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ARTICLE INFO ABSTRACT
Keywords: A methodology for directly establishing the forces and moments on a maneuvering body based on the
Hydrodynamics instantaneous state of the vehicle is demonstrated. Both classical and modern Design of Experiments were
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used to develop experimental design regions consisting of different combinations of inflow conditions. Data was
generated using computational fluid dynamic simulations which were performed on DARPA SUBOFF and the
Virginia Tech ellipsoid model at the parameters prescribed by the designed experiments. Nonlinear polynomial
regression modeling and artificial neural network modeling were used to develop prediction models for the
normal and side force coefficients of both geometries with functional dependence on the inflow conditions.
The prediction models were compared to published experimental data which showed excellent agreement
within the experimental design region. The classical and modern approaches were also compared to each
other and various strengths and applicability were illustrated. Nonlinear polynomial regression modeling and
classical Design of Experiments proved to be very insightful by elucidating which inflow parameters and inflow
parameter interactions were significant to the prediction model. Artificial neural network modeling coupled
with modern Design of Experiments was shown to be more accurate, however, gave no insight to the underlying
physical flow phenomena.

1. Introduction

Prediction modeling of aerodynamic and hydrodynamic bodies has
always been of utmost interest in the commercial and defense sectors.
Accurate prediction modeling can lead to computationally inexpensive
meta-models which fully characterize the geometric body in question.
Ultimately, these meta-models can be used for geometric or other forms
of goal-oriented optimization, such as drag reduction, at minimal to no
cost.

Prediction modeling can also be applied to determining the ma-
neuvering characteristics of aero/hydrodynamic vehicles. Traditional
maneuvering models use a series of coefficients based on Taylor series
expansion of the forces and moments to describe the motion of the vehi-
cle. The accuracy of these models is based on the number of coefficients
used to describe the motion. Designers tend to limit motion to a single
plane which reduces the number of coefficients required, but these
techniques fail to capture nonlinear effects due to motion in multiple
planes. In order to more accurately capture these nonlinear effects,
additional coefficients are required, which significantly increases the
number of experiments that must be run to establish these coefficients.
Racine and Paterson (2005) explored methods to reduce the number
of coefficients required to accurately model the motion of a vehicle
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by determining the relative importance of each term. Terms that were
considered less significant were dropped from the equations of motion,
however the final model produced mixed results when compared with
experimental data.

Simonsen et al. (2012) also explored the use of simulated Planar
Motion Mechanism (PMM) tests where the minimum number of PMM
tests required to provide sufficient accuracy was determined. It was
found that the number of PMM tests could be reduced by 30% without
significant loss of accuracy. The test matrix reduction, however, could
not be accomplished in a systematic manner as the maneuvering model
would easily become unstable and diverge. A significant understand-
ing of the vehicle’s maneuvering characteristics was required prior to
reduction of the test matrix to ensure stability would be maintained,
reducing this method’s attractiveness for concept design.

Hess (2002) demonstrated the power of Recursive Neural Networks
(RNN) for application to maneuvering prediction during the Office of
Naval Research Maneuvering Challenge, where the RNN out performed
models using lifting line theory, modified potential flow, and Unsteady
Reynolds-Averaged Navier-Stokes (URANS). The challenge in the ap-
plication of this RNN is it used 78 time-accurate experimental data sets
to train. Generation of this data would be cost and time prohibitive for

Received 18 November 2019; Received in revised form 8 April 2020; Accepted 23 May 2020

Available online 29 May 2020
0029-8018/© 2020 Elsevier Ltd. All rights reserved.


http://www.elsevier.com/locate/oceaneng
http://www.elsevier.com/locate/oceaneng
mailto:john.r.somero@hii-nns.com
https://doi.org/10.1016/j.oceaneng.2020.107566
https://doi.org/10.1016/j.oceaneng.2020.107566
http://crossmark.crossref.org/dialog/?doi=10.1016/j.oceaneng.2020.107566&domain=pdf

C.S. Thurman and J.R. Somero

Nomenclature
Cc, normal force coefficient
Cy side force coefficient
" yaw moment coefficient
a angle of attack
B side slip angle
MSy mean square of the error
u local velocity in three-dimensional space
p fluid density
p local fluid pressure
Verf effective viscosity
v kinematic viscosity
v turbulent eddy viscosity
Ax cell size (dimensional)
As cell size (non-dimensionalized by L)
L body length
y+ dimensionless wall distance
Re Reynolds number (UL/v)
ﬁb velocity, body-frame
U, velocity, inertial-frame
W yaw angle
0 pitch angle
¢ roll angle
k turbulent kinetic energy
® specific dissipation rate
& regression model intercept
& regression coefficients
€ sum of squares of the error
E(y) overall mean
y(D,) sample mean

ship design applications using physical experiments. Even considering
the significant advances in computational fluid dynamics (CFD) and
available computational resources, generation of this type of data set is
currently computationally prohibitive. The question, therefor, remains
of how to optimally gain insightful information with regard to char-
acterization while keeping the computational cost relatively low. The
solution to this conundrum is through the use of Design of Experiments
(DoE).

This paper aims to explore various statistical sampling methods
inherent to DoE which are somewhat specific to two different modeling
techniques to be compared, polynomial regression and artificial neural
network modeling. These two modeling techniques will be used to
develop nonlinear relationships between normal force coefficient, C,,
and side force coefficient, Cy, as respective functions of the inflow
conditions: angle of attack, a, and side-slip angle, . This method allows
the forces and moments to be established for a 6-Degree of Freedom
(6-DOF) simulation directly based on the state of the vehicle, in lieu of
small angle limited linear derivatives.

The method is demonstrated here using two different geometries:
the DARPA SUBOFF model and the Virginia Tech scalene ellipsoid
model. The two different modeling techniques will be validated using
experimental data for the two geometries published by Roddy (1990)
and Granlund (2009) for the DARPA SUBOFF model and the ellipsoid
model, respectively.

2. Design of experiments
DoE can be thought of as a process for planning an experiment so

that appropriate data can be collected and analyzed by statistical meth-
ods, resulting in valid and objective conclusions (Montgomery, 2017;
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Box et al., 1978). DoE is typically used in systems comprised of multiple
inputs when a nonlinear functional relationship between the quantities
of interest, such as force and moment coefficients, and the regressors,
or inputs, and their interactions is required. DoE can be broken up into
two categories: classical and modern. A brief comparison of which is
given in Table 1.

