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Structural health monitoring (SHM) can be beneficial in reducing epistemic uncertainties associated with
fatigue life prediction. For naval ships, available SHM data can be discretized into operational cells, each
referring to a certain navigation speed, heading angle, and sea condition. Cell-based approaches for
predicting future fatigue life can be applied if monitoring information is known for all cells. However,
available SHM data may populate some, but not all, potential cells. Moreover, since SHM data is only
available for a given set of operating conditions, potential changes in climate or operational profiles
cannot be accounted for. Accordingly, there is a need for an approach to predict structural responses in
unmonitored cells as a function of limited available monitoring data. This paper proposes a methodology
to predict the responses of naval vessels in unobserved cells by incorporating data from the limited
number of observed cells. The power spectral density (PSD) of the SHM data is fit using generalized
functions, based on sea wave spectra, and integrated into the prediction of the PSD for unobserved cells.
The proposed methodology enables both spectral and time-domain fatigue methods. The methodology is

illustrated on the SHM data from a high speed aluminum catamaran.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Structural health monitoring (SHM) has recently been in-
tegrated into the life-cycle performance assessment program of
the U.S. Navy (Sielski, 2012) in an effort to monitor the perfor-
mance of high-speed, high-performance naval vessels. In both civil
and naval structures, SHM data are useful for the detection and
diagnosis of damage at various locations throughout the structure
(Deco and Frangopol, 2015; Frangopol et al., 2008a, 2008b;
Herszberg et al., 2005; Okasha et al., 2011; Reed and Earls, 2015;
Vanik et al., 2000). SHM data can provide information regarding
the as-built condition of the structure, the actual loads acting on
the structure, and, if damage occurs, the current state of the
structure. Currently, research efforts have been made to in-
corporate SHM data into service life predictions of naval ships
(Soliman et al.,, 2015; Nichols et al., 2014).

Fatigue damage in aluminum naval vessels is a major concern.
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This is due to the high propagation rate of cracks in aluminum
details and the considerable cost and effort associated with the
repair process of damaged hulls. Deficiencies in fatigue damage
prediction models are addressed, in part, through the use of SHM
data. SHM directly contains considerations on the operational
loads the ship is subjected to, as well as the as-built characteristics
of the ship (Lynch and Loh, 2006); thus, epistemic uncertainties
associated with load effects can be significantly reduced. Perfor-
mance updating (e.g., using the Bayesian approach) has also been
employed to integrate SHM data into structural predictions of ship
performance parameters, such as vertical bending moments and
fatigue life estimates, to account for the stochastic nature of the
loads and structural materials (Okasha et al.,, 2010; Ling et al.,
2011; Soliman et al., 2016; Zarate et al., 2012; Zhu and Frangopol,
2013a, 2013b). The use of observed SHM data in future service life
predictions and management strategies dictates the assumption
that future loading conditions are similar to past ones (Soliman
et al., 2015). This leads to a distinct issue when operational profiles
change. The recent increase in the operational rate and required
service life of the vessels operated by the U.S. Navy exemplify
some of these potential changes. Additionally, global climate
change may increase the occurrence rate of intense storms
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(McCarthy, 2001) which, consequently, exemplifies another po-
tential change in the operational profile. As a result, vessels op-
erated in these future conditions can experience a larger number
of annual cycles and may be exposed to rougher and more extreme
seas. Thus, the assumption of past data being indicative of future
loads and loading sequences is not always valid.

The lifetime weighted sea method (Hughes, 1983) is used to
predict the lifetime load effects for potential future loading se-
quences. Potential operational conditions are categorized by ship
speed, heading angle, and sea state into cells with different
probabilities of occurrence based on location and ship routes.
These probabilities are developed based on wave scatter diagrams
and vary based on location (Hughes, 1983; Kahma et al., 2003). The
lifetime load effect is then computed as the summation of the load
effect in each cell, weighted by the probability of operating in that
cell. In these approaches, SHM information provides a measure of
fatigue load effects associated with each operational cell. Previous
efforts to include SHM data to reduce epistemic uncertainties in
fatigue life assessment rely heavily on past operational conditions
and not on future operational profiles. Future operational profiles
may include exposure to cells not previously recorded. This is di-
rectly addressed in this paper.

The lifetime structural response of the ship hull to all sea states,
heading angles, and speeds is a nonstationary random process.
However, when the observed data is discretized by the afore-
mentioned quantities into cells, observed SHM data in each cell
can be considered as a stationary process (Naess and Moan, 2012).
A full sampling of all potential cells during SHM observations is
unlikely due to time restrictions and weather conditions, espe-
cially if discrete monitoring practices are in place. An approach
which enables predicting the hull response in missing cells, with
the goal of developing the full set of SHM data that is necessary for
fatigue damage assessment, is still needed.

Data extrapolation techniques for ship response have been
developed around cell parameters (i.e., heading angle, ship speed,
and sea wave height) and the response parameter of interest (e.g.,
fatigue damage accumulation). Zhu (2014) proposed a linear in-
terpolation method for identifying the statistical descriptors of
vertical bending moments with respect to synthetic data gener-
ated using the Large Amplitude Motion Program. This synthetic
data does not include information on the as-built condition of the
ship or observed loads.

