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A B S T R A C T

Design and re-analysis of offshore structures requires the joint estimation of extreme values for a set of
environmental variables, representing so-called long-term and short-term characteristics of the environment,
subject to sources of systematic variation including directionality and seasonality. Estimation is complicated
by numerous sources of uncertainty, typically including limited sample size and the specification of a number
of analysis parameters (such as thresholds for peaks over threshold analysis). In this work, we present a model
to estimate joint extremal characteristics of the ocean environment incorporating non-stationary marginal and
conditional extreme value analysis, and thorough uncertainty quantification, within a Bayesian framework.
The model is used to quantify the joint directional–seasonal structure of extremes waves, winds and currents
at a location in the Danish sector of the North Sea.

1. Introduction

Offshore oil and gas installations must be designed to withstand
environmental loads with annual probabilities of exceedance less than
some small value (e.g. 10−4) when lives are at risk or severe pollution
possible. Reliable estimation of rare load levels requires careful analy-
sis of the ocean environmental and structural loading. Environmental
data from hindcasts and measurements are typically available for time
periods of the order of decades. Extrapolation far beyond the sample
is therefore necessary to estimate appropriate design conditions. The
quantities of interest from a design perspective, generically called
‘‘responses’’, include maximum wave height, crest elevation or load
level. These random quantities are dependent on the environmental
conditions for a sea state, typically with length of the order of 30 min
to 3 h, summarised in terms of sea-state significant wave height, mean
wind speed, etc. Some ‘‘short-term’’ distributions (e.g. of maximum
wave height in a sea state) are well-studied, whereas others (e.g. of
maximum structural load in a sea state, for a given structure) need to
be estimated (e.g. using approximate load models or full time-domain
simulation of environmental loads in a given sea state).

Variables summarising sea states themselves also vary in time, but
more slowly than short-term variables; their variation also depends on
covariates such as wave direction, season, etc. In particular, extreme
values of responses tend to be associated with extreme values of sea
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state variables; it is therefore important to characterise the tails of the
distribution of sea state variables well. Statistical analysis of variables
summarising consecutive sea states is problematic because of temporal
dependence. Hence, it is typical to partition sea states into events,
referred to here as ‘‘statistical storms’’, corresponding to contiguous
intervals of time, and to then estimate (a) summary variables for whole
storms (which can be considered independent given covariates) and
(b) the local evolution of sea state variables within a storm given
its summary variables. Thus for example, a typical storm might be
summarised in terms of the storm peak significant wave height, storm
peak direction, season and spectral peak period, and the within-storm
evolution of these variables in time given storm peak variables. In the
current work, we also explicitly model storm duration.

To estimate the ‘‘long-term’’ distribution of response, convolution
of the ‘‘short-term’’ distribution of response given sea state with the
slowly-varying distribution of sea state variables is required. Extreme
value analysis on the metocean variables describing the storms and
the application of a storm model allows for consistent convolution
of the long-term distribution of sea state variables with a number of
different responses, using the same underlying model of the meto-
cean environment, either through numerical integration or Monte-Carlo
analysis.

An alternative way of estimating the long-term distribution of re-
sponse was presented by Tromans and Vanderschuren (1995). Their
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approach combines the multivariate hindcast or measurement time
series into a single response variable, for which the most probable
maximum and the ‘‘equivalent’’ number of waves 𝑁 are estimated
for each historical storm. The most probable maximum response of
historical storms are treated as random variables on which extreme
value analysis is performed. Convolution of the long-term distribution
of most probable maximum response with the distribution of maximum
response conditional on its most probable value then yields the long-
term distribution of response. The advantage of this method over direct
modelling of the metocean variables is that estimation of joint distri-
butions for the various metocean parameters is avoided. It is however
a requirement that the short-term distribution of response is ‘‘well-
behaved’’ with no sudden changes in response. Wave-in-deck loading
is a classic example where this is not the case. There is no loading
as long as the crests pass below the deck but very large loads appear
once crests start reaching the deck. The choice between extreme value
analysis of the metocean environment or the derived most probable
maximum response must therefore depend on the problem at hand.
The response based method may provide a simpler alternative to the
method we present here when the sought responses are well-behaved
and limited in number. When this is not the case, extreme value analysis
directly on the metocean environment is preferred.

