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a b s t r a c t

A study on the loading of an oblique surface wave and a surface current field on a fixed vertical slender
cylinder in a 3D flow frame is illustrated in the present paper. The three dimensional expressions
describing the characteristics of the combined wave–current field in terms of mass, momentum and
energy flux conservation equations are formulated. The parameters before the interaction of the oblique
wave-free uniform current and current-free wave are used to formulate the kinematics of the flow field.
These expressions are also employed to formulate and calculate the loads imparted by the wave–current
combined flow on a bottom mounted slender vertical cylinder. In the present study two different
situations are assumed where current is uniform over depth and also acting over a layer of fluid that
extends from the free surface to a specified finite depth. In this paper we extend the approach considered
in Zaman and Baddour (2004) for the wave–current analysis. Morison et al. (1950) equation is deployed
for the load computations in all cases. The above models are utilized to compute the loads and moments
on a slender cylinder for a wave with varying range of incidence current field.

Crown Copyright & 2014 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Water motion in the sea is a mixture of wave and current of
different forms. The coexistence of waves and currents, their
interaction and consequently their loadings on any ocean struc-
tures such as gravity-based offshore structure, coastal connecting
bridges, coastal recreational establishments and other cylindrical
elements of ocean system intersecting the free surface are very
important issues for ocean engineers and related scientists to
study the stability of the ocean structures. In order to estimate
the performance of any ocean structure it is very important for
the designer to account for the loading effects resulting from the
interaction of a combined wave–current field with any ocean
structure.

Longuet-Higgins and Stewart (1960 and 1961), Whitham (1962)
derived theoretical expressions for the changes in sea level and
other linear and nonlinear characteristics of 2D wave trains by
considering momentum flux. Kemp and Simons (1982 and 1983)
described the wave–current interactions for following and reverse
current. Zaman and Togashi (1996) described their experimental
results for interaction of monochromatic wave with favorable and
adverse currents over a parabolic bottom structure. Zaman et al.
(2008) compared their theoretical and experimental results for
interacted wave–current field over a parabolic bottom structure.

Zaman et al. (2010) described the interaction of the wave with
collinear current. Hedges and Lee (1991) showed that an equiva-
lent uniform current could replace a depth varying current.

In the present model formulation it is assumed that the flow fields
are irrotational and inviscid. This allows the estimation of the flow
characteristics needed in a Morison et al. (1950) equation context.
Velocity potentials are adopted to express the oblique 3D flow fields
for: (i) a wave field in the absence of current; (ii) a current field in the
absence of wave and (iii) the wave–current combined field after the
interaction of both a current-free wave and a wave-free current. These
three distinct flow fields are first introduced for collinear flows in
Baddour and Song (1990a and 1990b) and extended to 3D in Zaman
and Baddour (2003). Zaman and Baddour (2004) showed a compar-
ison of the obtained results due to the present model to those obtained
using three other numerical models being used in the offshore
industry. These results are shown for a wide range of the normalized
current parameters.

For the computation of the parameters of the wave–current
field, three-dimensional expressions describing the characteristics
of the combined flow in terms of mass, momentum and energy
transport conservation equations and the given before-interaction
parameters of a wave-free uniform current and current-free wave
have been developed. These equations are efficient in describing
the combined wave–current field parameters. The relations
obtained in satisfying the conservation of mass, momentum,
energy flux and a dispersion relation generate a system of non-
linear equations that are solved to evaluate the sought-for wave–
current flow parameters, namely, the free surface wave height,

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/oceaneng

Ocean Engineering

http://dx.doi.org/10.1016/j.oceaneng.2014.02.005
0029-8018 Crown Copyright & 2014 Published by Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail address: Hasanat.Zaman@nrc-cnrc.gc.ca (M.H. Zaman).

Ocean Engineering 81 (2014) 1–11

www.sciencedirect.com/science/journal/00298018
www.elsevier.com/locate/oceaneng
http://dx.doi.org/10.1016/j.oceaneng.2014.02.005
http://dx.doi.org/10.1016/j.oceaneng.2014.02.005
http://dx.doi.org/10.1016/j.oceaneng.2014.02.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.oceaneng.2014.02.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.oceaneng.2014.02.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.oceaneng.2014.02.005&domain=pdf
mailto:Hasanat.Zaman@nrc-cnrc.gc.ca
http://dx.doi.org/10.1016/j.oceaneng.2014.02.005


wavelength, current-like term, mean water depth and combined
wave–current field direction for a non-collinear case after the
interaction. In other words due to the presence of the current the
location of the mean water level as well as other parameters of the
combined wave–current field will change after the interaction
such that to satisfy the conservation equation mentioned above.
The concept was generalized for oblique waves in Zaman and
Baddour (2002). The obtained model also encompasses the 2D
case and is applicable to a current-free or a wave-free flow with
appropriate boundary conditions.

In the present computation, we first calculate different para-
meters of the interacted wave–current field and then use those
parameters to calculate the loads imparted by the fluid on a
bottom mounted slender vertical cylinder representing a typical
element (foundation and substructure of any gravity-based struc-
ture (GBS) in the offshore is usually cylindrical) of an offshore
structure. For surface currents we also compute moments for
current along with loads about the bottom of the cylinder. In this
paper the comparisons of computed loads on a slender cylinder by
combined wave–current flow field and by superposing wave and
current field is shown and discussed. The load computation uses
Morison et al. (1950) equation with appropriate drag and mass
coefficients given by Iwagaki et al. (1983). See also for example
Chakrabarti (1987) and Sarpkaya and Isaacson (1981).

2. Properties of the 3D wave–current field

2.1. Theory

We assume that a current-free monochromatic plane surface
wave of wavelength Lo, wave height Ho (¼2ao) and period T
propagates over a water body of depth do in the direction given by

N
!w

and that independently there exists a horizontal uniform wave-

free current Uo over the same water depth do in the direction N
!c

.
When these two plane fields meet, see Fig. 1, a plane of

combined wave–current field develops in the direction N
!