2.1. Classical DoE

Classical DoE sampling methods are generally coupled with pre-
liminary least-squares regression modeling, the Analysis of Variance
(ANOVA) significance testing, and regression model reduction. Regres-
sors, such as the main effects from the inputs, the effect of input
interactions, and the effect of various higher order terms are included in
preliminary least-squares regression models before significance testing
is performed to determine which effects are inconsequential to the
regression model. Insignificant terms are removed from the model and
added to the error estimate of the model. In this fashion, nonlinear
polynomial regression models can be created and refined to yield
sought after functional relationships between outputs and regressors.

Classical DoE sampling methods were originally developed for use
in physical experiments (Yondo et al., 2018) and have been used
with great success for complex aerospace and motorsport vehicle char-
acterization applications (Murphy and Landman, 2015; Doane and
Landman, 2012; Landman et al., 2002), as well for suspension system
design (Mohsen et al., 2015) and instrumentation calibration (Reinholtz
et al., 2012).

These sampling methods assume stochasticism, or the presence
of random pure error, inherent to the physical experiment which is
normally distributed, N(0, o2). The presence of this pure error and its
normality are key main assumptions used in ANOVA which decouples
the total variability in the response, or functional output from least-
squares regression, and tests the significance of the regressors to the
meta-model by comparing a measure of their variability: their individ-
ual mean squares, to the mean square error (M Sy) of the regression
model which serves as a measure of the stochasticism inherent to the
experiment. With the presence of this inherent error, design points are
chosen in a combinatorial fashion, a priori, which exploit aggressive
regressor spacing, allowing for a decreased number of samples.

Typically, factorial type designs and central-composite designs
(CCD) are used in classical DoE with many alterations and augmenta-
tions possible which allow for the accommodation of testing limitations
or the optimization of the experimental design.

Augmentation usually concerns the addition of samples to the de-
sign space in order to enhance the predictive capabilities of the resul-
tant regression model or to fulfill some alphabetic optimality criteria.
D-optimality, which is often used, focuses on good model parameter
estimation, allowing for superior regressor screening capabilities (My-
ers et al., 2016). I-optimality works to reduce the average scaled
prediction variance, allowing for optimal predictive capabilities within
the design space. There are other alphabetic optimality criteria as well
that will not be addressed in this paper, but if interested, can be found
in Montgomery (2017) and Myers et al. (2016).

2.2. Modern DoE

Contrary to classical DoE, modern DoE deals almost exclusively with
computer-based experiments. These types of experiments are determin-
istic, meaning that there is no measure of the inherent stochasticism.
The error is typically associated with grid discretization error, round
off error, numerical convergence error, etc., meaning that for a fixed
number of iterations, a replicated computer experiment should yield
the same results. Because of this, there is no reference quantity with
which to perform significance testing, so other methods for statistical-
empirical modeling must be used which require different experimental
sampling techniques.
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Table 1
Comparison between classical and modern DoE.
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Classical DoE

Modern DoE

Application to physical experiments

Fewer experimental points required

Based upon statistical methodology

Fewer available modeling procedures

Factor screening and model reduction

Limited order of polynomial model (typically < (xy)*)

Application to computer-based simulations

More experimental points required

No statistical basis; more of an interpolation approach
More available modeling procedures

N/A

Unlimited nonlinear modeling capability

Various alphabetically optimal designs may be used, like with classi-
cal DoE, however, space-filling designs are predominantly used. There
are several different space-filling designs such as the Uniform Design
(UD), Latin Hyper-Cube Design, Sphere-Packing Design, etc., which,
in general, spread the design points out nearly evenly or uniformly
throughout the region of experimentation, adhering to some measure of
uniformity determined by the design being used (Myers et al., 2016).
The purpose of this uniform sampling is to acquire data in a manner
that will represent the entire experimental domain while minimizing
the difference of the overall mean between the meta-model and the
experimental data (Fang et al., 2005).

These space-filling designs often require more runs than typical clas-
sical DoE designs, such as factorial experiments, since the experimental
design points are placed at interior points rather than at the outer limits
of the experimental domain. Alphabetic optimal designs are somewhat
of a hybrid between classical and modern DoE designs since they place
points both on the exterior of the design space in a factorial fashion, as
well as on the interior to adhere to some optimality criterion.

There are many modeling techniques used with modern DoE. Poly-
nomial regression is often used, however, contrary to its use with
classical DoE, ANOVA may not be used due to the lack of an in-
herent stochasticism estimate and other forms of significance testing
are needed for factor screening. Since the modeling procedure for
modern DoE does not involve ANOVA, it is more of an interpolation
problem (Fang et al., 2005). This broader interpolation problem lends
itself to the application of machine learning (ML) algorithms such as
Bayesian estimation, decision trees, artificial neural networks (ANN),
etc. All of which approach the general data interpolation problem
somewhat abstractly in that they define the functional relationship
between input and output in a “black-box” mannerism without giving
much insight as to which input factors are significant to the problem.
The ML modeling technique of particular interest to this research is
the ANN which will be discussed in subsequent sections. The reader is
referred to Da Ronch et al. (2017), Cleaver et al. (2016), Montevechi
et al. (2007) and Nazalla et al. (2006) for various modern DoE and
modeling techniques, as applied to the simulation of aerospace vehicles
and manufacturing processes, respectively.

3. Geometric configurations

This research not only looks to compare different modeling tech-
niques coupled with their respective sampling methodologies, but it
also aims to determine if there are any limitations imposed on the
experimental design region by the CFD processes used. To validate
both the capabilities of the CFD solver and the meta-models, results are
compared with the experimental data of the DARPA SUBOFF and the
Virginia Tech scalene ellipsoid model. The SUBOFF geometry (Roddy,
1990) was used in a bare-hull configuration for simplicity and will
generalize typical submersible bodies-of-revolution (BOR). The scalene
ellipsoid generalizes non-bodies-of-revolution (NBOR) and its asym-
metric geometry will induce flow physics of greater complexity. Its
geometric parameters were taken from Granlund (2009) and Somero
(2010).

The coordinate system used for both geometries was located at each
geometry’s center of gravity and was such that the positive X-direction
faced upwind, the positive Y-direction faced starboard, and the positive
Z-direction pointed downward.