The tail of the distribution of storm peak significant wave height
can be described using the generalised Pareto distribution (Pickands
1975). The wind and wave climate typically varies in severity with
direction because of variation in available fetch, and directional vari-
ation of wind severity. These directional variations are also often
associated with seasonal variations, and can be accounted for by fitting
extreme value models on a partition of the directional, seasonal or
directional–seasonal domain into bins, each of which is assumed to
be homogeneous. Specification of appropriate bin sizes is a trade-
off between the need for sufficient data per bin for model inference
and the requirement for approximate within-bin stationarity. Models
estimated using independent bin-by-bin analysis are more uncertain,
because of reduced sample size per bin. However, bin-by-bin models
are also potentially less biased than a model which ignores covariate
effects, because the model can accommodate variation of response with
covariates more adequately. Better recent approaches (e.g. Davison and
Smith 1990) introduce extreme value models incorporating covariates,
but avoiding the need for covariate binning. Jonathan et al. (2014b)
use extreme value models with direction, season, longitude and lati-
tude as covariates, imposing smoothness constraints on extreme value
parameter variation with covariates.

Storm summary variables (e.g. the storm peak significant wave
height and associated spectral peak period) exhibit dependence, as do
extreme values of these variables. Since the distribution of response
(e.g. maximum individual wave height) depends typically on multiple
storm summary variables, it is critical to be able to simulate accu-
rately from the joint tails of distributions of storm summary variables.
This requires a suitable model for joint extremes. There are many
potential choices, including traditionally those motivated by the work
of Longuet-Higgins (1952) and Haver (1987). The conditional extremes
model of Heffernan and Tawn (2004) is advantageous because it is suit-
able to describe a wider class of extremal dependence. The parameters
of the conditional extremes model can also be considered as smooth
functions of covariates (e.g. Jonathan et al. 2014a).

In estimating the value of response corresponding to an event with
annual probability of exceedance of 10−4 or smaller, conventionally
the effect of uncertainties in the underlying contributing models is
neglected. Historically, the mathematical and computational tools to
quantify the effect of model uncertainty on predictions of extreme
values were not available. The basis for design was a combination of ob-
servations, simple statistical and physical modelling approaches, safety
factors and good engineering judgement. Specifically, uncertainties
were not and could not be accommodated systematically and coher-
ently. Today the situation is different: the most prominent methodology

in the statistics literature to quantify uncertainty is Bayesian uncer-
tainty analysis (see e.g. Berger 1985). For example, our uncertainty
regarding (e.g.) wind-shear and bottom friction coefficients in a wave
hindcast simulator, or in estimating extreme value models from data,
can be captured within the statistical analysis, and reflected in es-
timates for extreme responses, as shown by Jones et al. (2018) in
related North Sea work. Bootstrap resampling (e.g. Davison and Hink-
ley 1997, Feld et al. 2019) provides an alternative frequentist approach
to uncertainty quantification.

Objectives

The objective of the current research is to establish a model for
the joint tails of peaks over threshold of storm summary variables,
non-stationary with respect to direction and season. The model uses
penalised B-spline representations of model parameters for marginal
and conditional extremes to accommodate non-stationarity. Bayesian
inference is used to estimate parameters, and to propagate sources
of uncertainty such as choices of thresholds for marginal and condi-
tional models. Simulation under the estimated models, incorporating
between-sea-state variability within a storm, and short-term variability
of responses within sea-state, permits estimation of joint long-term
distributions of responses.

Layout

The article is laid out as follows. Section 2 introduces the North Sea
data used to illustrate the model, and presents the ‘‘storm model’’ used
to summarise the characteristics of ocean storms, and outlines statis-
tical approaches to marginal and conditional extreme value analysis
adopted in this work. The procedure used for parameter estimation
using Bayesian inference is described in Section 3. Section 4 outlines
how simulation under the model is used to estimate distributions of
responses corresponding to very long return periods. Results from an
application to hindcast data from a location in the Danish sector of the
North Sea are presented in Section 5. Section 6 provides discussion and
conclusions.

Readers primarily interested in how the model is implemented,
might consider reading Section 4 first, before reading from Section 2
in order.

2. The model

In this section, we describe the ‘‘storm model’’ used to isolate so-
called ‘‘characteristic variables’’ 𝑋, namely important summary statis-
tics of a whole storm used for extreme value modelling. Characteristic
variables are isolated from the corresponding time-series of sea state
variables 𝑋̃(𝑠). For the application discussed in Section 5, characteristic
variables are listed in the third column of Table 1 below, and sea state
variables in the fourth column. We then describe a statistical model for
the joint distribution of characteristic variables, in particular of their
extreme values, varying with directional and seasonal covariates.