, with
a new set of unknown parameters namely, wavelength L, wave
height H (¼2a), current parameter U and depth d. These unknown
parameters together with direction N

!
are required to be com-

puted from a system of conservation equations described in the
next sections. We first formulate the potential of a wave–current
field in a direction N

!
.

Fig. 1 shows the plan view of the computational domain with O
the origin of the 3D inertial frame. The x and y axes subtend the
horizontal plane, and z the vertical axis is perpendicular at O to

both x and y, and points towards the reader. The unit vectors N
!c

,

N
!w

and N
!

denote the directions of the wave-free current,
current-free wave and wave–current plane fields, respectively.

The unit vector S
!

is normal to N
!

.
Assuming inviscid and incompressible fluid flows we posit that

the result of the interaction between a current-free wave with a
wave-free current exists and the resulted field is here called a
wave–current flow field in the N

!
direction. A velocity potential

describes this field is given by the following expression to second
order in the surface elevation amplitude:

Φðx; y; z; tÞ ¼ U
!� x!þ a1

k sinh kd
ðs� U

!� k
!Þcosh kðdþzÞ sin ð k!� x!�stÞ

þ BH

k sinh 2kd
ðs� U

!� k
!Þcosh 2kðdþzÞ sin 2ð k!� x!�stÞ

þOðk3a3Þ ð1Þ

where BH ¼ ða2�ð1=2Þa21k coth kdÞ is a parameter related to wave

heights, U ¼ jU!ðUx;UyÞj is the current parameter and k¼ j k!ðkx;kyÞj
is the wave number whose related vector is normal to the surface
elevation front in the wave–current field and lies in the horizontal
x–y plane, s is the angular frequency, a the amplitude of the
surface elevation in the wave–current field, d the mean water

depth, t the time, x!ðx; yÞ the horizontal position vector of a point
in the field and z is the vertical axis measured vertically upward
from the still water level. The first and second order surface
elevation amplitudes are given by a1 and a2, respectively. Expand-
ing kinematic free surface boundary condition in a Taylor's series
about z¼0 the relationship between a1 and a2 can be obtained as:

a2 ¼ πa21=Lð1þð3=2Þ sinh2kdÞcoth kd: ð1aÞ

An interested reader can look into, Dean and Dalrymple (1992)
for the first order 2D collinear case, and Baddour and Song (1990b)
for the second and higher order collinear case.

The relation of the wave number and the angular frequency of
the combined wave–current field is given by the following
Doppler relation

s� U
!� k

!¼ sr ð2Þ
where the relative angular frequency in the above equation is
described by the following equation:

sr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gk tanh kd

p
ð3Þ

The dispersion relation for the combined wave–current field is
hence

ðs� U
!� k

!Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gk tanh kd

p
ð4Þ

The instantaneous free surface elevation η is to first order in
amplitude a expressed as:

η¼ a cos ð k!� x!�stÞþOða2Þ ð5Þ

2.2. Fluid kinematics

The particle velocity components in the x, y and z direction in
the combined wave–current field (Eqs. (6)–(8)), current-free wave
field (Eqs. (9)–(11)) and wave-free current field (Eqs. (12)–(14)) are
obtained as:

uwc
x ¼Uxþ

a1sr

sinh kd
kx
k
cosh kðdþzÞ cos ð k!� x!�stÞ

þ 2BHsr

sinh 2kd
kx
k
cosh 2kðdþzÞ cos 2ð k!� x!�stÞþOðk3a3Þ

ð6Þ

c
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Fig. 1. Wave-free current, current-free wave and wave–current fields relative
directions.
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uwc
y ¼Uyþ

a1sr

sinh kd
ky
k
cosh kðdþzÞ cos ð k!� x!�stÞ

þ 2BHsr

sinh 2kd
ky
k
cosh 2kðdþzÞ cos 2ð k!� x!�stÞþOðk3a3Þ ð7Þ

uwc
z ¼ a1sr

sinh kd
sinh kðdþzÞ sin ð k!� x!�stÞ

þ 2BHsr

sinh 2kd
sinh 2kðdþzÞ sin 2ð k!� x!�stÞþOðk3a3Þ ð8Þ

uw
x ¼ ao1s

sinh kodo

kox
ko

cosh koðdoþzÞ cos ð k!o � x!�stÞ

þ 2BoHs
sinh 2kodo

kox
ko

cosh 2koðdoþzÞ cos 2ð k!o � x!�stÞþOðko3ao3Þ ð9Þ

uw
y ¼ ao1s

sinh kodo

koy
ko

cosh koðdoþzÞ cos ð k!o � x!�stÞ

þ 2BoHs
sinh 2kodo

koy
ko

cosh 2koðdoþzÞ cos 2ð k!o � x!�stÞþOðko3ao3Þ

ð10Þ

uw
z ¼ ao1s

sinh kodo
sinh koðdoþzÞ sin ð k!o � x!�stÞ

þ 2BoHs
sinh 2kodo

sinh 2koðdoþzÞ sin 2ð k!o � x!�stÞþOðko3ao3Þ

ð11Þ

uc
x ¼Ux ð12Þ

uc
y ¼ Uy ð13Þ

uc
z ¼ 0 ð14Þ

where BoH ¼ ðao2�ð1=2Þa2o1ko coth kodoÞ, superscripts w, c and wc
in the above equations, stand for the quantities in the pre-
interaction current-free wave field, wave-free current field and
in the post-interaction wave–current field, respectively.