SHM data consists of the recorded time-history of an observed
response (e.g., strain and acceleration). The power spectral density
(PSD) function is a representation of the same signal in the fre-
quency domain. The PSD function defines the signal energy as a
function of the different frequency components. In the design
stage, the PSD is determined from the response amplitude op-
erator and the power spectra of the wave heights. An observed
PSD, however, can be directly calculated from the SHM data. The
observed PSD includes low frequency content, high frequency
content, and noise. By developing the PSD for the full set of cells
through the prediction method proposed herein, spectral based
methods for fatigue assessment can be directly implemented to
estimate the damage accumulation through Miner's law (Bendat,
1964; Dirlik, 1985; Lutes and Larsen, 1990). Moreover, time domain
predictions can be performed to estimate fatigue damage by
generating an instance of the random process, using cycling
counting methods to determine the stress range histogram, and
then applying Miner's rule. In both cases, the contributions of the
low frequency and high frequency response components to the
stress range distribution and subsequent fatigue assessment are
captured.

This paper presents a methodology for using the SHM data
recorded in observed operational cells to estimate the response in
unobserved cells. The approach integrates SHM data from sea

keeping trials in order to quantify and reduce uncertainties in the
prediction of structural response and can be applied to enhance
the accuracy of fatigue life estimation of ship details. The approach
is capable of capturing the low and high frequency response and
using it in fatigue damage predictions. Fitting functions for the
PSD of observed responses are proposed for both the low fre-
quency and high frequency content of the signal. The proposed
methodology fits the observed PSD with functions based on ac-
cepted forms for sea wave spectra and investigates their applic-
ability. The fitting is performed piece-wise: the low frequency
content is fitted first, then the high frequency content, and finally
summed together for the complete PSD. The estimated parameters
for unobserved cells are predicted and a synthetic power spectral
density function is developed. By developing the PSD for the full
set of cells, both frequency domain and time domain predictions
can be performed to estimate fatigue damage. The proposed
methodology is applied to the SHM data from the seakeeping trials
of the HSV-2 Swift, a 98 m (322 ft), high-speed, aluminum
catamaran.

2. Ship response

A naval vessel is exposed to various loading conditions
throughout its lifetime based on its operational theater and routes.
As a result, the time-history response of the ship is a nonstationary
random process for which the life-cycle performance is difficult to
assess. The nonstationary time-history can be divided into smaller,
stationary processes based on operating conditions such as wave
height, vessel speed, and heading angle. For a given operational
profile, the lifetime sustained loads and load effects can then be
built up with additional information on the wave scatter diagram
(Sikora et al., 1983). The lifetime weighted sea method uses the
response in each of the stationary cells to evaluate the long term
performance (Hughes, 1983).

Structural performance assessment can be performed in either
the time domain or the frequency domain. For frequency-based
methods, the structural time-history response is analyzed in the
frequency domain and represented with a response spectrum. The
response spectrum is a function of both the loading conditions
(i.e., the random sea waves) and the structural response. In this
paper, linear waves are considered and the loading conditions are
defined by the sea wave spectrum, Si(w), which accounts for the
development state of the wave, sea floor topology, fetch limita-
tions, and local currents and swells, among others (Komen et al.,
1984). The response spectrum, Sg(w), is found through the use of a
transfer function applied to the loading spectrum. In the case of
the structural response of naval vessels to linear waves, the re-
sponse amplitude operator Ru(w) is used as the linear transfer
function, and is different for each cell (Naess and Moan, 2012).
Accordingly, the response spectrum, Sg(w), is expressed as

Sr(w) = [ Ra() FS(w) 1)

Characterizing the sea surface and wave heights is a highly
investigated field with multiple analytical and experimentally
developed forms capable of representing the sea wave spectrum
Se(w). This paper considers two commonly used spectra: Pierson-
Moskowitz and Joint North Sea Wave Observation Project (JONS-
WAP). The Pierson-Moskowitz wave spectrum is for fully devel-
oped seas wherein the waves have come to equilibrium with the
wind (Pierson and Moskowitz, 1963). The single sided Pierson-
Moskowitz spectrum is

2 -4
sinio = Lo -3(5) ) o
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where « is 8.10 x 10~ 3, g is the gravitational constant (9.81 m/s?),
and €2 is the wave frequency. However, this spectrum fails to fully
capture the peak responses for waves that are not fully developed
or are fetch limited. The JONSWAP investigated the sea surface in
the North Sea, were the waves were either partially formed or
experienced wave-wave interactions (Hasselmann et al. 1973). The
resulting JONSWAP spectrum modifies the Pierson-Moskowitz
spectrum with a peak enhancement factor, y

g2 5 4 exp( B (cu_z_q); ]
“ @ 2Q%
Sjonswap(®) = ﬁexp( —_( 5) )y

4 3)
where
_JO7 if w<@
709 if wse 4)

The response amplitude operator, Rq(w), is developed on a cell-
by-cell basis as the response of the ship is dependent on the
heading angle, sea state, and vessel speed. R4(w) is the structural
response (i.e., stress, strain, or acceleration at a given point in the
structure) to a unit sinusoid at each frequency. Typically, linear
structural analysis methods are employed to determine the
stresses, used in fatigue life estimation, due to vertical bending
induced by waves. Linear strip theory can be used to quantify
vertical bending moment for head seas condition at zero speed,
which can be modified for different heading angles and speeds to
generate other Ry(w) functions (Sikora, 1998). However, in some
cells, nonlinear structural analysis may be required either due to
the presence of combined wave and slam response (Sikora et al.,
2002) or material and geometric nonlinearities. Through the ap-
plication of nonlinear quadratic strip theory, Jensen and Dogliani
(1996) demonstrated that the nonlinear contributions are at least
as important as the linear contributions. Commercial analysis tools
are available for the bending response to waves but are not readily
available to analyze whipping response (Tuitman, 2010).