Our model provides a convenient framework for definition of sum-
mary characteristic variables for a storm which are modelled jointly
using extreme value analysis. Subsequently, return values for any re-
sponse of interest can be estimated by simulation or equivalent numer-
ical procedure. Our approach is of course by no means the only one
possible. There is a long history of statistical models for ocean storms,
and for the crest and wave height maxima they generate, with notable
early contributions from Borgman (1970) and Borgman (1973); the
introduction to Fedele and Arena (2010) provides a useful summary.
Some of these models seek relatively simple mathematical descrip-
tions which minimise computational burden. Some alternatives to our
equivalent storm model include the approach of Tromans and Vander-
schuren (1995), the equivalent triangular storm model (ETS, Boccotti
(2000)) and the equivalent power storm model (EPS, Arena and Pavone
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2006, Fedele and Arena 2010, Arena et al. 2014); Mackay and Jo-
hanning (2018a) provides a comparison of the approach of Tromans
and Vanderschuren (1995), ETS and EPS. As illustrated by e.g. Feld
et al. (2015), direct extreme value modelling of measured storm peak
𝐻𝑚0 and associated storm peak characteristics, together with match-
ing to historical storm trajectories and subsequent simulation, pro-
vides yet another approach rather similar to that used in the current
work. Brown et al. (2017) and Mackay and Johanning (2018b) also
adopt simulation-based approaches.

2.1. The storm model

The distribution of a response 𝑅 such as maximum individual wave
height in a storm 𝑆 depends on a set 𝑿̃(𝑠) of sea state variables for
sea state 𝑠 in storm 𝑆, such as significant wave height, peak period
and directional spreading. The long-term distribution of 𝑅 also depends
on the evolution of sea states within a particular storm, as well as the
joint variability of a set of storm characteristic variables. To estimate
the long-term distribution of 𝑅, we therefore need a hierarchy of
models to describe (a) 𝑅|𝑿̃(𝑠), the response given a single sea state 𝑠;
(b) {𝑿̃(𝑠)}𝑠∈𝑆 |𝑿, the sea state variables and covariates in time given
storm characteristic variables and covariates; and (c) 𝑿, the storm
characteristic variables and covariates.

The proposed storm model is an extension of the response-based
approach of Tromans and Vanderschuren (1995). They characterise
random independent storm events in terms of the most probable maxi-
mum response 𝑅𝑚𝑝𝑚 in the storm, and an associated equivalent number
of waves 𝑁 in the storm. Unlike Tromans and Vanderschuren (1995),
we characterise the storm magnitude, not by the most probable maxi-
mum response, but rather by the storm peak significant wave height
𝐻𝑚0,𝑝,𝑒𝑞 of an ‘‘equivalent storm’’ exhibiting a Gaussian bell-shaped
profile in time. Storm duration is then quantified using the standard
deviation 𝜎𝑒𝑞 of the Gaussian bell, expressed in multiples of the spectral
zero-crossing period 𝑇𝑍 . That is, 𝜎𝑒𝑞 expresses the ‘‘number of waves’’
in a storm; this parameter plays a similar role in our model to the pa-
rameter 𝑁 of Tromans and Vanderschuren (1995). The most probable
response in a storm is therefore a function of both 𝐻𝑚0,𝑝,𝑒𝑞 and 𝜎𝑒𝑞 . The
significant wave height at time 𝑡 relative to the storm peak (at 𝑡 = 0) in
the equivalent storm is hence given by

𝐻𝑚0(𝑡) = 𝐻𝑚0,𝑝,𝑒𝑞 exp

(

−1
2

(

𝑡
𝑇𝑍𝜎𝑒𝑞

)2
)

. (1)

For a given historical storm event, the characteristic variables 𝐻𝑚0,𝑝,𝑒𝑞
and 𝜎𝑒𝑞 are estimated by least-squares minimisation of the difference
between the most probable maximum response per sea state 𝑅𝑚𝑝𝑚(𝑠) for
the actual historical and equivalent storms. Fig. 1 shows two examples
of a true time history of hourly values of 𝐻𝑚0 (vertical green bars) and
equivalent storm representations (black lines). The Forristall (1978)
wave height distribution, with cumulative distribution function

𝑃 (𝐻 < ℎ) = 1 − exp

(

−
(

ℎ
0.681𝐻𝑚0

)2.126
)