The corresponding acceleration components in the x, y and z
directions in the combined wave–current field (Eqs. (15)–(17)),
current-free wave field (Eqs. (18)–(20)) and wave-free current field
(Eqs. (21)–(23)) are evaluated as:

awc
x ¼ a1srs

sinh kd
kx
k
cosh kðdþzÞ sin ð k!� x!�stÞ

þ 4BHsrs
sinh 2kd

kx
k
cosh 2kðdþzÞ sin 2ð k!� x!�stÞþOðk3a3Þ ð15Þ

awc
y ¼ a1srs

sinh kd
ky
k
cosh kðdþzÞ sin ð k!� x!�stÞ

þ 4BHsrs
sinh 2kd

ky
k
cosh 2kðdþzÞ sin 2ð k!� x!�stÞþOðk3a3Þ ð16Þ

awc
z ¼ � a1srs

sinh kd
sinh kðdþzÞ cos ð k!� x!�stÞ

� 4BHsrs
sinh 2kd

sinh 2kðdþzÞ cos 2ð k!� x!�stÞþOðk3a3Þ ð17Þ

awx ¼ a1srsr

sinh kd
kx
k
cosh kðdþzÞ sin ð k!� x!�stÞ

þ4BHsrsr

sinh 2kd
kx
k
cosh 2kðdþzÞ sin 2ð k!� x!�stÞþOðk3a3Þ ð18Þ

awy ¼ a1srsr

sinh kd
ky
k
cosh kðdþzÞ sin ð k!� x!�stÞ

þ4BHsrsr

sinh 2kd
ky
k
cosh 2kðdþzÞ sin 2ð k!� x!�stÞþOðk3a3Þ ð19Þ

awz ¼ � a1srsr

sinh kd
sinh kðdþzÞ cos ð k!� x!�stÞ

�4BHsrsr

sinh 2kd
sinh 2kðdþzÞ cos 2ð k!� x!�stÞþOðk3a3Þ ð20Þ

acx ¼ 0 ð21Þ

acy ¼ 0 ð22Þ

acz ¼ 0 ð23Þ

The pressure distribution in the wave–current field to second
order is obtained from the dynamic free surface boundary condi-
tion as:

P ¼ �ρgz� ρga2k
2 sinh 2kd

cosh 2kðdþzÞ�1
� �

þρga
cosh kðdþzÞ

cosh kd
cos ð k!� x!�stÞ

þ 3ρga2k
2 sinh 2kd

cosh 2kðdþzÞ
sinh2kd

� �
� ρga2k
2 sinh 2kd

ð24Þ

2.3. Derivation of mass, momentum and energy flux equation

We can obtain the mass flux of the combined wave–current
field along the z� N

!
vertical plane through the following relation

up to the second order in amplitude a (for details see Zaman et al.
(2010))

Qwc ¼ 1
2π

Z 2π

0

Z η

�d
ΦxþΦy
� �

dzdθ ð25Þ

Q
!wc

¼ ρdU
!þρa2

2
k
!

C� U
!� k

!

k

0
@

1
Acoth kdþOðk3a3Þ ð26Þ

The corresponding momentum flux of the combined wave–
current field along the same z� N

!
plane is given as follows:

Mwc ¼ 1
2π

Z 2π

0

Z η

�d
Pðx; y; z; tÞþρΦ2

x ðx; y; z; tÞþρΦ2
yðx; y; z; tÞ

h i
dzdθ

ð27Þ

M
!wc

¼ 1
2
ρga2

1
2
þ 2kd
sinh 2kd

þ2U
!� k

!

sr

0
@

1
A

þ1
2
ρgd2 1þ2jU!j2

gd

 !
þOðk3a3Þ ð28Þ

In a similar fashion the net energy flux of the combined wave–
current field in the direction of flow in the z� N

!
plane is

expressed as:

Ewc
j ¼ 1

2π

Z 2π

0

Z η

�d
Pþρ

2
ðΦ2

x þΦ2
yþΦ2

z Þ
n o

þρgz
h i

Φjdzdθ

: j¼ x; y ð29Þ

E
!wc

¼ ρgU
!

2
a2þρU

!
d

2
U
!��� ���2þ gk

sinh 2kd
a2

� �
þρga2

4
1þ 2kd

sinh 2kd

� �

Crþ
U
!� k

!

k

2
4

3
5 k
!

k
þρga2

4sr
2U
!ðU!� k

!Þþ k
!

U
!��� ���2� �

þOðk3a3Þ ð30Þ

where k
!

=k¼ N
!

and U
!

=U ¼ N
!

.

2.4. Conservation equation and numerical method

The following two sets of conservation equations for mass,
momentum and energy flux in the N

!
and S

!
directions, respec-

tively are obtained when the time averages of the above flux of the
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current-free wave field, wave-free current field andwave–current field
are considered

Qw N
!w

� N
!þQc N

!c
� N

!¼Qwc N
!� N

! ð31Þ

MwN
!w

� N
!þMc N

!c
� N

!¼Mwc N
!� N

! ð32Þ

Ew N
!w

� N
!þEc N

!c
� N

!¼ Ewc N
!� N

! ð33Þ

Qw N
!w

� S
!þQc N

!c
� S

!¼ 0 ð34Þ

MwN
!w

� S
!þMc N

!c
� S

!¼ 0 ð35Þ

Ew N
!w

� S
!þEc N

!c
� S

!¼ 0 ð36Þ

The directional vectors are denoted by the following expres-
sion:

N
!w

¼ cos θw i
!þ sin θw j

! ð37Þ

N
!c

¼ cos θc i
!þ sin θc j

! ð38Þ

N
!¼ cos θ i

!þ sin θ j
! ð39Þ

S
!¼ � sin θ i

!þ cos θ j
! ð40Þ

and N
!w

and N
!c

are the given wave and current directions; N
!

is
the final direction of the combined wave–current field and S

!
is

the direction normal to N
!

. θw and θc are the given current-free
wave direction and wave-free current direction prior to interaction
and θ is the final direction of the combined wave–current field
after interaction with the x-horizontal axis.

The vector relationships mentioned in Eqs. (37)–(40) are
utilized in the derivation of the conservation of mass, momentum
and energy equations in the respective sections.