Fatigue life is shown to be dependent on both the low fre-
quency response due to waves and the high frequency response
due to slamming. In this way, the lack of commercially available
tools represents a limitation in the application of lifetime weigh-
ted sea method for fatigue life estimation. This paper proposes the
use of a fitting function for the spectral response determined from
SHM data. The fitting functions are formulated around the sea
wave spectrum and quantified for each observed cell of the SHM in
order to predict the spectral response to unobserved cells.

Generalized variations of the Pierson-Moskowitz spectrum and
the JONSWAP spectrum are proposed in Egs. (5) and (6), respec-
tively, as potential fitting functions for the observed PSD functions
of the monitored structural detail

A _4
+ — —Baw
SPMgen( ) = " e

®)

Sionswapgen() = %exp( —%D‘*w-‘*)li [ 2022 ©
where A and B are fitting coefficients for the generalized Pierson-
Moskowitz function and C, D, and E are fitting coefficients for the
generalized JONSWAP function. The SHM data include the low and
high frequency content of the structural response that are essen-
tial to fatigue life predictions. Thus, the proposed fitting functions
are expanded to consider the low frequency and high frequency
response components. The complete fitting functions for the ob-
served single-sided PSD functions of the monitored structural
detail take the form
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where A;r and B;r are fitting coefficients for the low frequency
content and Ayr and By are fitting coefficients for the high fre-
quency content of the complete generalized Pierson-Moskowitz
function, ;MGEN; and G, D;r, and E;r are the fitting coefficients for
the low frequency content and Cyr, Dy, and Eyr are fitting coef-
ficients for the high frequency content of the complete generalized
JONSWAP function, Sjonswapcgy-

3. Data prediction

Missing data is a significant problem in SHM. Instrument fail-
ure, power interruptions, and erroneous measurements create
gaps in recorded data (Posenato et al., 2010). Additionally, discrete
monitoring practices inherently omit samples of data. The appli-
cation of data mining techniques, such as neural networks, have
been applied to missing data problems in SHM (Chang et al.,
2003). Neural networks map given input parameters to response
characteristics based on training information (Liu and Nayak,
2012). Since the performance and accuracy of neural networks lies
within the range of the training data, it is not widely applicable as
an extrapolation method (Lohninger, 1999). Alternatively, linear
response surfaces have been employed to extrapolate probabilistic
descriptors of the vertical bending moment response in Zhu
(2014). This paper proposes the use of a linear function for each of
the parameters in the PSD fitting functions as

¥ =pySH + pyV + p3 )

where SH is the sea wave height, V is the ship velocity, a is the
heading angle, and ¥; is element i of the set ¥ ={A;r, Bir, Aur, Bur,
Cir. Dir Eir, Chr, Dup, Enr)-

In order to investigate the effect of the form of the interpolation
function and the completeness of the dataset on response pre-
diction, a generic stress range dataset has been defined as shown
in Fig. 1. This dataset provides the stress range at several values of
ship speed and sea wave height for head seas (i.e. ®=0°). The data
is defined to reflect real situations where the stress range would
increase with both the wave height and the navigation speed.
Stress range data is fitted with a linear and quadratic fitting
functions. The effect of available data on the linear and quadratic
functions is shown in Fig. 1. Fig. 1(a) includes the fitted functions
for a linear fit for the generic set of stress range data with 100%
and 50% of the data. Alternatively, Fig. 1(b) depicts the quadratic
function fitted with 100%, and 50% of the data. The 50% data set
includes the lightly colored points and the 100% data set includes
both the lightly colored and black points. The quadratic function
fitted for 100% of the data predicts an increase in the stress range
as both sea wave height and speed increase. However, when only
50% of the data is used to develop the extrapolation function, low
stress range values are predicted at high sea wave heights and
speeds. The linear function extrapolates values more consistently
with the extrapolation functions developed from both 50% and
100% data predicting larger values of stress ranges at high sea
wave heights and speeds. For this application, the monotonic lin-
ear function provides a more robust extrapolation technique as
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Fig. 1. Fitted extrapolation functions for (a) linear and (b) quadratic fit forms using 100% of available data (all data points shown) and 50% of the available data (only the

lightly colored data points).

compared to higher order estimates. Dependencies of predicted
field quantities on wave height, heading angle, or ship speed could
be integrated into future work but are not included in this paper.

4. Fatigue life assessment

Fatigue has been identified as one of the major thrust area of
research for high-speed, high-performance naval vessels (Sielski
et al,, 2013). Fatigue damage on ships is a direct result of the
constantly fluctuating sea waves and the associated loading cycles.
Fatigue causes gradual accumulation of damage due to repeated
load variations. Damage indices are useful in quantifying the state
of fatigue damage of a ship as a function in time. However, if a
more detailed representation of the fatigue damage state is re-
quired, fracture mechanics models may be used. Fracture me-
chanics models define the development of fatigue cracks in three
stages: (1) crack initiation, (2) linear crack growth, and (3) the
nonlinear crack growth region. This paper focuses on the damage
indices and their formulation in both the frequency and time
domains.