4. CFD solver

HPCMP CREATE™SH NavyFOAM was used throughout the scope
of this work. NavyFOAM is a CFD solver that was developed under the
DoD High Performance Computing Modernization Program’s (HPCMP)
Computational Research and Engineering Acquisition Tools and En-
vironments (CREATE™) Ship’s Hydrodynamics Project. NavyFOAM
builds upon the computational framework of the open source CFD tool-
kit, OpenFOAM, by implementing a large number of new features and
capabilities including new top-level solvers for single- and multi-phase
flows, libraries of new numerical schemes and algorithms, advanced
physical models, and custom postprocessing utilities. Here, the single
phase incompressible flow solver, sRansFoam, is used to solve the
equations for the conservation of mass and momentum given as:

V=0 o)
3—?+ﬁ-Vﬁ=—;—)Vp+v~ [ves s (Vii+V72)] @

where v, = v+v,, v is the kinematic viscosity, v, is the turbulent eddy
viscosity, and the superscript T in \/7 represents the matrix transpose.
The Navier-Stokes solvers in NavyFOAM employ a cell-centered finite-
volume method based on a multidimensional linear reconstruction
scheme that permits use of arbitrary polyhedrals (Kim et al., 2017).
One of the features in NavyFOAM which was taken advantage of in
this work is the inclusion of Wilcox’s updated 2006 k - ® turbulence
model. This updated, two-equation turbulence closure model used in
Reynolds-Averaged simulations has been proven to resolve separated
flows more efficiently than its preceding rendition (Wilcox et al., 2006;
Wilcox, 2008).

5. Technical procedure
5.1. Mesh generation

5.1.1. Surface mesh generation

The surface mesh for the DARPA SUBOFF model and the ellip-
soid were both created such that adequate cell coverage spanned the
entirety of each model. Both surface meshes were triangulated and
unstructured. The DARPA SUBOFF model had variable surface mesh
density whereas the ellipsoid had a constant density. The DARPA
SUBOFF surface mesh had diminishing cell sizes with a maximum cell
size, Ax, of 0.01 m along the parallel mid-body, or non-dimensionalized
by body length, 4s = 0.0024.

The stern was separated into three sections with the approximate
separation located at geometric slope changes along the surface in
the downwind direction. Each of these sections decreased in cell size
by a factor of 1.5 sequentially, starting from the parallel mid-body,
while maintaining one-to-one cell connectivity between sections. The
surface mesh on the bow section was 1.5 times smaller than the parallel
mid-body. The ellipsoid geometry’s surface mesh had a constant mesh
density, with an approximate 4s = 0.0044.
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Fig. 1. Ellipsoid volume mesh.

Fig. 2. SUBOFF refinement regions.

5.1.2. Volume mesh generation

The volume meshes for both the DARPA SUBOFF model and the
ellipsoid, shown in Figs. 1 and 2, were created as hex-dominant volume
meshes with several levels of refinement from the far field. The outer
limits imposed on the volume mesh for both geometries were as follows:
3 body lengths in the downwind direction, 2.5 body lengths in the up-
wind direction, and 2 body lengths port/starboard of both geometries.
The maximum cell length along the outer region was approximately As
=0.2.

Refinement regions were added around the anticipated region of the
wake for at least 1 full body length as well as around both geometries.
The wake refinement regions were 7 levels (8x volumetrically each
level) of refinement greater than the outer region 4s and the geometry
refinement regions were 6 levels of refinement greater. The addition
of these two refinement regions served the purpose of increasing the
flow field resolution in regions of particular interest to this study.
Since forces integrated over the geometries are of utmost importance,
accurate modeling of the flow field around the hull and in the wake
region is necessary. Fig. 2 depicts the two refinement regions around
the DARPA SUBOFF model.

The first layer of cells adjacent to the geometries was sized to
accommodate a y+ distance of approximately 60 for the Reynolds
number, Re, specific to each geometry. The Reynolds numbers were
set to match those given in the published experimental data and will
be addressed in subsequent sections (Roddy, 1990; Granlund, 2009).

5.2. CFD implementation & validation

Prior to comparing DoE sampling methodologies and modeling
techniques, CFD validation was necessary to determine the accuracy
of the numerical techniques implemented and their ability to properly
simulate the physical flow phenomena surrounding each geometry.
This was done by running simulations where only one of the two
inflow variables was modified in an effort to replicate the experimental
results. Since the DARPA SUBOFF model is axisymmetric, only one of
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the input parameters will be used, whereas the NBOR nature of the sca-
lene ellipsoid will require that both inflow parameters be investigated
individually.

For the incompressible flow about our two geometries, a steady-
state solution was contrived. The Laplacian terms associated with the
diffusion of momentum, turbulent kinetic energy, and turbulent spe-
cific dissipation were discretized spatially using second-order linear
interpolation schemes. First-order spatial upwind discretization was
applied to the divergence schemes associated with the convection of
the turbulent kinetic energy and turbulent specific dissipation. The
convective momentum, on the other hand, was spatially discretized
using a blend between a second-order linear interpolation scheme and
a first-order spatial upwind scheme.

The matrix representation of the discretized set of linear algebraic
equations for the momentum, turbulent kinetic energy, and turbu-
lent specific dissipation is preconditioned using a symmetric, diagonal
incomplete-Cholesky method and solved with a preconditioned bi-
conjugate gradient scheme (PBiCG). The Poisson’s equations for the
pressure and pressure correction, derived from the momentum equa-
tions and utilized by the Semi-Implicit Method for Pressure Linked
Equation (SIMPLE) algorithm, were preconditioned using an asymmet-
ric, diagonal incomplete-Cholesky method and solved with a precondi-
tioned conjugate gradient scheme (PCG).

Solution tolerances were specified such that iteration would ensue
until the residuals associated with the turbulence closure equations
were reduced by 6 orders of magnitude and the residuals associated
with the pressure, pressure correction, and momentum equations were
reduced by 7 orders of magnitude. These convergence criteria were
satisfied before the SIMPLE method’s outer loop began the next iter-
ation. Under-relaxation was also specified to promote the stability of
the iterative process and two non-orthogonal correctors were utilized
due to the non-orthogonality associated with the unstructured meshes
used.

5.2.1. Prescribed simulation parameters

To accurately replicate the incompressible flow around the geome-
tries in question, dynamic similarity was maintained by prescribing
values of Reynolds number that matched those of the published ex-
periments. For DARPA SUBOFF, Re = 1447 x 10° and for the scalene
ellipsoid, Re = 4.5 x 10° (Roddy, 1990; Granlund, 2009). Inflow
velocity magnitudes and kinematic viscosities were modified to accom-
modate these Reynolds numbers for all inflow conditions throughout
the simulations conducted in this research.

To determine what the proper inflow conditions should be in the
body-fixed reference frame coordinate system described in Section 3, it
was necessary to transform the velocity components from the inertial
reference frame, using the Euler rotation angles given in Eq. (3) (Bossert
et al., 2003).

cos(y) sin(y) 0 cos(@) 0 —sin(9)
Up =|—sin(y) cos(y) O]=* 0 1 0
0 0 1 sin(@) 0  cos(f)
3)
1 0 0
%10 cos(¢) sin(¢) | * Uy
0 —sin(¢p) cos(¢)

Where y is the yaw angle, 6 is the pitch angle, and ¢ is the roll angle.