2.5. Variables declaration

The known and unknown parameters used in this formulation
are normalized and defined in the following way:

Normalized known parameters

A¼ a2o
d2o

; B¼ Uo

Co
; D¼ Lo

do
; θðnot normalizedÞ ð41Þ

Normalized unknown parameters

W ¼ d
do
; X ¼ U

Co
; Y2 ¼ L

Lo
; Z ¼ a2

d2o
; tan θ ð42Þ

2.6. Dispersion relation

The normalized dispersion relation (Eq. (4)) for the combined
wave–current field can be rewritten in the following form

Y2�X�Y tanhð2πW=DY2Þcothð2π=DÞ
h i1=2

¼ 0 ð43Þ

2.7. Conservation of mass

The mean rate of transfer of mass across a vertical plane due
to the current-free wave field, wave-free current field and com-
bined wave–current field can be written from Eq. (26) in the

following forms

Q
!w

¼ Qw N
!w

¼ ρa2o
2

Co cothðkodoÞ ko N
!w

ð44Þ

Q
!c

¼Qc N
!c

¼ ρdoUo N
!c

ð45Þ

Q
!wc

¼ Qwc N
!¼ ρdUN

!þρa2

2
cothðkdÞ C� U

!� k
!

k

0
@

1
AkN

! ð46Þ

Inserting Eqs. (44)–(46) into Eq. (31) and after normalization
the following equation would be obtained to express the con-
servation of mass in the N

!
direction

πA cothð2π=DÞ cos ðθw�θÞþDB cos ðθc�θÞ�DWX

�π
Z
Y

cothð2πW=DY2Þcothð2π=DÞ
h i1

2 ¼ 0 ð47Þ

From Eq. (34) the conservation of mass equation in the S
!

direction could be obtained in the following way

πA cothð2π=DÞ sin ðθw�θÞþDB sin ðθc�θÞ ¼ 0 ð48Þ

2.8. Conservation of momentum

The mean rate of transfer of momentum due to the current-free
wave field, wave-free current field and combined wave–current
field can be written using Eq. (28) in the following way

MwN
!w

¼ 1
2
ρga2o

1
2
þ 2kodo
sinhð2kodoÞ

� 	
þ1
2
ρgd2o

� �
N
!w

ð49Þ

Mc N
!c

¼ ρdo U
!

o

��� ���2N!c
ð50Þ

Mwc N
!¼ 1

2
ρga2

1
2
þ 2kd
sinhð2kdÞþ

2U
!� k

!

sr

0
@

1
Aþ1

2
ρgd2 1þ

2 U
!��� ���2
gd

0
B@

1
CA

2
64

3
75N!

ð51Þ

Substituting Eqs. (49)–(51) into Eq. (32) and after normal-
ization the conservation of the momentum equation in the N

!
direction would be obtained as follows:

1þA
1
2
þ 2π=D
sinhð2π=DÞcoshð2π=DÞ

� 	� �
cos ðθw�θÞþD

π
B2 tanhð2π=DÞ cos ðθc�θÞ

�W2�Z
1
2
þ 2πW=DY2

sinhð2πW=DY2Þcoshð2πW=DY2Þ

 !

�2
XZ
Y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanhð2π=DÞcothð2πW=DY2Þ

q
�DW

π
X2 tanhð2π=DÞ ¼ 0

ð52Þ

From Eq. (35) the normalized conservation of momentum
equation in the S

!
direction could be obtained in the following

form

1þA
1
2
þ 2π=D
sinhð2π=DÞcoshð2π=DÞ

� 	� �
sin ðθw�θÞ

þD
π
B2 tanhð2π=DÞ sin ðθc�θÞ ¼ 0 ð53Þ
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2.9. Conservation of energy

The mean rate of transfer of energy due to the current-free
wave field, wave-free current field and combined wave–current
field can be written using Eq. (30)

Ew N
!w

¼ ρga2o
4

Co 1þ 2kodo
sinhð2kodoÞ

� �
k
!

o

ko
N
!w

ð54Þ

Ec N
!c

¼
ρdo U

!��� ���2
2

U
!

N
!c

ð55Þ

Ewc N
!¼ ρgU

!

2
a2N
!þρU

!
d

2
U
!��� ���2þ gk

sinhð2kdÞa
2

� �
N
!

þρga2

4
1þ 2kd

sinhð2kdÞ

� �
Crþ

U
!� k

!

k

0
@

1
A

2
4

3
5 k
!

k
N
!

þρga2

4sr
2U
!ðU!� k

!Þþ k
!

U
!��� ���2� �

N
! ð56Þ

Introducing Eqs. (54)–(56) into Eq. (33) and after normalization
the conservation of the energy equation in the N

!
direction would

be obtained as:

A 1þ 2π=D
sinhð2π=DÞ cos ð2π=DÞ

� �
cos ðθw�θÞ

þD
π
tanhð2π=DÞB3 cos ðθc�θÞ�2ZX

�DW
π

tanhð2π=DÞ

X2þ2π2
Z

D2Y2

1

tanhð2π=DÞsinhð2πW=DY2Þcoshð2πW=DY2Þ

" #
X

�Z 1þ 2πW=DY2

sinhð2πW=DY2Þcoshð2πW=DY2Þ

" #

Y tanhð2πW=DY2Þcothð2π=DÞ
n o1=2

þX
� �

�3
X2Z
Y

tanhð2π=DÞcothð2πW=DY2Þ
h i1=2

¼ 0 ð57Þ

Finally, from Eq. (36) the normalized conservation of energy
equation in the S

!
direction could be obtained in the following

form

A 1þ 2π=D
sinhð2π=DÞ cos ð2π=DÞ

� �
sin ðθw�θÞ

þDB3

π
tanhð2π=DÞ sin ðθc�θÞ ¼ 0 ð58Þ

2.10. Forms of Morison's equations

The forms of Morison's equations (Morison et al., 1950) used in
the load computations are given by the following expressions
(Chakrabarti, 2005)

F
!

I ¼ CMAm
D u!
Dt

ð59Þ

F
!