The codified procedures widely implement the stress-life (S-N)
approach for fatigue assessment (DNV, 2010; Eurocode 9, 2009).
Stress-life curves relate stress ranges to the number of cycles to
failure for a given structural detail. Fatigue damage indices have
been introduced to quantify damage state of a given structural
detail as a function of the amount of cycles spent under a parti-
cular loading history. Miner's linear damage accumulation index is
an example of these indices which quantifies the state of damage
for the structural detail and is expressed as

n
D:Zﬁi

i=1

10)

where ng is the number of stress range bins in a stress histogram,
n; is the number of stress cycles in ith bin with stress range S;, and
N; is the number of cycles to failure under S;. For a linear S-N curve,
the number of cycles to failure is calculated as

_4A
Tosm amn

where A is the fatigue coefficient for the structural detail and m is
the slope of the S-N line in logarithmic scale. There is, however, no
widely accepted value at which the structural detail is known to
have failed.

In the time domain, the stress range histogram is found
through applying cycle counting methods to the SHM data; the
damage accumulation index is found directly through Eq. (10). For

the frequency domain, significant research has been developed to
estimate the damage accumulation index from the PSD function
(Benasciutti and Tovo, 2007). For stationary, Gaussian, narrow-
banded processes where the stress ranges follow a Rayleigh dis-
tribution, the stress range histogram can be expressed as (Bendat,
1964)

- {2 -£)

my \4mo '\ gmo 12)

where N is the number of cycles of stress range S in T seconds, and
m; is the ith moment of area of the PSD function

m, = fom 0"Spt(w)dw 13

where Sg* is the single sided response spectrum.

The solution found through the narrow-band approximation is
extremely conservative as it is assumed that each peak has a
corresponding trough with similar magnitude. In reality, the pro-
cess is a wide-band or bi-modal process with high frequency
waves super-imposed on low frequency waves; both contributing
significantly to the fatigue damage (Aalberts and Nieuwenhuijs,
2006; Mao et al., 2010).

An approach to estimate the stress range histogram for wide-
band Gaussian processes through extensive computational ana-
lyses was introduced by Dirlik (1985). The range mean histogram
for a broad-band process is (Dirlik, 1985)

N(S) = E[P}T-p(S) 14)

where

Dy z\ , Dz 2 2
Eexp( _6) + Fexp( _ﬁ) + Dgzexp( —7)

S) =
o(s) 2./, (15)
and
2(xm — 72 - 2
p2m=rt) 1oy -Di4D}
14,2 1-R
1.25(y — D3 — D,R
D;=1-D, - D, Q=M
D,
po r-Xw-Df  ,__S _m
" 1-y-D;-D} C2ymg NG
my |[my my
Xm=— [— E|P|= |—
m Mmo \ my [] my (16)

The resulting stress range histogram is shown to be comparable
to the histogram developed through the cycle counting method



A. Mondoro et al. / Ocean Engineering 125 (2016) 295-307 299

(Wirsching and Shehata, 1977). This paper integrates the three
methods for estimating the stress range histograms discussed in
this section: cycle-counting methods, Bendat's narrow-band ap-
proximations, and Dirlik's broad-band approximation. For a fur-
ther estimation of the long term fatigue cumulative damage factor,
the observed and predicted data can be coupled with the appro-
priate wave scatter diagram for the anticipated operational
location.

5. Generation of random processes

Analyzing SHM data through the PSD function and predicting it
in unobserved cells directly enables spectral based fatigue analysis
in all cells that may be encountered in future operations. However,
it also indirectly enables time domain methods; sample random
processes can be generated from the PSD function and may pro-
vide synthetic data for that cell. Time-history responses for un-
observed cells are then readily available to be used in cycling
counting methods.

The elevation of the sea surface is typically considered Gaussian
(Butler et al., 2009). However, for larger waves, the shape of the
wave deviates from a simple sinusoid and becomes cnoidal or
otherwise Non-Gaussian (Osborne, 2010). Even though waves of
higher severity may be nonlinear, a linear wave assumption is
often used in predicting extreme response (Ochi, 1978; Kim, 2008).
This paper assumes linear waves. An assumption that was re-
inforced during the data processing stages when the SHM data
was found to be Gaussian.

For low intensity operating conditions (i.e., low speeds and low
wave heights) the distribution of the recorded strains, stresses,
and other observed response of the ship is also Gaussian (Naess
and Moan, 2012). However, due to nonlinearities in material
properties, fluid-structure interaction, or extreme seas, the re-
sponse may become non-Gaussian (Jensen and Dogliani, 1996). An
initial investigation into the distribution of the SHM data is re-
quired before simulating the random process.

The spectral representation method is highly efficient and ea-
sily implemented for generating a realization of a Gaussian ran-
dom process (Shinozuka and Deodatis, 1991). For a stationary, er-
godic, Gaussian random process x(t), a realization of the random
process is generated as a summation of sinusoids (Shinozuka and
Deodatis, 1991) as follows:

p-1
X(t) =2 Y [Swho cos(wnt + Pn)
n=0

a7

where S,, is the single sided spectral density function, w, is n Aw,
Aw is wy[P, w, is the cutoff frequency, @,, is uniform random from
0 to 1. Since @&, are independently generated and P approaches oo,
the generated sample is Gaussian through the central limit theo-
rem. Reformulated to capitalize on the computational efficiency of
the Fast Fourier Transform, Eq. (17) can be rewritten as

x(pAt) = Re{ Mz_:l By, exp( i(nAw)(pAt))}

n=0 (18)

where Re indicates the real part,
At < 27/2wy, and

Bn = J2SuAw exp(idy) 19)

While this paper restricts the fatigue assessment to methods
based on damage indices, crack growth models provide alternative
means of assessment. The proposed methodology for developing
stress range histograms in unobserved cells can be directly in-
tegrated into linear crack growth models which are dependent on

M > 2P, p=0, 1, 2..M—1,

the stress range distributions. For nonlinear crack growth models,
the strain time-histories of the loadings are necessary (Hodapp
et al., 2015). The methodology proposed in this paper for pre-
dicting the PSD and generating a random process for unobserved
cells applies to strain observations as well. Thus, in future work,
the proposed methodology can be used to generate the synthetic
strain histories needed to facilitate nonlinear crack growth pre-
dictions in the unobserved cells.