(2)

for wave height 𝐻 with value ℎ, has been chosen here as a repre-
sentative short-term response distribution, but the estimated values
of 𝐻𝑚0,𝑝,𝑒𝑞 and 𝜎𝑒𝑞 are rather insensitive to the choice of short-term
distribution. The contribution to maximum short-term response from
sea states with 𝐻𝑚0 less than 75%–80% of storm peak 𝐻𝑚0 (𝐻𝑚0,𝑝) is
negligible and the ‘‘statistical storm may therefore be confined to the
sea states with 𝐻𝑚0 above 75%–80% of storm peak. The filled bars in
Fig. 1 mark the sea states of the storms confined to 𝐻𝑚0 ≥ 0.75𝐻𝑚0,𝑝.
The distribution of a response 𝑅 such as maximum individual wave
height is typically also dependent on other sea state variables 𝑋̃ such as
spectral peak period. We therefore include such variables in our storm
model, defining their characteristic variables 𝑋 as weighted averages,
with sea-state weights based on the sea state’s contribution to the most
probable response 𝑅𝑚𝑝𝑚(𝑆) within the whole storm, as follows. The set

Table 1
Overview of environmental variables. The last three listed variables marked with † are
covariates in extreme value models.

Description Unit Characteristic
variable, 𝑋

Sea state
variable, 𝑋̃

Significant wave height [m] 𝐻𝑚0,𝑝,𝑒𝑞 𝐻𝑚0
Storm duration parameter [−] 𝜎𝑒𝑞 –
Peak wave period [s] 𝑇𝑝 𝑇𝑃
Second moment wave period [s] 𝑇02 𝑇02
Directional spread at spectral peak [◦] 𝜎𝜃,𝑝 𝜎𝜃,𝑝
Residual water level [m] WL𝑟𝑒𝑠𝑖 WL𝑟𝑒𝑠𝑖
Residual current speed [m∕s] CS𝑟𝑒𝑠𝑖 CS𝑟𝑒𝑠𝑖
Mean wind speed [m∕s] WS WS
Air density [kg∕m3] 𝜌𝑎𝑖𝑟 𝜌𝑎𝑖𝑟
Peak wave direction† [◦N] PWD PWD
Residual current direction† [◦N] – CD𝑟𝑒𝑠𝑖
Mean wind direction† [◦N] – WD

{𝑤𝑠} of weight factors for each sea states 𝑠 ∈ 𝑆 are computed from the
contribution of individual sea states to the most probable maximum
response 𝑅𝑚𝑝𝑚(𝑆) for the complete storm as

𝑤𝑠 = 𝑐𝑤
(

𝑅𝑚𝑝𝑚(𝑆) − 𝑅𝑚𝑝𝑚(𝑆 ⧵ 𝑠)
)

, (3)

where 𝑅𝑚𝑝𝑚(𝑆) is the most probable maximum response in the storm
considering all sea states, 𝑅𝑚𝑝𝑚(𝑆 ⧵ 𝑠) is the most probable maximum
response when sea state 𝑠 is omitted from the storm, and 𝑐𝑤 is a
normalisation constant set to ensure ∑

𝑠∈𝑆 𝑤𝑠 = 1. Using these weights,
characteristic variables 𝑋 of the form

𝑋 =
∑

𝑠∈𝑆
𝑤𝑠𝑋̃(𝑠) (4)

are estimated and indicated using overbars (e.g. 𝑇𝑝, PWD, etc.) as
shown in Table 1 and illustrated as horizontal blue lines in Fig. 1. This
table gives the full set of characteristic and sea state variables being
modelled in the present application.

Jones et al. (2018) illustrate the estimation of a discrepancy model
for characteristic variables, combining data from a continuous hindcast
covering the entire spatial domain of interest with partial measure-
ments at selected locations. The discrepancy model is used to correct
for bias in hindcast values, and to estimate uncertainties associated
with prediction of measurements at arbitrary locations. We note, as
necessary, that we are careful to adjust variables (e.g. for 𝐻𝑚0 from
one-hour and three-hour sea-states) so that they can be fairly compared.

2.2. A statistical model for characteristic variables

Estimation of the statistical model for the joint distribution of
characteristic variables 𝑋, non-stationary with respect to characteristic
covariates, is performed in two stages, as in Ross et al. (2018). First
we independently estimate non-stationary marginal models for each
characteristic variable in turn. Then we estimate non-stationary con-
ditional extremes models describing the extremal dependence between
characteristic variables.

