or implicit dependence on x, while 
this is not the case in the blended method and in the real physics of the 
problem. The two-dimensional φR3 ðy; zÞ is transformed into its corre
sponding three-dimensional quantity by using an appropriate radial 

basis function. Then the derivative ∂φR3 ðx;y;zÞ
∂x n3 is calculated on a three- 

dimensional quantity. This approach is closer to the real physics of the 

Fig. 16. 0.0262 rad Forced pitch radiation, experimental E vs blended N, ωe ¼

12 rad/s, V ¼ 2.1696 m/s, Wigley-hull-III. 

Fig. 17. 0.0262 rad Forced pitch hydrostatic, linear L vs blended N, ωe ¼ 12 rad/s, V ¼ 2.1696 m/s, Wigley-hull-III.  

Fig. 18. Wave loads for α ¼ 0.023m, experimental E vs. blended N, β ¼ 180�, ω 
¼ 3.4259 rad/s, ω ¼ 5.4246 rad/s, V ¼ 1.6272 m/s, Wigley-hull-III. 

M.S. Khalid et al.                                                                                                                                                                                                                               



Ocean Engineering 198 (2020) 106994

13

problem. That is why the results from the blended method are in good 
agreement with the experimental results. 

ISSC (ISSC, 2000) and Finn et al. (2001) have shown comparisons of 
vertical bending moment on SR175 container ship with various nu
merical calculations and experimental data. Their results are reproduced 
using blended method and are superimposed on them as shown in 
Fig. 19. It is observed that the maximum sagging moment is approxi
mately twice the value of maximum hogging moment. These results are 
obtained by approximating the sectional weight distribution with the 
corresponding sectional buoyancy forces. The results from the blended 
method are comparing well with the results of other researchers. 

6. Conclusions 

In this paper the difference between the forward speed correction 
used for time simulation in the blended method and the strip-theory 
presented by Salvesen et al. (1970) in the frequency domain has been 
explained. Using the previous work of Newman (1979) and Ogilvie et al. 
(Ogilvie and Tuck, 1969), a basis is developed for the comparison be
tween the blended method and the frequency domain linear model. The 
calculated results for the steady and unsteady problems are compared 
with published model test results. Good agreement is obtained, which 
validates the present numerical method. The comparison of the calcu
lated results with the experimental data shows that the blended method 
is effective and feasible. The present method can be further extended to 
dynamic structural design and maneuvering problems. 
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