6. Application

The data fitting and prediction procedures detailed in Sections
2-5 are summarized in Fig. 2 and are applied to the SHM data from
the HSV-2 Swift. The HSV-2 Swift is a 98 m long aluminum vessel
contracted by the U.S. Navy, designed by Revolution Design in
Tasmania, Australia, and built by Incat Tasmania (Brady et al.,
2004). The ship is equipped with a ride control system to stabilize
motion at high speeds by deploying a T-foil. The HSV-2 Swift
performed seakeeping trials and recorded SHM data and visual
observations.

The HSV-2 Swift was instrumented by strain gauges and

Observe SHM data

Time histories responses Cell Information:

Record strain data Heading Angle, a, Ship Speed,

V, and Sea Wave Height, SH

oV, SH

Convert strains to stresses, o(f)

Process Data
1. Calculate PSD of observed SHM data
2. Identify low and high frequency content
3. Fit observed data with either:

N
* Generalized Pierson-Moskowitz function, SPM gy , to

determine W={A4,, B, Ay, By} for all cells.
*+  Generalized JONSWAP function, Sjonswar,,, , to
determine WY={C,z, D, E;p, Cyp Dy Epyie} for all cells.

v
Prediction of Unobserved Response

1. Estimate P, ;, P, ;, and P;; through a least squares fitting using
observed values for @, V, and SH for all ¥, € Y.

2. Predict ¥, for unobserved cells ¥; = P, ; SH + P,; V' + P ;o for all
Y, € ¥ and develop PSD(w).

Generate time-history response

for unobserved cells, x(7)

x(1)

A 4
Fatigue Assessment

1. Narrow banded approximate method (PSD)
2. Wide banded approximate method (PSD)
3. Cycle counting methods (x(7))

Fig. 2. Logical scheme for the prediction of the structural response of a naval vessel
based on available SHM data.
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= ™
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\i

Fig. 3. Structural detail for T2-4 sensor at the keel-to-frame connection on the
HSV2-Swift (adapted from Brady et al., 2004).

sensors that were connected to the shipboard systems. The ship-
board systems, including the GPS and gyro systems, provided the
track, course, and speed of the ship during operation. The sensor
network was designed and implemented to capture the
(a) primary load, (b) stress concentration, (c) secondary loads, and
(d) ramp, crane, vehicle deck, helicopter deck, and gun mount
responses. The primary load response sensors included 16 strain
gauges located at optimal locations derived from finite element
analysis models (Brady et al., 2004). The observed data were re-
corded and compared with predetermined limits and design loads.
The stress concentration responses were determined through the
conversion of strain gauge data collected from the T2 sensor
group. The T2 sensors include 18 strain gauges installed at high-
stress areas indicated in the FEA analysis results with the goal of
providing stress data at fatigue critical details. The data collected
from the T2-4 sensor during the HSV2-Swift trials when the T-foil
was in a retracted state is used in this paper as the example of
SHM data. The T2-4 sensor is located on frame 26 along the keel
and is shown in Fig. 3. The data were collected at a sampling rate
of 100 Hz.

The HSV-2 Swift performed sea keeping trials in both calm and
rough waters by moving at varying speeds and directions. The
objective of the sea keeping trials was to observe the structural
response for potential operating conditions. The vessel was oper-
ated at sustained speeds ranging from 2 to 35 knots in an octa-
gonal pattern and recorded data for heading angles of 0°, 45°, 60°,
135°, 180°, 225¢°, 270°, 315°, and 360°. Data from the octagonal

(@
15

10

Stress Variation at T2-4 (MPa)
[w]

5 6 7 8 9 10

Time (min)

trials were stored with respect to their run number. Each run
corresponds to a single heading angle, a single wave height, and a
single speed (i.e., each run is a single cell). The data from each
available run is used as the SHM data for observed cells. The 57 of
the runs tested during the HSV-2 Swift seakeeping trials which
reported no technical difficulties and had the t-foil retracted are
included as the data set in this paper.

The strain gauge data are converted to stress data for each run
(Brady et al., 2004), then windowed and averaged to determine
the mean PSD of the cell. Typical runs lasted for around 30 min but
varied based on changes in wave height. Fig. 4(a) depicts a five
minute portion of the stress time history for Run 185 which is
associated with a heading angle of 0°, wave height of 3.3 m, and
ship speed of 15 knots. The PSD function for each separate window
of the time history of Run 185 are shown in Fig. 4(b), along with
the mean PSD. Similarly, the mean PSD function was evaluated for
all other runs.

The proposed fitting functions defined in Eqgs. (7) and (8) are
then fit to the mean PSD through the least squares fitting algo-
rithm available in MATLAB (MathWorks, 2013) for all runs. The
goodness of fit for select runs is presented in Table 1. The PSD of all
windows, the mean PSD, the fitted generalized Pierson-Moskowitz
function, and the fitted generalized JONSWAP function for Run 185
for the low frequency response and the high frequency response
are shown in Fig. 5(a) and (b), respectively. Fig. 5(c) and (d) depicts
the same for Run 160 with a heading angle of 315°, wave height of
2.6 m, and ship speed of 30 knots. Similar plots for all other runs
can be generated, but are omitted from this paper for brevity. The
estimated values for the fitted generalized Pierson-Moskowitz
function and the fitted generalized JONSWAP function are listed
for Runs 185 and 160 in Table 1.