Utilizing the coordinate transformation given in Eq. (3), velocity
conditions were calculated and imposed at the inlet and the far field
sides while a zero gradient condition was given at the outlet. The
geometric surfaces were given a no-slip velocity condition. The pressure
was given a gauge value of zero at the outlet. A zero gradient pressure
condition was imposed along all other domain boundaries, as well
as along the geometric surfaces. Since the k - @ turbulence model
was used, the turbulent kinetic energy, k, and the turbulent specific
dissipation, w, were prescribed to 3.75 x 107 m?/s?> and 1000 s~!,
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Fig. 3. DARPA SUBOFF C, Comparison (f = 0°).
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Fig. 4. Scalene ellipsoid C, comparison (f = 0°).

respectively, at the inlet. Zero gradient turbulence conditions were
given at the far field sides and the outlet.

For the CFD validation, a values of 0°, 3°, 5°, 7.5°, 8°, 10°, and
13° were simulated and compared with the experimental results for the
DARPA SUBOFF geometry. For the scalene ellipsoid model « and g were
each treated individually, while holding the other parameter constant.
Values of 0° 3°, 5°, 8°, and 10° for « and 0°, 3°, 5°, 8°, 10°, 13°, and
15° for p were simulated and compared with experimental results. The
inflow velocities corresponding to these angles and for combinations
of angles in subsequent sections were all transformed from the inertial
frame of reference to the body-fixed frame using Eq. (3).

5.2.2. CFD validation

The numerical methods outlined previously were executed in Navy-
FOAM for each geometry which produced good agreement with the
published experimental results (Roddy, 1990; Granlund, 2009) and will
be compared in this section.

The DARPA SUBOFF model was simulated at « values ranging from
0° to 13° and the results for C, are shown in Fig. 3 where force is
non-dimensionalized by L? as

4
C=7—7—. @
- pU2 12
2
It should be noted that the force coefficient data for all experiments
conducted in the scope of this research were averaged over the last
200 iterations. Since the geometry was axisymmetric, the results were
extended to negative a values by mirroring the results about the X and

Y axes to aid in the visualization of the result comparison. Analysis
of Cy was not needed due to the symmetry. The percentage errors
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Fig. 5. Scalene ellipsoid C, comparison (a = 0°).
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Fig. 6. Scalene ellipsoid C, comparison (a = 0°).

between the fine mesh CFD results and the published experimental
results were calculated with their averaged value being 5.18%. The
same comparison was done with the Virginia Tech scalene ellipsoid
results, however, since it is a NBOR, the lateral direction was also
analyzed. The results are plotted in Figs. 4, 5, and 6.

Since there were discrepancies in the Cy data, the yaw moment co-
efficient, C,, has also been plotted in Fig. 6. The percentage differences
averaged over the aforementioned discrete data points for C, and C,
were 5.67% and 2.17%, respectively.

5.3. DoE and modeling procedure

Accurate results have been shown achievable for angles up to at
least to 13°-15° in both « and p, respectively. For the purpose of this
research, the region of interest was chosen to be between —8° and 8°
for both a and p to provide the ability to evaluate model performance
in prediction beyond the range of data included.

5.3.1. Classical DoE implementation

Typically, there is a sequential nature involved with classical DoE
methodology. After the region of experimentation has been defined,
a two-level factorial experiment is first generated to allow for factor
screening, or significance testing. This involves the generation of a
preliminary least-squares regression fit to the data. This regression
model takes the generic form of Eq. (5) which is defined as a multiple
linear regression model (Myers et al., 2016).

k
yi:§0+25jxij+£,-, for i=1,2,...,n (5)
j=1
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FactorB

® Factorial Points
O Center Points

® Axial Points
- o B
Factor A
]
Fig. 7. Typical central composite design experiment.
Table 2
FCD experimental design points.
RUN a s
1 -8° 0°
2 8° 0°
3 0° 0°
4 -8° 8°
5 8° -8°
6 8° 8°
7 -8° -8°
8 0° -8°
9 0° 0°
10 0° 8°
11 0° 0°
12 4° —4°
13 4° 4°
14 —4° —4°
15 —4° 4°
16 0° 0°

where &, is the model intercept, &; are regression coefficients, and ¢;
are sum of squares of the error.

The standard procedure decomposes the error in the regression
model into two parts: a contribution from the variability in each indi-
vidual regressor, and the contribution from the stochasticism inherent
to the experiment. These contributions are namely the mean square of
each regressor and the M .Sy, respectively. The ANOVA process then
determines the significance of inputs and multi-input interactions to
the regression model by performing an F-test which compares the error
estimate of the regressors to the error estimate of the stochasticism.
Insignificant terms are dropped from the model and added to the
estimate of the pure error. Once it is known which terms are insignif-
icant, sequential experimentation can be done without these terms,
occasionally reducing the number of experimental runs to be conducted
if a factor is eliminated completely from the experiment.

Most sequential experimentation with a two-level factorial experi-
ment involve the augmentation of the experimental design space with
the addition of axial points and center points, as shown in Fig. 7,
allowing for the estimation of quadratic curvature. A design of this
form is typically called a Central Composite Design (CCD). Axial points
are generally spaced such that certain properties of the experimental
design space are achieved, such as rotatability. Significance testing
is performed again with this new design space to determine which
higher order terms and interactions are significant to the new, second-
order regression model which takes the general form of Eq. (6) (Myers
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A
o I-Optimal Points B
® Factorial Points
O Center Points
B Axial Points

Fig. 8. FCD experiment with I-optimal points (Design space ranging from a = +8° and
f==+8).
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Fig. 9. DARPA SUBOFF — normal probability plot of C, (line represents normal
distribution).

et al.,, 2016). The final polynomial regression model will be a direct
consequence of the significance testing of regressors to Eq. (6).

k k k
y=§0+2é‘jxj+ZZ§,-jx[xj+Z§jjx]2.+s 6)
j=1 i<j=2 j=1

To perform the standard approach outlined above, certain assump-
tions must be satisfied which define characteristics of the experimental
data. The first assumption concerns the normality of the experimental
data and of the error, requiring that they both conform to a Gaussian
distribution. The second assumption is that the data have no time
dependence. This ensures that the stochasticism in the experiment is
not due to a process error such as hysteresis, wind tunnel warm-up
error, or other time dependent forms of error. The last assumption
is that the data and the stochastic error both have constant variance.
With these three assumptions met, the residuals, or discrete differences
between the experimental data and the regression model prediction of
the experimental data should be completely structure-less, allowing for
the M Sy to be used as a measurement statistic for ANOVA.