Marginal models
Marginal distributions are estimated for each characteristic vari-

ables 𝑋 (except for covariates, see Table 1). We assume that the
marginal probability distribution of 𝑋 can be expressed as the sum of
three parts. Upper and lower tails (defined as exceedances of upper and
lower quantile thresholds of the marginal distribution given covariates
with specified non-exceedance probabilities) are assumed to follow
generalised Pareto (GP) distributions. The remaining central ‘‘bulk’’ of
the distribution is described by a truncated gamma distribution. The
marginal cumulative distribution function for characteristic variable 𝑋
can thus be written
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Fig. 1. Two examples of time series from storms of hindcast 𝐻𝑚0 (vertical bars) and 𝑇02 (blue triangles), both with 1-hour time step resolution. Solid black lines show the Gaussian
bell shaped equivalent storm time series and horizontal blue lines show characteristic storm 𝑇02. The confined storms containing only sea states with 𝐻𝑚0 ≥ 0.75𝐻𝑚0,𝑝 are marked
by the filled green bars. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

𝐹𝑋 (𝑥|𝛼, 𝜇, 𝜉1, 𝜁1, 𝜉2, 𝜁2)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐹𝛤
(

𝜓1|𝛼, 𝜇
)

(

1 + 𝜉1
𝜁1
(𝜓1 − 𝑥)

)−1∕𝜉1
, 𝑥 ⩽ 𝜓1

𝐹𝛤 (𝑥|𝛼, 𝜇), 𝜓1 < 𝑥 ⩽ 𝜓2

1 −
(

1 − 𝐹𝛤
(

𝜓2|𝛼, 𝜇
))

(

1 + 𝜉2
𝜁2
(𝑥 − 𝜓2)

)−1∕𝜉2
, 𝑥 > 𝜓2.

(5)

Subscripts 1 and 2 refer to the lower and upper tails of the distribution
respectively and 𝐹𝛤 (𝑥|𝛼, 𝜇) to the cumulative distribution function of
the gamma distribution given by

𝐹𝛤 (𝑥|𝛼, 𝜇) = 1
𝛤 (𝛼)

𝛾
(

𝛼, 𝛼
𝜇
𝑥
)

, (6)

where 𝛤 (∙) is the complete gamma function and 𝛾(∙, ∙) the lower in-
complete gamma function. This particular model parameterisation was
motivated by the work of Cox and Reid (1987). Model parameters
defining the marginal distributions are therefore the gamma shape 𝛼
and mean 𝜇, the lower generalised Pareto shape 𝜉1 and scale 𝜁1, and the
corresponding upper tail shape 𝜉2 and scale 𝜁2. Note specifically that all
of these model parameters vary as a function of the relevant covariates;
thus for example the model for 𝐻𝑚0,𝑝,𝑒𝑞 is non-stationary with respect
to wave direction and season.

Thresholds 𝜓1 and 𝜓2 are also non-stationary with respect to co-
variates, and are set to quantiles of a gamma distribution fitted to the

complete sample. This fit is performed using Bayesian inference (see
Section 3), with sample log-likelihood

𝓁𝛤 =
𝑛𝑆
∑

𝑖=1

(

(𝛼𝑖 − 1) ln 𝑥𝑖 −
𝛼𝑖
𝜇𝑖
𝑥𝑖 − ln𝛤

(

𝛼𝑖
)

− 𝛼𝑖(ln𝜇𝑖 − ln 𝛼𝑖)
)

, (7)

where the additional index 𝑖 on parameters 𝛼 and 𝜇 indicates that these
quantities are evaluated at values of covariates corresponding to storm
𝑆𝑖 from a total of 𝑛𝑆 storms. Values 𝜓1 and 𝜓2 are quantiles of the fitted
distribution with fixed non-exceedance probabilities 𝜅1, 𝜅2 (> 𝜅1) such
that

𝜓1 = 𝐹−1
𝛤 (𝜅1|𝛼, 𝜇),

𝜓2 = 𝐹−1
𝛤 (𝜅2|𝛼, 𝜇).

(8)

Threshold uncertainty due to (a) imprecise estimation of 𝛼 and 𝜇
from the sample and (b) lack of knowledge of 𝜅1, 𝜅2 is included in
subsequent modelling by ensemble forecasting over a range of values
for 𝜅1 and 𝜅2, sampled at random from uniform distributions over pre-
set non-exceedance probability limits, specified following inspection of
diagnostic plots for upper and lower tail fits.