The fitted generalized JONSWAP function outperforms the fit-
ted generalized Pierson-Moskowitz function as indicated in Ta-
ble 2 with regards to the coefficient of determination (R?) value for
both the low and high frequency components. The fitted gen-
eralized JONSWAP function takes the form of the JONSWAP spec-
trum, which was developed for seas with fetch limitations, non-
fully developed seas, and wave-wave interactions. This spectrum is
applicable to the SHM data used in this paper, as evident through
the trials in which some runs were denoted as confused and others
had recorded swell and wave directions with different periods and
heights. Additionally, the peak enhancement factor allows multi-
ple peaks in the response spectrum to be captured as seen in the
Fig. 5(b). Thus, the generalized JONSWAP function can include the

(b)
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&
=
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Fig. 4. Stress time history and PSD function for T2-4 sensor during Run 185.
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Table 1

Comparison of results for select runs with different heading angles, wave heights, and speeds.

Run Wave height (m) Speed (knots) Heading angle Coefficient of determination, R*
Low frequency High frequency
Fitted PSD - PM¢ey  Fitted PSD - JONSWAPGgy  Fitted PSD — PMcey ~ Fitted PSD - JONSWAPGey
185 33 15 0 0.942 0.945 0.873 0.907
160 2.6 30 315 0.779 0.857 0.771 0.792
127 1.5 35 45 0.907 0.930 0.568 0.670
120 19 20 90 0.825 0.932 0.541 0.764
129 13 35 135 0.562 0.673 0.506 0.786
189 2.7 15 180 0.892 0.971 0.860 0.893
(a) (b)
80 0.5
Low Frequencies Run 185 High Frequencies Run 185
. 0.4 )
~ 60 Windows ~ Windows
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3 3
Z S, i Shitons
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Fig. 5. Low Frequency and high frequency content of the stress time history for T2-4 sensor during Run 185 and Run 160 and the fitted generalized Pierson-Moskowitz

function and the fitted generalized JONSWAP function for the mean PSD.

Table 2
Fitting Parameters for the generalized Pierson-Moskovitz and generalized JONS-
WAP functions for Runs 185 and 160.

PMcen JONSWAPGen

Parameter Run 185 Run 160 Parameter Run 185 Run 160

Air 9.632 7.998 Cir 6.939 19.115

Bir 0.677 0.747 Dy 0.455 0.749

Aur 13.56 39.82 Eir 0.074 0.321

Bur 2.363 2416 Cur 8.983 29.522
Dyr 1.515 1.628
Enr 0.041 0.068

high energy content for a broader range of frequencies.

The proposed fitting functions more accurately fit the response
in the zero heading angle case than the non-zero case as shown in
Table 1. This can be attributed to the expected form of the linear
transfer function for this specific ship. RAOs are ship specific
functions. The variability of RAOs with heading angle and wave
period differ from vessel to vessel due to the ship length, structural
design, and ride characteristics, among others (Hughes, 1983; Chan
et al.,, 2002, Salvesen et al.,, 1970).

In order to investigate the applicability and accuracy of the
prediction methodology presented in this paper, observed data
from a high speed, high wave height run was omitted from the
initial data set; this removed run is referred to as the test point.
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Fig. 6. Linear extrapolation functions based on the available data (shown as black points) and the estimated value for the test point for the low frequency generalized
Pierson-Moskowitz function (a) A;r and (b) B, and the low frequency generalized JONSWAP function (c) G, (d) Dy, and (e) E;r for the test point equivalent to Run 185.

The remaining data, in each case, is referred to as the available
data set. Predicted values for the test point, which are generated
from using the available data set, are then compared with the
observed data to assess the prediction method. Synthetic test
point data is predicted for three cases of available data: (A) No
missing data (i.e., all 57 runs are used in the prediction procedure,
minus the test point data) (B) 30% missing data, and (C) 50%
missing data. For this example, the two test points are chosen: Run
185, where the wave height is 3.3 m, the vessel speed is 15 knots,
and the heading angle is 0°, and Run 160, with a wave height of
2.6 m, and ship speed of 30 knots and heading angle of 315°.

The mean PSD function calculated for each of the trials in the
available data set is fitted with the generalized fitting functions
and the fitting parameters are determined for both the low fre-
quency and the high frequency content. The linear surface is de-
veloped for the fitting parameters for the generalized JONSWAP
function and the generalized Pierson-Moskowitz function in-
dependently to predict the test point data. The available data in
Case A is shown in Fig. 6(a)-(e) for each of the low frequency fit-
ting parameters, along with the fitting surface for the parameter
and the predicted value for the parameter at the test point
equivalent to Run 185. Fig. 6(a)-(e) shows the change in the
parameters with respect to wave height and vessel speed for a 0°
heading angle. The predicted values for the parameters of the test
point are indicated with a star in Fig. 6(a)-(e). Similar plots for the
high frequency parameters are omitted from this paper for brevity,
as are the plots for Cases B and C, as well as all plots for the test
point equivalent to Run 160.