Since the form of the polynomial regression can be assumed to be
cubic for both the DARPA SUBOFF model and the scalene ellipsoid,
as suggested by Roddy (1990) and Granlund (2009), an experimental
design was chosen which included axial and center points to determine



C.S. Thurman and J.R. Somero

Normal Probability Plot

0.98
K4 o
0.95 ’,-'
>0.90 o
= ot o
= ¢
T 075 g
o} o
T 3 /
2 0.50 /ggo
£ 0.25 -
5 P
Z0.10 o
4
0.05 s
o /"
0.02 v
-2 -1 0 1 2
Residual %1074
Fig. 10. Ellipsoid — normal probability plot of C, (line represents normal
distribution).
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Fig. 11. Ellipsoid — normal probability plot of C, (line represents normal
distribution).

the curvature of the responses, C, and Cy which were functions of
a and . A Face Centered Design (FCD) was used with axial points
located along the faces of the experimental region. The general form
of a cubic regression model in two factors has 10 model terms which
is equivalent to the number of experimental design points, indicating
saturation. To address this, six additional model points were chosen in
an I-optimal fashion to reduce the average scaled prediction variance
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Fig. 13. Ellipsoid — residuals vs. predicted for Cy (lines are 2 and 3 residual standard
deviations).

throughout the region of experimentation. Two of the points involved
with this augmentation were center runs to help stabilize the prediction
variance and provide additional degrees of freedom for pure error
estimation (Myers et al., 2016). This 16 point design space in two
factors produced the randomly ordered experimental design depicted
in Fig. 8 and tabulated in Table 2.

Since the regression model form has already been determined to be
cubic, the preliminary model with which to perform significance testing
takes the form of Eq. (7) for both C, and Cy for both geometries.

y =&yt a+Ef+Eaf+E @ +Ep P +E 0 fHE et +E & + 6
@

The normal probability plots for C, of the DARPA SUBOFF model
and the scalene ellipsoid and Cy of the scalene ellipsoid are shown in
Figs. 9-11.

The results of which, show that the normality assumption is violated
for the C, of SUBOFF. This means that ANOVA cannot be performed
without data manipulation due to the deterministic nature of the exper-
iment. The residuals of the scalene ellipsoid, aside from a few outliers,
seem to trend towards normality without any significant defects in
behavior. It should be noted that these normal probability plots are
preliminary and correspond to residuals from the full regression model,
Eq. (7). They are used simply to determine the general trend in data
and outliers will be addressed in subsequent sections. Once ANOVA is
performed, the normal probability plots of the reduced models will be
analyzed and detailed in Section 6.

«10% Residual vs. Predicted

CZres
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o

-5
-0.01 -0.005 0

CZpred

0.005 0.01

Fig. 12. Residuals vs. predicted for C, (lines are 2 and 3 residual standard deviations). Left — DARPA SUBOFF, Right — ellipsoid.
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Fig. 14. C, pure error at center point (Run 3) (lines are 2 residual standard deviations). Left — Ellipsoid, Right — DARPA SUBOFF.
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Fig. 15. DARPA SUBOFF — normal probability plot of C, after adding wind tunnel
error (line reflects normal distribution).

The residuals vs. the predicted responses for the C, of the DARPA
SUBOFF model and the scalene ellipsoid and the Cy of the ellipsoid
are plotted in Figs. 12 and 13 to determine if there is any structure to
the residuals. Aside from the obvious symmetry of the residuals, there
appears to be no real structure to the residuals. The lines in Figs. 12 and
13 are indicative of 2 and 3 residual standard deviations, respectively.
Since none of the residual values lie outside of these standard deviation
boundaries, it is safe to assume that the residuals conform to a Gaussian
distribution and are unstructured, with a mean of 0.

An analysis of the time history of the residuals is not necessary
since each simulation was run independently of one another. What
this preliminary residual analysis suggests is that the CFD data for
the DARPA SUBOFF model adheres to two of our three assumptions
necessary for ANOVA, and the data for the scalene ellipsoid adheres to
all three of our assumptions.

It is believed that the unsteadiness associated with the bluff-bodied
nature of the scalene ellipsoid is the proprietor of the variance in the
CFD data. Not only is the ellipsoid a complex geometry over which
to resolve the flow field, but the Reynolds number is low, reducing the
nearfield flow stability. All of these indicate that the problem is truly an
unsteady one and yet it was solved using a steady-state solution. A look
at the CFD force or moment coefficients at an experimental center point
shows the pure error associated with noise caused by unsteadiness.
These values plotted against the iteration number are shown in Fig. 14
and indicate that the steady-state simulation of a truly unsteady flow
problem not only has very similar behavioral trends as a wind tunnel
test, but also has a similar variance (Stringer, 2017).

Fig. 16. Uniform design in two factors (Design space ranging from a = +8° and
B =+8).

The lines plotted in Fig. 14 take on the same meaning as in Figs. 12
and 13, indicating that the pure error of an individual run also has
constant variance and is structure-less. A look at the C, residuals of
the DARPA SUBOFF model in Fig. 14 suggests that there is not enough
error present for significance testing.

The flow field of the DARPA SUBOFF was less complex than the
ellipsoid because it was axisymmetric with a tapered stern. It was also
run at a higher Reynolds number promoting flow field stability and
numerical convergence, becoming more deterministic in nature than
the ellipsoid simulations. Because of this and because of the lack of
normality of the residuals (Fig. 9), a normally distributed pure error,
N(0, 6% = 5% 1079), calculated from wind tunnel testing data at a = 0°,
tabulated by Stringer (2017), was added to the 16 experimental runs.
This pure error, typically associated with wind tunnel tests, was added
to the data in an effort to provide stochasticism as a measurement
statistic for significance testing. Another look at the normal probability
plot of the residuals, using the DARPA SUBOFF data with injected error,
Fig. 15, shows that the normality assumption of ANOVA has now been
met.

Therefore, ANOVA will be done for both the DARPA SUBOFF model
and the scalene ellipsoid, with the inherent stochasticism being solely
a measurement of flow unsteadiness, either from the numerical simula-
tion for the ellipsoid, or from typical wind tunnel testing error added to
the SUBOFF data. If a regressor is shown to be significant by comparing
it to the unsteadiness, it will not be excluded from the regression model.
Taking the mean over 200 iterations will be thought of as equivalent
to time averaging wind-tunnel test data for the ellipsoid. The same
was done to the DARPA SUBOFF test data prior to adding actual wind
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Fig. 17. Generic ANN representation (Yondo et al., 2018).
tunnel testing error. Significance testing and model reduction were Table 3
performed on the C, data for both the DARPA SUBOFF model and the UD experimental design points.
scalene ellipsoid, as well as for the Cy data for the ellipsoid. The results RUN @ I
are detailed in Section 6. 1 -6.50 5.59
2 —2.54 —7.46
. . 3 -3.55 3.55
5.4. Modern DoE implementation 4 o1 Tise
5 —0.485 -2.50
A modern DoE approach has also been explored since these types 6 _4.48 ~0.379
of experimental designs are tailored towards computer-based experi- 7 3.49 0.427
ments. CFD was used throughout the entirety of this experiment, which 8 1.50 =5.47
is typically deterministic in nature, and was shown in the previous 12 22: ;63':0
section. The same number of experimental design points was used for 11 154 1.54
the modern DoE approach as for the classical approach to more directly 12 7.46 2.39
compare the two design spaces, and a uniform design space was chosen 13 2.39 7.46
based upon the limited number of runs, the meta-model selection 14 4.47 —3.45
(ANN), and the desired outcome: optimal prediction capability. The i: 2‘73317 ‘1’142 4