D ¼ CDAd u! u!
��� ��� ð60Þ

where Am ¼ ðρπ=4Þd2, Ad ¼ ðρ=2Þd; CM and CD are inertia and drag
coefficients, ρ the fluid density and d is the diameter of the
cylinder. D=Dt ¼ ∂=∂tþu∂=∂xþv∂=∂yþw∂=∂z is the time derivative,
where ux, uy and uz are the particle velocity components of u! in
the x, y and z directions, respectively.

The coefficients CM and CD are obtained for a specific Keulegan–
Carpenter (KC) number from the curve proposed by Iwagaki et al.
(1983). The total load F

!
t is then obtained from the summation of

the inertia and the drag loads as:

F
!

t ¼ F
!

Iþ F
!

D ð61Þ
where F

!
I is the load due to inertia and F

!
D is the load due to drag.

The KC number is a measure of the importance of drag load
effect is defined by the following equations:

KC ¼ u!maxT=d ð62Þ
where T is the wave period and u!max is the maximum particle
velocity in the x, y and z directions, respectively.

3. Numerical simulation

3.1. Computational procedure

Eqs. (43), (47), (52), (57), (48), (53) and (58) are the required
two sets of equations for the evaluations of the properties of the
combined wave–current field that results when a current-free
wave and a wave-free current interact in a 3D flow field.

At the beginning of the computation the knowledge of the
direction of the combined wave–current field is necessary. An
iterative solution of any one of the three Eqs. (48), (53) or (58) will
give the direction of the combined wave–current field after the
interaction. Once the direction of the combined flow is estimated
then the system of the nonlinear Eqs. (43), (47), (52) and (57) can
be solved iteratively for the required variables W, X, Y and Z. When
the variables are known then the computations of the unknown
combined wave–current field parameters, a, k, d and U are
carried out.

A Newton iterative method has been utilized in this study. For a
given wave with parameters ao, ko, do and current velocity Uo, the
computation of the parameters a, k, d and U of the combined
wave–current field are carried out from the above equations with
a suitable initial guess of the unknowns necessary for iteration to
start. If it is assumed that θw ¼ θc ¼ θ¼ 0 then the above 3D
numerical model becomes a 2D wave–current model discussed
in Zaman and Baddour (2006) and Zaman et al. (2008).

3.2. Computational environment

Maple-12 (2008) release is used for the numerical simulations
in this work. Maple is a symbolic programming language using
Windows environment. It is used for implementing Newton's
algorithm for the numerical solution of the conservation equations
together with the dispersion relation. Maple's basic system, or
kernel, is sufficiently compact and efficient to be practical for use
in a shared environment or on a personal computer. One of the
advantages of Maple is that the user can see an equation in its
expanded mathematical format on the monitor while it is taking
part in the computations.

4. Implementation of 2D and 3D models for uniform current
extended from free surface to bottom

Two different numerical models have been used in this study
where 2D and 3D models are our proposed model and, S2D and
S3D are superposition models. In 2D and 3D models, the total load
is calculated from the kinematics of the combined wave–current
field. In this case Eqs. (6)–(8), (15)–(17), (43), (47), (52) and (57)
will predict the wave–current parameters and Eq. (61) would
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produce the total load exerted on the cylinder by the combined
wave–current field.

S2D and S3D are superposition models where the individual
components of the loads on the cylinder, due to a current-free
wave and a wave-free current, are separately evaluated and a
summation of both loads is then made. Eqs. (9)–(11), (18)–(20),
(43), (47), (52) and (57) would be used to compute the kinematics
of the current-free wave field and then Eq. (61) is deployed for the
computation of the load exerted by the current-free wave. Again
when the kinematics of the current field are known from Eqs.
(12)–(14), (21)–(23), (43), (47), (52) and (57) then Eq. (61) will give
the load due to the wave-free current field. An appropriate
summation is then made to obtain the total load. A description
of the computational methods is shown in Table 1.

4.1. Case study: Comparisons of loads by 2D and 3D models
with corresponding S2D and S3D models

As an example, the established models have been applied for
the computation of loads for a collinear or 2D case and for an
oblique or 3D case. For both examples, it is assumed that a
monochromatic current-free surface wave interacts with a nor-
malized wave-free uniform current Uo/Co varying over the range of
an opposite current to a range of following currents. The wave and
current parameters used in this study are shown in Table 2.
Subscript 0 denotes a value of a parameter before interaction.
The diameter of the cylinder is 35 cm in all computations.

In this comparison Table 2 is used for the computational
parameters. In the table Ho and Lo are the current-free wave
height and wavelength, respectively.

4.1.1. Load computation by the 2D and S2D models
Figs. 2 and 3 show simple comparison of the wave heights and

wavelengths, respectively obtained by the 2D model, experiments
by Zaman and Togashi (1996) and experiments by Thomas (1981).
However, in Fig. 3 the experimental data of wavelengths by Zaman
and Togashi is not available. In this case the predicted and
observed wave height H is normalized by the current-free wave
height, Ho and the predicted and observed wavelength L is
normalized by the current-free wavelength Lo. A good match of
the model results with experiments is observed.

Descriptions of maximum and minimum loads obtained by the
above two models for 2D collinear, non-oblique case are given in
Figs. 4 and 5, respectively. In the 2D case we have found that the

monochromatic wave height is of O(10�4 m) in 2D model when
normalized current parameter reaches the value Uo/Co¼0.572 for
the case of a wave with a following current. For the case when
wave and current are in the opposite direction the maximumwave
height is reached at Uo/Co¼�0.20. Maximum wave height is
reached due to wave blocking. At this point wave steepness

Table 1
Description of computational methods.

Models Kinematics Load computed

2D model For combined wave and current field For combined wave and current field
3D model

S2D model For current-free wave field For current-free wave field þ
S3D model For wave-free current field For wave-free current field

Table 2
Computational parameters.

Parameters 2D model 3D model

Uo/Co (Maximum opposing) �0.20 �0.20
Uo/Co (Maximum following) 0.572 1.359
Ho/Lo 0.01 0.01
do/Lo 2.0 2.0
Wave incident direction 01 101
Current incident direction 01 151
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Fig. 2. Comparison of the wave heights obtained from the 2D numerical model
with experiments.
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exceeds the allowable breaking value (�0.14) and the numerical
model is stopped.