Full marginal inference is performed as follows. First 𝛼 and 𝜇
are estimated by fitting the gamma distribution as described above.
Then, for 𝜅1, 𝜅2 sampled randomly from prior distributions, lower and
upper generalised Pareto tails are fitted independently using Bayesian
inference to estimate the remaining parameters. Sample log-likelihoods
𝓁1 and 𝓁2 for the lower and upper intervals of the distribution following
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Equation (5) are therefore

𝓁1 =
∑

𝑖∶𝑥𝑖⩽𝜓1𝑖

(

ln 𝜅1 − ln 𝜁1𝑖 −
(

1 + 1
𝜉1𝑖

)

ln
(

1 +
𝜉1𝑖
𝜁1𝑖

(

𝜓1𝑖 − 𝑥𝑖
)

))

,

𝓁2 =
∑

𝑖∶𝑥𝑖>𝜓2𝑖

(

ln(1 − 𝜅2) − ln 𝜁2𝑖 −
(

1 + 1
𝜉2𝑖

)

ln
(

1 +
𝜉2𝑖
𝜁2𝑖

(

𝑥𝑖 − 𝜓2𝑖
)

))

.

(9)

For computational efficiency, we choose to infer these GP models in
terms of parameter set (𝜉, 𝜁∗) in place of (𝜉, 𝜁), where 𝜁∗ = 𝜁 (1 + 𝜉),
since maximum likelihood estimates of 𝜉 and 𝜁∗ are asymptotically
independent.

Rate of occurrence
The rate 𝜌 of occurrence of a storm event of any magnitude is

estimated using an approximation to the Poisson process, follow-
ing Chavez-Demoulin and Davison (2005) and Jonathan et al. (2014b).
Rate 𝜌 is non-stationary with respect to storm covariates. The sample
log-likelihood is

𝓁𝜌 =
𝑛𝐵
∑

𝑘=1
𝑔𝑘 ln

(

𝜌𝑘
)

− 𝛥
𝑛𝐵
∑

𝑘=1
𝜌𝑘, (10)

where we assume that the covariate domain has been partitioned into
𝑛𝐵 ‘‘bins’’ of (small) constant volume 𝛥 within which rate is stationary.
The set {𝑔𝑘}

𝑛𝐵
𝑘=1 is then the number of occurrences of storm events in

each bin, and {𝜌𝑘}
𝑛𝐵
𝑘=1 is the set of corresponding Poisson rates, where

𝜌𝑘 is evaluated at the values of covariate corresponding to bin 𝑘.

Conditional extremes models
The conditional extremes model of Heffernan and Tawn (2004) is

defined for variables on a standard marginal Laplace (or alternatively
Gumbel) scale. Therefore, having estimated marginal models for each
of a set 𝑿 = {𝑋𝑗} of characteristic variables 𝑋, non-stationary with
respect to the relevant covariates (see Table 1), we proceed to transform
the samples {𝑥𝑗𝑖}

𝑛𝑆
𝑖=1 for each 𝑋𝑗 independently to the corresponding

standard Laplace samples {𝑦𝑗𝑖}𝑛𝑖=1 for random variable 𝑌𝑗 following Keef
et al. (2013)

𝑦𝑗𝑖 =

{

ln(2𝐹𝑋𝑗 (𝑥𝑗𝑖)), 𝐹𝑋𝑗 (𝑥𝑗𝑖) ⩽ 0.5,
− ln(2(1 − 𝐹𝑋𝑗 (𝑥𝑗𝑖))), 𝐹𝑋𝑗 (𝑥𝑗𝑖) > 0.5.

(11)

On Laplace 𝑌 scale, the conditional extremes model takes the following
form for both positive and negative dependence
(

𝑌𝑗′ |𝑌𝑗 = 𝑦
)

= 𝑎𝑗′|𝑗,𝑖𝑦 + 𝑦
𝑏𝑗′ |𝑗,𝑖

(

𝑚𝑗′|𝑗,𝑖 + 𝑠𝑗′|𝑗,𝑖𝑍𝑗′|𝑗
)

, 𝑦 > 𝜈𝑗 (12)

for conditioning characteristic variable 𝑌𝑗 and conditioned character-
istic variable 𝑌𝑗′ , where 𝜈𝑗 is a high quantile of the marginal Laplace
distribution with non-exceedance probability 𝜆𝑗 . Parameters 𝑎 ∈ [−1, 1],
𝑏 ∈ (−∞, 1], 𝑚 ∈ R and 𝑠 > 0 are non-stationary with respect to
covariate, and must be estimated for each combination 𝑗, 𝑗′ of interest.
Here for example, 𝑎𝑗′|𝑗,𝑖 refers to the 𝑎 parameter for conditional
extremes modelling of characteristic variable 𝑌𝑗′ conditioned on large
values of characteristic variable 𝑌𝑗 , evaluated using covariates for storm
𝑆𝑖. 𝑍𝑗′|𝑗 is a residual random variable from an unknown distribution.
For parameter estimation purposes only, we assume that 𝑍𝑗′|𝑗 ∼ 𝑁(0, 1)
independently for each combination 𝑗, 𝑗′. Once we have estimated
parameters, we estimate the distribution of 𝑍𝑗′|𝑗 using the empirical
distribution of fit residuals {𝑟𝑗′𝑗𝑖}𝑖∶𝑦𝑗𝑖>𝜈𝑗