uniform design (UD) places points in a fashion that minimizes some
measure of non-uniformity, in this case the centered L, discrepancy,
between the design points and a theoretical uniform distribution (Hick-
ernell, 1998). The design is shown in Fig. 16 and tabulated in Table 3.
The uniformly placed points are meant to minimize the difference
between the overall mean, Eq. (8), and the sample mean, Eq. (9),
throughout the entirety of the design space (Fang et al., 2005).

E(y)= / Sf)dx (C))

1
D)= g,f(x» ©

Many of the modeling procedures used with modern DoE tech-
niques work in an iterative fashion, adjusting, or “training”, model
parameters by looping over the collected data until some goodness of
fit measurement is sufficiently minimized. Typically, these goodness
of fit measures are called penalty functions, the most common of
which being the quadratic loss function, or the sum of the squared
difference between the collected data and the data predicted by an
arbitrary model. The minimization of this function is a problem in
convex optimization and typically machine learning (ML) algorithms
are implemented to solve this minimization problem. The overall goal
is to not only minimize this function and provide the best fit of the
meta-model to the collected data, but also to be able to extend the
meta-model to arbitrary data within the design region not collected in
the experiment. The ability of the meta-model to conform to both the
“training” data and the “validation” data is the over-arching problem,
especially for prediction modeling.

An Artificial Neural Network (ANN) was chosen as the meta-model
to fit the data; more specifically, a single layer perception (SLP). The

SLP aims at replicating the architecture of the neurons in the human
brain, set up in layers as shown in Fig. 17. Each layer consists of a
number of activation functions, or neurons, aligned in parallel. All of
the neurons of a particular layer are activated in unison, with different
multiplicative weights along the connections between neurons, inputs,
and outputs.

The SLP architecture used throughout the modern DoE modeling
procedure contained one hidden layer consisting of 5 hyperbolic tan-
gent activation functions. Each activation function can be thought
of as a hyperplane with values between —1 and 1, following the
nonlinear form of the hyperbolic tangent function (Alpaydin, 2014).
These activation functions are necessary to introduce nonlinearity to
the ANN, enabling it to effectively model complex, nonlinear rela-
tionships between inputs and outputs (Sharma, 2017; Walia, 2017).
The number and type of activation functions used are heuristically
determined and it should be noted that ANNs of different architectures
and consisting of different activation functions were investigated, but
showed significant bias, or over-fitting, to the simulated results. The
chosen SLP architecture was determined to be optimal for this research.

The input layer contains the values for « and  at each design point,
which are passed through the SLP randomly and the multiplicative
weights along the connections are modified until the quadratic loss
function is minimized in a feed-forward, gradient descent training
manner. Due to the limited number of design points, a k-fold method
was used for validating the SLP where the data was divided into 3
subsets. Each subset was used to validate the model fit after training
and the kth model with the best fit was selected as the final model.
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Statistical analysis of the collected data is not necessary for a ML
approach because input significance is inconsequential to most ML
modeling procedures. Therefore, no insight is gained about which
inputs, or input interactions, are significant to the ANN. Rather than
excluding insignificant terms, the ANN works with combinations of
highly nonlinear mixtures of inputs, determined by the number of
hidden layers, the number of activation functions in each layer, and the
form of the activation function specified by the engineer or researcher.
Based on these specifications, an ANN effectively takes on a ‘“black-
box” form to accurately map the inputs to the outputs throughout
the experimental design region in a way that generalizes to arbitrary
data inside this design region. The specific ANNs created to model the
previously defined outputs for the DARPA SUBOFF and the scalene
ellipsoid models will be analyzed in Section 6.

6. Results and discussion
6.1. Classical DoE results

Significance testing was carried out against the inherent stochas-
ticism due to unsteadiness for the scalene ellipsoid and against the
injected error for the DARPA SUBOFF model. This involved an F-test
on each factor against the error in the preliminary regression models
at a 6.5% level of significance. Insignificant terms were dropped from
the preliminary models and newer, more accurate regression models
for each output quantity of interest were fashioned. The final form of
the regression model for C, of the DARPA SUBOFF model as a cubic
function of «, f, and various interaction terms is shown by Eq. (10).
Likewise, the final regression models of C, and Cy for the scalene
ellipsoid are shown by Egs. (11) and (12), respectively.

Cz,, = (1.0025 x 107%) — (9.70794 x 10 )

— (423273 x 1077 B) + (4.74999 x 10 3 p)+
(7.51526 x 1078a?) — (4.42186 x 1077 %)
— (1.49511 x 107%a$%) — (1.63054 X 107%a%)

(10)

Cy,, = (656441 X 107°) — (7.89135 X 10~ *a)
+ (253750 x 1070 8) — (9.27757 x 10 %ap)—
(1.28967 x 107%a2) — (1.55608 x 10~°4?)
— (2.88818 x 10~ f%) — (3.68148 x 10~%a)

1D

Cy,, = (675017 x 1075) + (1.75589 x 10~°a)
— (2.93189 x 107*8) + (5.0057 x 10~ af)—
(1.25388 x 107%a2) + (1.31612 x 107°4?%)
— (6.9502 x 10772 ) + (1.68044 x 107°4%)

(12)

The pure quadratic terms, o®> and f2, as well as the second-order
interaction term, af, for both C, and Cy were found to be insignificant
to the models, however, were included to maintain term hierarchy. This
is a common practice associated with ANOVA and was done because
higher order terms, * and a§? for C, and #* and «?p for Cy were found
to be significant to the models. A residual analysis was performed on
these new regression models to determine if our three assumptions of
ANOVA were maintained through the significance testing. The normal
probability plot of C, for both the SUBOFF model and the scalene
ellipsoid are shown in Figs. 18 and 19 and the normal probability plot
of Cy for the ellipsoid is shown in Fig. 20, all of which validate the
normality assumption.