These limits are shown in Figs. 4 and 5 by a black-circle. The
analyses and comparisons of loads for 2D non-oblique case are
made at these two points, that is, when Uo/Co¼0.572 and
Uo/Co¼�0.20. In the figures and tables Ft stands for the total load
due to combined wave–current field or due to wave-free current
field and Fw describes the load due to current-free wave field. In
Figs. 4 and 5, it may be observed that whenwaves and currents are
in the same direction, that is, Uo/Co is positive, then for the given,
before interaction wave and current conditions, the maximum
load obtained at Uo/Co¼0.572 by the S2D model is 17.79% larger
than that obtained by 2D model. In all cases, Eq. (63) is used to
compare the loads obtained by the combined wave–current model
(2D or 3D) to the loads that obtained by the relevant superposition
wave and current model (S2D or S3D) in %.

%¼ Rc�Rs

Rs
� 100 ð63Þ

where Rc is the load obtained by the combined wave–current
model and Rs is the relevant load obtained by the superposition
wave and current model.

Again for the minimum load shown in Fig. 5, S2D model yields
17.82% smaller load than 2D model. The above results are sum-
marized in Table 3. A plus sign or a minus sign in the bracket after
the percentage value means whether the respective model returns
a greater or a smaller load when compare to 2D model.

On the other hand when wave and current are in opposite
directions the maximum load obtained at Uo/Co¼�0.20 by S2D
model is 91.91% smaller than the load obtained by 2D model. Again
for the minimum load, S2D model yields 88.55% smaller load than
2D model. Table 4 captures the above findings.

The possibility of such behavior is that in S2D model, the wave
heights and the wavelengths are not affected by the interaction
since wave and current kinematics are computed separately using
before interaction parameters. That is no action of wave on current
and vice versa is accounted for. On the other hand, in 2D model,
the kinematics is computed from the combined wave–current field
where the interaction of wave and current is taken into account.
This produces a significant change in wave heights and wave-
lengths. It is evident that a following current reduces the wave
heights and increases the wavelengths. A substantial increase in
wave heights and decrease in wavelengths are observed in the
waveform for the case of an opposite current. So for the case of a
wave interacting with a reverse current, the increase in the wave
heights is considered to be responsible for the rapid increase of the
loads in a combined wave–current field.

It is important to mention here that when wave and current are
in the same direction the wave height reduces with current and
disappears when the current is strong enough to eliminate the
wave amplitude from the combined wave–current field. In the

absence of waves the model is still capable to compute the loading
imparted by the wave-free current field. The continuation of the
solid line (for 2D model) in the figures after the black-circle,
describes the loading due to wave-free current field in this case.

4.1.2. Load computation by the 3D and S3D models
For the oblique interaction cases the above mentioned wave

and current conditions are used (as shown in Table 2) and in
addition, it is assumed that the wave enters the computational
domain at an oblique angle of 101, while the current is at an angle
of 151 with the positive direction of the x-axis.

Figs. 6 and 7 demonstrate the comparison between the max-
imum and minimum loads obtained by the above two models in
the oblique 3D field. In the 3D oblique case, the analyses and
comparisons of loads are also made at two points, at Uo/Co¼1.359
when surface elevation is of O(10�4 m) for a wave with a following
current and at Uo/Co¼�0.20 when the wave is in opposite
direction of the current. In Figs. 6 and 7, it may be perceived that
whenwaves and currents are in the same direction, that is, Uo/Co is
positive, then for the given wave and current parameters the
maximum load obtained at Uo/Co¼1.359 by S3D model is 0.70%
smaller than that obtained by 3D model. Again for minimum load,

50

40

30

20

10

0

-10

-20

F t
  / 

F w

1.51.00.50.0-0.5

Uo /Co

 2D Model
 S2D Model

Surface undulation is of O(10-4m) at this 
point ( 572.0/ oo CU ) by 2D Model 

Maximum wave height is reached at this 
point ( 20.0/ oo CU ) by 2D Model 

Fig. 5. Normalized minimum exerted loads computed by 2D Model and S2D Model.

Table 3
Loads for 2D case: wave with following current.

Uo/Co Ft/Fwa %

2D model 0.572 5.614
S2D model 0.572 6.613 17.79 (þ)

Uo/Co Ft/Fwb %
2D model 0.572 5.614
S2D model 0.572 4.613 17.82 (�)

a Normalized maximum load.
b Normalized minimum load.

Table 4
Loads for 2D case: wave with opposing current.

Uo/Co Ft/Fwa %

2D model �0.20 10.029
S2D model �0.20 0.811 91.91 (�)

Uo/Co Ft/Fwb %
2D model �0.20 �10.389
S2D model �0.20 �1.188 88.55 (�)

a Normalized maximum load.
b Normalized minimum load.
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Fig. 6. Normalized maximum exerted loads computed by 3D Model and
S3D Model.
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S3D model yields 0.96% larger load than 3D model. Table 5
summarizes the above results.

On the other hand, when wave and current are in opposite
directions the maximum load obtained at Uo/Co¼�0.20 by S3D
model is 86.86% smaller load than 3D model. Again for minimum
load, S3D model yields 82.0% smaller load than 3D model. These
results are summarized in Table 6. For the 3D oblique case we have
not proceeded after Uo/Co¼1.359 since wave height at this current
becomes negligible.

5. Implementation of the 2D and 3D model for layered
surface current

In this study it is assumed that current is uniform and acting
over a layer of fluid that extends from the free surface to a
specified finite depth (Zaman and Baddour, 2005). The definition
sketch of the domain is shown in Fig. 8. In this computation, we
calculate the loads imparted by the fluid on a bottom mounted
slender vertical cylinder representing a typical element of an
offshore structure. The load computation uses Morison's equation
with appropriate drag and mass coefficients. See for example
Chakrabarti (1987, 2005) and Sarpkaya and Isaacson (1981).