𝑟𝑗′𝑗𝑖 =
1

𝑠𝑗′|𝑗,𝑖

(

(

𝑦𝑗′𝑖 − 𝑎𝑗′|𝑗,𝑖𝑦𝑗𝑖
)

𝑦
−𝑏𝑗′ |𝑗,𝑖
𝑗𝑖 − 𝑚𝑗′|𝑗,𝑖

)

, (13)

where estimates from the posterior distribution of parameters (see
Section 3) are substituted for the parameters themselves on the right
hand side. Joint extremal dependencies {𝑌𝑗′1 , 𝑌𝑗′2 ,…}|{𝑌𝑗 = 𝑦} are
estimated by first fitting each of the pairwise dependencies {𝑌𝑗′𝑘}|{𝑌𝑗 =
𝑦}, 𝑘 = 1, 2,…, for some fixed choice of 𝜈𝑗 , and then ensuring that

the joint residual set {𝑟𝑗′1𝑗𝑖, 𝑟𝑗′2𝑗𝑖,…}𝑖∶𝑦𝑗𝑖>𝜈𝑗 is assembled and sampled
appropriately (i.e. using the same storm 𝑆𝑖 to assemble and sample
across residuals for models of different characteristic variables) to
retain the dependence between conditioned variates. The log-likelihood
for sample {𝑦𝑗𝑖, 𝑦𝑗′𝑖}𝑖∶𝑦𝑗𝑖>𝜈𝑗 is given by

𝓁𝐶𝐸,𝑗′|𝑗 = −
∑

𝑖∶𝑦𝑗𝑖>𝜈𝑗
(

𝜆𝑗
)

⎧

⎪

⎨

⎪

⎩

1
2
ln (2𝜋) + ln 𝑠𝑗′|𝑗,𝑖𝑦

𝑏𝑗′ |𝑗,𝑖
𝑗𝑖

+

(

𝑦𝑗′𝑖 −
(

𝑎𝑗′|𝑗,𝑖𝑦𝑗𝑖 + 𝑚𝑗′|𝑗,𝑖𝑦
𝑏𝑗′ |𝑗,𝑖
𝑗𝑖

))2

2
(

𝑠𝑗′|𝑗,𝑖𝑦
𝑏𝑗′ |𝑗,𝑖
𝑗𝑖

)2

⎫

⎪

⎬

⎪

⎭

. (14)

Threshold 𝜈𝑗 is set independently of the generalised Pareto threshold
𝜓2𝑗 . As for marginal thresholds, uncertainty in the specification of 𝜈𝑗 is
incorporated in inference by sampling non-exceedance probability 𝜆𝑗
from a uniform distribution over a pre-specified range of reasonable
threshold non-exceedance probabilities.

P-spline representation of covariate effects
A full description of the covariate representation used in this work

is given in Randell et al. (2016). This section provides a motivating
summary; readers are referred to Randell et al. (2016) for details.
Penalised B-splines (also referred to as P-splines) are used to describe
model parameter variation with covariate on some domain. The basic
idea of penalised B-splines, originally introduced by Eilers and Marx
(1996), is to use a basis set of B-splines with a moderately large number
of evenly-spaced knots to characterise an arbitrary function flexibly,
but then to control spline smoothness by penalising function roughness.
B-spline regression can be explained as follows. First we partition the
covariate domain into 𝑛′ equal intervals by specifying the position of
𝑛′ + 1 knots. B-spline basis functions {𝐵𝑘}

𝑛′+𝑞
𝑘=1 are then constructed

as a sequence of polynomial functions of degree 𝑞 connected at the
knots. Each 𝐵𝑘 is positive on an interval spanning 𝑞 + 2 knots (for
an aperiodic domain), and is zero elsewhere. Parameter estimation
using B-splines then consists of finding coefficients {𝛽𝑘}

𝑛′+𝑞
𝑘=1 such that

the value of any function 𝜂(𝜃) (or any of the model parameters and
thresholds from Eq. (5) and Eq. (12) in the present work) of interest at
covariate value 𝜃 is expressed as the linear combination