Figs. 21 and 22 show the residuals plotted against the predicted
values to determine whether the variance is constant and structure-
less. Based off these plots, it can be ascertained that all assumptions of
ANOVA have been validated. The third assumption is inherent to the
experimental procedure since all CFD runs were conducted separately,
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Fig. 18. DARPA SUBOFF — normal probability plot of C, Final (line reflects normal
distribution).
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Fig. 19. Ellipsoid — normal probability plot of C,, final (line reflects normal
distribution).
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Fig. 20. Ellipsoid — normal probability plot of C,, final. Line reflects normal
distribution.

it is intuitive that the run order has no effect on the residuals. There
were a few points on the two standard deviation limit in Figs. 21 and
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Fig. 21. Ellipsoid — residuals vs. predicted for C,, final (lines are 2 and 3 residual standard deviations). Left — DARPA SUBOFF, right — ellipsoid.
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Fig. 22. Ellipsoid — residuals vs. predicted for Cy, final. Lines are 2 and 3 residual
standard deviations.

Table 4

Regression model fit summary.
Model R, R e
Cz, 0.9996 0.9979
Cz,, 0.9995 0.9987
Cy,, 0.9791 0.7979

22 but are inconsequential to this analysis and are not considered out-
liers. With the residual analysis producing satisfactory statistical results
which validated that the ANOVA assumptions were not violated, the
regression models can confidently be assumed to adequately represent
the data in a statistical sense.

Regression model fit statistics were calculated for all three regres-
sion models and are shown in Table 4. The adjusted R> was used to
show the amount of reduction in the variability of the experimental
data points by using the regression models (Montgomery, 2017). Higher
values indicate a better representation of the experimental data by the
regression model. It is scaled to the number of regressors making it
an unbiased estimate which will not inflate with the number of model
terms, contrary to the unadjusted R

As it can be seen from Table 4, all three regression models represent
the experimental data quite well. A look at the predicted R? values
indicate the predictive capabilities of the regression model in the
experimental design region, accounting for the variability in predicting
new data points within the experimental domain (Montgomery, 2017).
The predicted R? values are calculated using a leave-one-out method
where a data point is excluded from the data set used to fit the model.
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Fig. 23. DARPA SUBOFF — C, regression model fit.

This model is then used to predict the data point left out and the error
is determined. This is done for all possible subsets and these errors
are added together. The values for C, for both the DARPA SUBOFF
model and the scalene ellipsoid model indicate that the regression
models, Eqgs. (10) and (11), account for over 99% of the variability
in predicting new observations. Eq. (12), however, only accounts for
approximately 80% of the variability in predicting new observations as
opposed to the 98% of the variability in the original experimental data.
The C, regression models for both geometries, Egs. (10) and (11), were
used to predict responses at a values both in the experimental domain
and outside of the experimental domain to determine the regression
model’s extrapolation capabilities. The parameter f was held constant
at 0° to perform a direct comparison to the published data and to the
CFD validation points from Section 5.2.2. The range of « was chosen
to be from —16° to 16° with 1° increments and the results of this
analysis have been plotted in Figs. 23 and 24. The same was done
for Eq. (12), however, « was held constant and f ranged from —16°
to 16° in increments of 1°, as shown in Fig. 25.

It should be reiterated that the experimental domain ranges from
—8° to 8°, meaning that Egs. (10) and (11) not only show exemplary
prediction performance within the experimental domain, but these
regression models can also be used outside of the experimental domain
and will extrapolate well up to approximately 13° for DARPA SUBOFF
and 16° for the scalene ellipsoid. Fig. 25 not only shows ambiguity
between the regression model fit and the CFD data, but also between
the regression model fit and the data published by Granlund (2009)
which was noted in Section 5.2.2. The regression model was not made
to fit the published data, however, it was made to fit the CFD data
obtained from simulating the design points in Table 2.
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Fig. 24. Ellipsoid — C, regression model fit.
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Fig. 25. Ellipsoid — C, regression model fit.

CZ Response Surface (Eq. 10)

Fig. 26. DARPA SUBOFF — C, response surface.

With that, it can be said that Eq. (12) does represent the CFD data to
some level of accuracy within the experimental domain but does not ex-
trapolate well and has opposite curvature to that of the CFD validation
points and to the published data beyond the extents of the experimental
domain. Response surfaces within the experimental region for the three
regression models, Egs. (10)-(12), were also created and are shown in
Figs. 26-28.

These response surfaces aid in the visualization of the effects on the
response from varying both « and g. The main purpose of this research
was to analyze and compare modeling procedures with their respective
experimental design spaces and not necessarily to perform a proper
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Cz Response Surface (Eq. 8)

Fig. 27. Ellipsoid — C, response surface.
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Fig. 28. Ellipsoid — C, response surface.
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Fig. 29. DARPA SUBOFF — C, Regression Model Fit at Different Values of 4.

fluid dynamic study so the results of the response surface will only
briefly be mentioned. Figs. 26 and 27 show that for both geometries,
B acts to parabolically augment the normal force at a angles greater
or less than zero as the total angle of incidence is increased. The side
force of the ellipsoid is shown to exhibit a similar behavior in Fig. 28.
This effect can be seen more in depth for C, of the SUBOFF model in
Fig. 29.

Comparing Figs. 26 and 27 shows that the normal force augmenta-
tion from § is less for the ellipsoid than it is for SUBOFF. Fig. 28 shows
that « has a very similar effect on the side force as # does on the normal
force. Further, for the ellipsoid, the rolling moment coefficient should
also be investigated for a proper fluid dynamic study.
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Table 5

Artificial neural network model fit summary.
Model Riips Riren
Cz, 0.9936 0.9932
Cz,, 0.9989 0.9992
Cy,, 0.9523 0.9553

6.2. Modern DoE results

A similar study was conducted on the ANNs that were fit to the
experimental data using the procedure outlined in Section 4.D. These
ANN'’s are shown by Egs. (13)-(15). Since the ANN structure de-
pends on activation functions, significance testing was not necessary
for model formulation.