5.1. Moment due to combined wave–current field on the slender
cylinder about the bottom

Moment is computed for the interaction of waves with uniform
currents of different layers acting down from the free surface, see
Fig. 8.

The following equation is utilized in this case to compute the
moment on the cylinder:

Mt ¼
Z η

�d
Δ F
!

t � ðdþzÞdz ð64Þ

where Δ F
!

t is the load/unit length of the cylinder and Mt is the
total moment due to the load about the bottom of the cylinder,
positive in the clockwise direction.

5.2. Computational procedure

In the present computations, the total loads are calculated from
the effects of the combined wave–current field. The first step is to
use Eqs. (6)–(23), (43), (47), (52) and (57) to predict the wave–
current parameters that define the wave–current field. The second
step in the computation is then to use Eq. (61) to produce the total
load exerted on the cylinder by the combined wave–current field
obtained in the first step. The third and the final step is to use
Eq. (64) (see also Table 10) to compute the moment about the
bottom of the cylinder.

5.3. Case study: Computations of loads and moments
by 2D and 3D models

5.3.1. Load and moment computation by the 2D model
for layered surface currents

As an example, the established model has been applied for the
computation of loads for a collinear or 2D case and for an oblique
or 3D case. For both examples, it is assumed that a monochromatic
current-free surface wave interacts with a normalized wave-free
uniform current Uo/Co varying over the range of an opposite
current to a range of following currents. It is also assumed that
the layered current is uniform and acting over a layer of fluid that
extends from the free surface to a specified finite depth. The extent
of this layered-current is defined by the ratio of the layered-
current depth, dU to the mean water depth, d and may be
described by the ratio dU/d, see Fig. 8. The wave and current
parameters used in this study are shown in Table 7. The diameter
of the cylinder is 35 cm in all computations. Here the total loads
and moments are calculated from the effects of the combined
wave–current field as proposed above.

Descriptions of maximum and minimum loads are obtained by
the above model for 2D collinear, non-oblique case are given in
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Fig. 7. Normalized minimum exerted loads computed by 3D Model and S3D Model.

Table 5
Loads for 3D case: wave with following current.

Uo/Co Ft/Fwa %

3D model 1.359 26.280
S3D model 1.359 26.085 0.700 (�)

Uo/Co Ft/Fwb %
3D model 1.359 23.856
S3D model 1.359 24.085 0.960 (þ)

a Normalized maximum load.
b Normalized minimum load.

Table 6
Loads for 3D case: wave with opposing current.

Uo/Co Ft/Fwa %

3D model �0.20 6.219
S3D model �0.20 0.816 86.86 (�)

Uo/Co Ft/Fwb %
3D model �0.20 �6.575
S3D model �0.20 �1.183 82.00 (�)

a Normalized maximum load.
b Normalized minimum load.

Fig. 8. Schematic view of 2D wave-free current and current-free wave field before
and after interaction.
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Figs. 9 and 10, respectively. In the 2D case we have found that the
monochromatic wave that we have used in our computation,
becomes O(10�4 m) (with respect to incident wave) when normal-
ized current parameter reaches the value Uo/Co¼0.572 for the case
of a wave with a following current.

For the case when wave and current are in opposite directions
the maximum wave height is reached at Uo/Co¼�0.2. Maximum
wave height is reached due to wave blocking. At this point wave
steepness exceeds the allowable breaking value (�0.14) and the
numerical model is stopped. These limits are shown in Figs. 9 and
10 by a vertical dotted line. The analyses and comparisons of loads
for 2D non-oblique case are again made at these two points, that
is, when Uo/Co¼0.572 and Uo/Co¼�0.20.

On the other hand when wave and current are in opposite
directions the maximum and minimum loads obtained at
Uo/Co¼�0.20. The differences among the maximum and mini-
mum moments computed by the 2D model for different layered
currents are shown in Figs. 13 and 14, respectively. Tables 8a and
8b show the results of the loads and moments when the layered
current is extended from the free surface to the bottom of the

domain. Table 8a shows the results of the waves with the
following currents while Table 8b represents the results of the
waves with the opposing currents.

In the figures Mt stands for the total moment due to combined
wave–current field or due to wave-free current field. Mw describe
the absolute moment due to the current-free wave field.

5.3.2. Load and moment computation by the 3D model for layered
surface currents

For the oblique interaction cases the above mentioned wave
and current conditions are used (as shown in Table 1) and in
addition, it is assumed that the wave enters the computational
domain at an oblique angle of 101, while the current is at an angle
of 151 with the positive direction of the x-axis. Figs. 11 and 12
demonstrate the comparison between the maximum and mini-
mum loads obtained by the above 3D model for different layered

Table 7
Computational parameters.

Parameters 2D model 3D model

Uo/Co (Maximum opposing) �0.20 �0.20
Uo/Co (Maximum following) 0.572 1.359
Ho/Lo 0.01 0.01
do/Lo 2.0 2.0
dU/d (Maximum) 1.0 1.0
dU/d (Minimum) 0.25 0.25
Wave incident direction 01 101
Current incident direction 01 151
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Fig. 9. Normalized maximum exerted loads computed by the 2D Model for
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Fig. 10. Normalized minimum exerted loads computed by the 2D Model for
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Table 8a
Loads for 2D case: waves with following currents.

Load Uo/Co Ft/Fw Mt/Mw

Maximum 0.572 5.614 �5.621
Minimum 0.572 5.614 �5.621

Table 8b
Loads for 2D case: waves with opposite currents.

Load Uo/Co Ft/Fw Mt/Mw

Maximum �0.20 10.029 �10.012
Minimum �0.20 �10.389 10.407
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Fig. 11. Normalized maximum exerted loads computed by the 3D Model for
different layered currents.
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current depth. The comparisons among maximum and minimum
moments computed by the 3D model for different layered currents
are shown in Fig. 15 and in Fig. 16, respectively. In the 3D oblique
case, the analyses of loads and moments are also made at two
points, at Uo/Co¼1.359 when surface elevation is of O(10�4 m) due
to a wave with a following current and at Uo/Co¼�0.20 when the
wave is in opposite direction of the current shown by vertical
dotted line in Figs. 11 and 12.