The estimated value for each of the parameters of the test point
are then used to develop the predicted PSD function for the test
point. The PSD function for the test point equivalent to Run 185 is
shown in Fig. 7(a) and (b) for Case A, Fig. 7(c) and (d) for Case B,
and Fig. 7(e) and (f) for Case C. Similar plots for the test point
equivalent to Run 160 can be shown but have been omitted for
brevity. In each case, the PSDs predicted from the generalized
JONSWAP function and the generalized Pierson-Moskowitz

function are compared to the observed data for the test point and
the mean square error is evaluated and listed in Table 3. The
generalized JONSWAP function more accurately predicts the lower
and overall PSD; however, the generalized Pierson-Moskowitz
function has a lower mean square error in the high frequencies.
Accordingly, if the high frequency response (i.e., whipping re-
sponse) is of interest, then the generalized Pierson-Moskowitz
function would provide better prediction of the behavior.

The predicted PSD for the test point is used to generate syn-
thetic time-history data by applying Eqs. (17-19). A distribution
fitting process is applied to the available SHM data to determine
the best fit for the stress distribution. Goodness of fit is judged for
the normal, lognormal, and Weibull distribution using the Kol-
mogorov-Smirnov test (Ang and Tang, 2007), as well as probability
plots. The statistical analysis of the stress observed at the T2-4
sensor during Runs 185 and 160 are shown in Fig. 8 for the
(a) Normal, (b) Lognormal, and (c) Weibull distributions. The
analysis shows that the normal distribution is the best fit for the
data and that further transformation of the signal is not needed.
The resulting synthetic time-history data for the T2-4 stress re-
sponse are shown for Cases A, B, and C in Fig. 9(a), (b), and (c),
respectively, for the test point equivalent to Run 185. In each plot,
the synthetic time histories generated from the generalized
JONSWAP function and the generalized Pierson-Moskowitz are
plotted against the observed data for Run 185.

In order to estimate the fatigue damage index in the cell, the
stress range histogram for the test point are generated through
applying the rain-flow counting method (Wirsching and Shehata
1997) to the synthetic time-history data for the T2-4 stress re-
sponse. Additionally, the spectral based methods for estimating
the stress range histogram for narrow band signals (Eq. 12) and
wide band processes (Eq. (14)) are applied. The resulting prob-
ability density functions (PDFs) of stress range are shown in Fig. 10
for Cases A, B, and C for the test point equivalent to Run 185. The
stress range histogram is estimated from the predicted PSD
through the narrow banded approach, broad banded approach,
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Fig. 7. Extrapolated power spectral density functions for (a) Case A, (b) Case B, and (c) Case C and the observed PSD for the test point equivalent to Run 185 including both

the low frequency and high frequency components.

and the cycle-counting method, as applied to the synthetic data
generated from the predicted PSD, for the generalized Pierson-
Moskowitz function and the generalized JONSWAP function. The
stress range PDF is calculated for the recorded SHM for the test
point equivalent to Run 185 and is shown as the observed curve in
each of the plots of Fig. 10.

In Cases A, B, and C, the mean and standard deviation of the
stress range are most accurately predicted through the cycle
counting method in the time domain for the synthetic data gen-
erated from the predicted PSD with the generalized Pierson-
Moskowitz fitting function, as shown in Table 4. For the test point
equivalent to Run 185, the mean stress ranges is predicted to

within 7% error for all cases of missing data when using the cycle-
counting methods as applied to the synthetic data generated from
the predicted Pierson-Moskowitz PSD; the standard deviation is
predicted within 8% error for all cases of missing data. The better
performance of the predicted Pierson-Moskowitz PSD can partially
be attributed to the contribution of the high frequency component
of the response to the stress range and subsequent fatigue da-
mage. Similarly, the stress range parameters are most accurately
predicted through the cycle counting method applied to the syn-
thetic data generated from the predicted PSD with the generalized
Pierson-Moskowitz fitting function for the test point equivalent to
Run 160, as indicated in Table 5.
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Table 3

Performance of predicted PSD functions as compared to the observed mean PSD for the equivalent test point.

Test point Case Mean square error
Predicted PSD - PMgen Predicted PSD — JONSWAPgen
Low frequencies High frequencies All frequencies Low frequencies High frequencies All frequencies
Run 185 A 0.000551 2.14E-07 0.000267 0.000571 3.40E-07 0.000276
B 0.000979 1.92E-07 0.000474 0.000551 2.06E-07 0.000267
C 0.000914 2.36E-07 0.000442 0.000690 2.66E-07 0.000334
Run 160 A 0.005816 1.785E-06 0.002815 0.003469 1.80E-06 0.001679
B 0.003968 1.786E-06 0.001921 0.003093 1.81E-06 0.001498
C 0.004849 1.791E-06 0.002347 0.004155 1.83E-06 0.002012
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Fig. 8. Fitting results for the stress distribution observed at the T2-4 sensor during
Runs 185 and 160 for the (a) Normal, (b) Lognormal, and (c) Weibull distributions.