Cy,, = 6.6140 — 34.240V; — 15.480V; + 2.6978V; + 10.571V, — 70.852V

13
V| = tanh(0.047591 + 0.003124a + 0.0032646/5)
V, = tanh(-0.057567 + 0.0060278a + 0.0077075)
V5 = tanh(—0.0006128 + 0.0098289« — 0.10423 )
V, = tanh(-0.011212 + 0.0081894a + 0.00902365)
Vs = tanh(0.0816 — 0.0012298« — 0.002114p)
Cz,, = 0.00941 + 0.000204V + 0.0045V, — 0.0064V;
— 0.00114V, +0.0412V5 14
V; = tanh(0.13663 + 0.26006a — 0.21853 )
V, = tanh(-0.47072 — 0.068779% — 0.12504 )
V3 = tanh(-0.29733 — 0.1275a — 0.10423p)
V, = tanh(-0.12726 — 0.191737a + 0.29288f)
Vs = tanh(—0.23350 — 0.03803« + 0.0035824 %)
Cy,, =0.002681 —0.01517V; — 0.000114V; + 0.0053V;
— 0.01572v, — 0.00101V5 (15)

¥, = tanh(—0.44783 + 0.10746a — 0.0607895)
V, = tanh(—0.56462 — 0.14723a — 0.156265)
V; = tanh(—0.82391 + 0.14583a — 0.0459965)
¥, = tanh(0.32526 — 0.057428a + 0.0548803)
V5 = tanh(0.78819 — 0.024872a + 0.14822p)

Equations (13)-(15) can be seen to have highly nonlinear combinations
of inflow conditions without giving much insight into which effects are
actually significant to the response. Looking at the fit statistics for each
ANN in Table 5 not only indicates that Egs. (13)-(15) represent the
experimental data quite well, but it also indicates that these ANN’s have
good prediction capabilities within the experimental region.

These results are further validated by Figs. 30-32 which use the
ANNSs, Egs. (13)-(15), to predict responses for the same input param-
eters as for Figs. 23-25. Fig. 30 verifies the model fit of Eq. (13) and
also shows that it can extrapolate outside of the experimental design
region quite well.

This ANN is very comparable in accuracy to its regression model
counterpart, Eq. (10). Figs. 31 and 32, however, show that although
the ANN’s fit with good accuracy compared with the experimental data
points, they cannot be extrapolated outside of the experimental domain.
Fig. 32 shows that the ANN for Cy actually has better accuracy than
its regression model counterpart within the experimental domain. The
ANN was modeled to fit the CFD simulation data at the design points
in Table 3, which it does quite well. The normal force augmenting
effects of f for SUBOFF can again be seen in the response surface
shown in Fig. 33. In comparison to the regression model counterpart
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Fig. 32. Ellipsoid — C, ANN model fit.

in Fig. 26, the ANN seems to over-exaggerate these effects for negative
angles. Fig. 34 shows that the normal force augmenting effects of g are
actually skewed towards one side which can be thought of as a slight
misprediction since the geometry is symmetric.

The response surfaces for Egs. (14) and (15) have also been plotted
in Figs. 35 and 36 for comparison purposes.

The response surface for C, of the ellipsoid shows that there is
also an over exaggeration of the normal force augmentation due to
p, skewed towards negative a values. The response surface for Cy
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Cz Response Surface (Eq. 10)

Fig. 33. DARPA SUBOFF — C, response surface, ANN.
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Fig. 34. DARPA SUBOFF — C, ANN model fit at different values of 4.
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Fig. 35. Ellipsoid — C, response surface, ANN.

shows that the ANN lacks symmetric behavior in both « and g which
is incorrect.

It is difficult to definitively make a statement pertaining to predic-
tions of Cy for both the regression model and the ANN, Egs. (12) and
(15), respectively. This is due to the issue of small numbers, with the
response, Cy, being an order of magnitude less than C, values and
only one order of magnitude larger than the residuals. It is believed
that there is not enough variance in the data for general trends to
be predicted which is somewhat alluded to by the lower predicted
R? value of the regression model, Eq. (12), in Table 4. Although the
ANN, Eq. (15), does a better job fitting the data and predicting the
experimental design points, noted by a high predicted R?, it essentially
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Cy Response Surface (Eq. 12)

a

Fig. 36. Ellipsoid — C, response surface, ANN.

interpolates the experimental design points and does not follow any
particular trend inherent to the underlying physics, as noted by Fig. 36.
The regression model, Eq. (12), on the other hand, exhibits symmetric
side force augmentation from «, as expected.

7. Conclusions

Throughout this work, two modeling techniques, nonlinear poly-
nomial regression modeling and artificial neural network modeling,
coupled with DoE techniques commonly used by each respective mod-
eling procedure, have been analyzed and compared. Both classical
and modern DoE were used to develop experimental design regions
consisting of different combinations of inflow conditions, namely « and
p. Nonlinear polynomial regression modeling and artificial neural net-
work modeling were employed to map these inputs to the normal force
and side force coefficients, C, and Cy, of the DARPA SUBOFF model
and the Virginia Tech scalene ellipsoid model. NavyFOAM was used
to perform CFD simulations on both geometries at the combinatorial
inflow conditions prescribed by each experimental design region.

Significance testing and model reduction produced the final nonlin-
ear polynomial regression model forms based upon the experimental
design region created using classical DoE. An ANN was also fit to the
CFD data produced by simulating points in the design space created
using modern DoE. Fit statistics were calculated which showed that
both the regression models and the ANNs fit the experimental data
quite well, however, the ANN outperformed the regression model for
Cy of the ellipsoid. Response surfaces were also generated to visualize
general response trends at combinatorial inflow conditions which indi-
cated that p had an augmenting effect on the normal force coefficient
for both geometries and « had an augmenting effect on the side force
coefficient of the ellipsoid.

Both modeling techniques were shown to each have their own ad-
vantages. Classical DoE coupled with ANOVA and regression modeling
adequately modeled the data with more rigorously spaced experimental
design points. Regression modeling also gave much more insight into
the physical flow phenomena, signifying which inflow parameters and
parameter interactions were insignificant to the regression model.

The ANN modeling technique was shown to be more accurate with
respect to the experimental design points. This is, in part, due to the
uniform distribution of the design points inherent to the UD and the
highly nonlinear structure of the ANN. These modern DoE methods and
modeling procedures associated with them are generally considered
interpolation methods, giving no insight to the underlying physics. For
this reason, they are typically used for purely deterministic problems
and more data points enhance their prediction capabilities.

In general, Classical DoE methodology coupled with ANOVA and
regression modeling is preferred by the author in cases where the num-
ber of design points is limited but this methodology may not be used
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unless the assumptions inherent to ANOVA are validated. Steps may
be taken to inject stochasticism in a typically deterministic procedure,
however, must be done so with care as to not over inflate the variance.
The added error must also be consistent with the physical phenomena
being simulated. In this case, wind tunnel testing error was added to the
DARPA SUBOFF data since the CFD is simulating and being compared
with wind/water tunnel testing data.

The artificial neural network has proven its capabilities in this paper
by exemplifying excellent accuracy with respect to the experimental
design points. Only 16 points were used to provide a more direct
comparison to classic DoE methodology, however, more points can be
added to the UD which would decrease the overall error between the
meta-model and the experimental data, thus increasing the prediction
accuracy over the experimental design space. If the number of exper-
imental design points is not limited, ANN’s may be used to produce
better accuracy of the design region through interpolation.

Application of these methods to incorporate the affects of ap-
pendages and rotational velocities are ongoing and will be the focus
of future publications.
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