In the absence of wave(s) the model still compute the loading
imparted by the wave-free current field shown in the figures after
the vertical dotted line.

On the other hand, when wave and current are in opposite
directions the maximum and minimum loads and moments are
obtained at Uo/Co¼�0.20. For the 3D oblique case we have not
proceeded after Uo/Co¼1.359 since the wave height at this current
becomes O(10�4 m). Tables 9a,b represent the maximum and
minimum loads and moments for Uo/Co¼1.359 and Uo/Co¼�0.20.
In this case also, Tables 9a and 9b show the results of the loads and

moments when the layered current is extended from the free
surface to the bottom of the domain. Table 9a describes the results
of the waves with the following currents and Table 9b represents
the results of the waves with the opposing currents.

5.3.3. Moment computation by 2D model for layered
surface currents

Figs. 13 and 14, respectively, show the maximum and minimum
moment for 2D flow fields computed by Eq. (64) for the cases
when waves coexist with a surface current that is uniform and
acting over a layer of fluid that extends from the free surface to a
specified finite depth. The total moment due to combined wave
and layered current field Mt is normalized by the moment due to
wave only Mw. The moment arms ðMaÞ for various wave and
layered currents are computed by Eq. (64) shown in Table 10.

5.3.4. Moment computation by 3D model for layered
surface currents

Figs. 15 and 16 respectively show the maximum and minimum
moment for 3D flow fields computed by Eq. (64) for the cases
when waves coexist with a surface current that is uniform and
acting over a layer of fluid that extends from the free surface to a
specified finite depth. In the figures total moment due to com-
bined wave–current field Mt is normalized by the moment due to
wave Mw.

6. Conclusion

A 3D numerical model has been developed using three-
dimensional expressions describing the characteristics of the
combined wave–current field in terms of mass, momentum and
energy flux conservation equations. The obtained model is then
employed for the computation of the resulting combined
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Fig. 16. Normalized minimum moments computed by the 3D model for different
layered currents.

Table 9a
Loads for 3D case: waves with following currents.

Load Uo/Co Ft/Fw Mt/Mw

Maximum 1.359 26.280 �27.458
Minimum 1.359 23.856 �27.458
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M
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1.51.00.50.0-0.5

Uo /Co

 dU/d=1.0
 dU/d=0.75
 dU/d=0.5
 dU/d=0.25

Surface undulation is of order O(10-4m) at 
this line ( 572.0/ oo CU ) by 2D Model 

Maximum wave height is reached at this 
line ( 20.0/ oo CU ) by 2D Model 

Fig. 13. Normalized maximum moments computed by the 2D model for different
layered currents.

Table 9b
Loads for 3D case: waves with opposite currents.

Load Uo/Co Ft/Fw Mt/Mw

Maximum �0.20 6.219 �6.295
Minimum �0.20 �6.575 6.654
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wave–current field direction and kinematics and total loading on a
slender vertical cylinder in 2D and in 3D flow field. Eqs. (31)–(36)
produce the governing conservation equations when Eqs. (26),
(28) and (30) are used to formulate the unknown quantities for the
cases of wave, current and wave–current conditions. The obtained
equations are used for the numerical computation of the com-
bined field parameters. Maple-12 (2008) software environment is
used for the iterative solution of the nonlinear system of con-
servation equations and free-surface dispersion relation. In the
computations the direction of the combined wave–current field
and, after-interaction surface disturbance height H, its length L,
mean water depth d and current like parameter U are computed.
Examples for collinear 2D non-oblique waves and currents and an
oblique 3D case are shown. The present 2D and 3D combined
wave–current models are compared with S2D and S3D super-
position models. The comparisons show that superposition models
are less effective for the computations of loads especially when
waves and currents have opposite directions. Four different
categories of current field considering its extent from the free
surface to a certain water depth are also considered for load and
moment computation by the numerical 2D and 3D numerical
models. It is observed as expected that total load on the vertical
cylinder is directly proportional to dU/d ratios, i.e. when dU/d is
greater the loading on the cylinder is also larger. Similar phenom-
enon is observed for moments of different current depths from the
free surface. It is necessary to mention here that for the case of
wave with following current, even when waves disappear due to

strong current, the present model is still applicable for the
computation of loading due to current only. In another words this
3D (also 2D) model is capable to compute loads in the presence of
current only cases.
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Table 10
Moment arms ðMaÞ to depth (d) to compute moment.

Uo=Co Ma=d
ðdU=d¼ 1:0Þ

Ma=d
ðdU=d¼ 0:75Þ

Ma=d
ðdU=d¼ 0:50Þ

Ma=d
ðdU=d¼ 0:25Þ

�0.2 0.496772 0.621 0.745158 0.869352
�0.15 0.498201 0.622 0.747301 0.871852
�0.1 0.499203 0.624 0.748804 0.873605
0 0.5 0.5 0.5 0.5
0.1 0.5 0.624 0.75 0.875
0.15 0.5 0.625 0.75 0.875
0.2 0.5 0.625 0.75 0.875
0.25 0.5 0.625 0.75 0.875
0.3 0.5 0.625 0.75 0.875
0.35 0.5 0.625 0.75 0.875
0.4 0.5 0.625 0.75 0.875
0.5 0.5 0.625 0.75 0.875
0.6 0.5 0.625 0.75 0.875
0.7 0.5 0.625 0.75 0.875
0.8 0.5 0.625 0.75 0.875
0.9 0.5 0.625 0.75 0.875
1 0.5 0.625 0.75 0.875
1.1 0.5 0.625 0.75 0.875
1.2 0.5 0.625 0.75 0.875
1.3 0.5 0.625 0.75 0.875
1.359 0.5 0.625 0.75 0.875
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