Given the location of the T2-4 sensor on the aluminum HSV2-
Swift, the mean of the logarithm of fatigue coefficient, A for the
structural detail is 11.47 and the slope of the S-N line in logarithm
scale, m, is 3.37 (Collette and Incecik, 2006; Tveiten 1999). Annual
fatigue damage accumulation indices are calculated by assuming
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Fig. 9. Generated random processes based on the extrapolated PSD for (a) Case A,
(b) Case B, and (c) Case C that are the synthetic SHM data for the test point
equivalent to Run 185.

an operational rate of 2/3 (i.e., it is assumed that the ship is active
for a total time of 2/3 of a year) and Eqs. (10) and (11). Table 6 lists
the annual damage index predicted for the test point using the
synthetic data generated from the predicted PSD with the gen-
eralized Pierson-Moskowitz fitting function for Cases A, B, and C.
Values for the annual damage index estimated from the observed
SHM data for the test point are also included. The accuracy of the
approach is dependent on the available data as shown in Table 6
for Cases A, B and C for both for the test point equivalent to Run
185 and Run 160. The damage index predicted for the test point for
Case A is the most accurate, due to the larger set of available SHM
data. The larger set of available data has a reduced dependency on
a small number of individual runs which may have experienced
technical malfunctions.

7. Conclusion

This paper proposes a methodology to predict the structural
response of ship hulls based on SHM. The proposed approach es-
timates the structural response of ship hulls in operational
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Fig. 10. Stress range histograms for (a) Case A, (b) Case B, and (c) Case C estimated using cycling counting methods, the narrow band approximation, and the wide band
approximation for the test point equivalent to Run 185.

Table 4
Stress range parameters predicted for the test point equivalent to Run 185.
Data source Method Stress range (MPa)
Case A Case B Case C
Mean Standard Deviation Mean Standard Deviation Mean Standard Deviation
Observed data Cycle counting 1.020 0.593 1.020 0.593 1.020 0.593
Predicted PSD — JONSWAPgen Cycle counting 1.276 0.717 0.889 0.483 1.613 1.048
Broad Banded 0.648 0.448 0.538 0.359 0.910 0.689
Narrow Banded 7.239 3.778 6.964 3.640 6.598 3.447
Predicted PSD - PMcen Cycle Counting 0.945 0.558 1.069 0.627 1.034 0.641
Broad Banded 0.545 0.365 0.648 0.607 0.614 0.393

Narrow Banded 6.329 3.309 6.391 3.337 5.805 3.034
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Table 5

Stress range parameters predicted for the test point equivalent to Run 160 through time domain methods.

Test point Case Stress range (MPa)

Mean Standard deviation
Observed Predicted PSD — PMgen Predicted PSD — JONSWAPGen Observed Predicted PSD — PMgen Predicted PSD — JONSWAPgen
Run 160 A 0.772 1.014 1.034 0.607 0.641 0.689
B 0.772 0.931 1124 0.607 0.490 0.738
C 0.772 1.027 1.462 0.607 0.558 1.007

Table 6
Prediction of damage index for the test point.

Absolute value
of percent error

Test point Case Annual damage in- Annual damage In-
dex (observed dex (predicted

data) data®)
Run 185 A 0.0121 0.0116 41290
B 0.0121 0.0131 8.1302
C 0.0121 0.0141 16.2824
Run 160 A 0.0111 0.0176 58.3489
B 0.0111 0.0192 73.3313
C 0.0111 0.0189 70.6345

2 From cycle counting methods applied to predicted PSD — PMc¢g.

conditions which are not included in the SHM dataset. The SHM
data is discretized into stationary cells in terms of the vessel speed,
heading angle, and wave height. In general, SHM data populates
only a portion of the potential operating conditions for the vessel,
but includes essential information on the as-built condition of the
structure and the actual loads acting on the structure which can
reduce the epistemic uncertainty in the structural assessment of
the ship. However, in order to assess the long term hull perfor-
mance, structural response in all cells must be known. The pro-
posed methodology fits SHM data with generalized fitting func-
tions and then estimates the response in unobserved cells (i.e.,
operating conditions). The approach predicts the PSD and time
domain response in unobserved cells and is capable of developing
a full set of data to enable spectral and time based fatigue life
estimation approaches. The following conclusions are drawn:

® The proposed method can predict the structural response in an
unobserved cell. This allows essential information regarding the
as-built condition and the actual loads acting on the structure,
normally captured in the SHM data, to be integrated into the
fatigue life prediction.

® The PSD functions of ship SHM data can be fitted with the
generalized JONSWAP function and the generalized Pierson-
Moskowitz function proposed in this paper. The aforemen-
tioned functions fit the observed SHM data but are most ap-
plicable to the responses observed for a 0° heading angle for the
HSV-2 Swift. While this may vary from ship to ship, the con-
sideration of both the low frequency and high frequency when
predicting the PSD in unobserved cells is shown to be critical to
estimating the fatigue damage.

® By predicting the PSD functions for unobserved cells, both time
domain and spectral based methods can be employed to esti-
mate the fatigue damage accumulation. Additionally, the pro-
posed method distinguishes between the low and high fre-
quency content of the signal and predicts the PSD in unobserved
cells accordingly. The accuracy of the predicted values, however,
vary with the availability of data. The results from the illus-
trative example indicate that the proposed approach can pre-
dict, for head sea condition and speed 15 knots, the mean and
standard deviation of the stress range within 7% and 8% error,

respectively, using the data generated from the fitted Pierson-
Moskowitz PSD.

e With the observed SHM data for the stress response found to be
Gaussian, synthetic data for unobserved cells is generated by
simulating an instance of the random process from the pre-
dicted PSD. For the application reported in this paper, stress
time histories were used as the SHM data. If, however, strain
time histories were used, the synthetic strain data could further
be used in nonlinear fatigue crack growth analysis.

® Further research into the form of the surface used to predict the
unobserved data is necessary and should account for the var-
iations of vertical bending response with changes in wave
height, heading angle, and ship speed.
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