𝜂(𝜃) =
𝑛′+𝑞
∑

𝑘=1
𝛽𝑘𝐵𝑘(𝜃) = 𝑩(𝜃)𝜷, (15)

where 𝑩(𝜃) = {𝐵𝑘(𝜃)} and 𝐵𝑘(𝜃) is the value of the 𝑘th B-spline basis
at 𝜃, and 𝜷 = {𝛽𝑘} is the vector of spline coefficients. Roughness is
quantified in terms of the quadratic form

𝑛′+𝑞
∑

𝑘=1

𝑛′+𝑞
∑

𝑘′=1
𝛽𝑘𝐾𝑘𝑘′𝛽𝑘′ = 𝜷′𝐊𝜷, (16)

where 𝐊 = {𝐾𝑘𝑘′} is a penalty matrix. In the current work using
Bayesian inference, the quadratic form in Eq. (16) motivates the prior
specification for 𝜷, discussed in Section 3.2. The first order penalty
matrix for knots on an arbitrary covariate domain is given by:

𝐊 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 −1
−1 2 −1

⋱ ⋱ ⋱
−1 2 −1

−1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (17)

This penalty penalises differences between adjacent values of 𝛽𝑘. In the
current work we deal with periodic covariates such as direction and
season, for which periodic spline bases and penalties are required. In
periodic cases only 𝑞 spline basis functions are required, and the first
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Table 2
Overview of model parameters. The joint distribution of all parameters (other than
hyperparameters) is estimated by MCMC. Hyperparameters for 𝜅 are set by hand.
Hyperparameters for 𝜏2 are set to provide reasonable ranges of penalised B-spline
flexibility using a pre-analysis described in Section 3.

Description Symbol Type

Rate of occurrence 𝜌 Tensor-product B-spline
𝛤 shape 𝛼 Tensor-product B-spline
𝛤 mean 𝜇 Tensor-product B-spline
GP low tail threshold 𝜓1 Scalar
GP low tail threshold probability 𝜅1 Scalar hyper-parameter
GP low tail shape 𝜉1 Tensor-product B-spline
GP low tail scale 𝜁1 Tensor-product B-spline
GP high tail threshold 𝜓2 Scalar
GP high tail threshold probability 𝜅2 Scalar hyper-parameter
GP high tail shape 𝜉2 Tensor-product B-spline
GP high tail scale 𝜁2 Tensor-product B-spline
CE threshold 𝜈 Scalar
CE threshold probability 𝜆 Scalar hyper-parameter
CE 𝑎 parameter 𝑎 Tensor-product B-spline
CE 𝑏 parameter 𝑏 Tensor-product B-spline
CE mean 𝑚 Tensor-product B-spline
CE standard deviation 𝑠 Tensor-product B-spline
Roughness coefficient 𝜏2 Scalar hyper-parameter

order penalty matrix becomes

𝐊 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2 −1 ⋯ −1
−1 2 −1

−1 2 −1
⋮ ⋱ ⋱ ⋱

−1 2 −1
−1 −1 2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (18)

B-splines can be extended to higher dimensions as tensor-product B-
splines (see e.g. Eilers and Marx (2003)). A tensor-product B-spline in
two dimensions is illustrated in Fig. 2, for estimation of directional–
seasonal quantile 𝜓 for 𝐻𝑚0,𝑝,𝑒𝑞 , for different choices of directional
and seasonal roughness coefficients 𝜏2. Coloured shapes underlying the
surface are individual tensor-product B-spline basis functions scaled by
the respective coefficients. The total number of 𝛽 coefficients to be
estimated in two dimensions is given by the product of the number
of spline coefficients in each of the one-dimensional margins. Different
numbers of knots, spline orders and roughness penalties may be used
on different margins.

Note that inference described in the next section exploits gener-
alised linear array models (GLAMs; Currie et al. 2006, Eilers et al.
2006) permitting computationally-efficient analysis of tensor products
of splines; see Randell et al. 2016) for further information. A full list
of model parameters estimated in terms of tensor-product B-splines is
given in Table 2.

Covariate transformation
We also note that individual directional and seasonal covariates

are not typically uniformly distributed on their marginal domains. For
this reason, is it helpful to transform covariates marginally follow-
ing Jonathan et al. (2013), so that the original set of covariate values
{𝜃𝑖}

𝑛𝑆
𝑖=1 is related to the transformed set {𝜃∗𝑖 } by

𝜃∗𝑖 = 360
𝑛𝑆

(

𝑟(𝜃𝑖) − 1
)

, (19)

where 𝑟(𝜃𝑖) is the rank of 𝜃𝑖 in the set of covariates, namely the
position of 𝜃𝑖 in the set of covariate values sorted in ascending order.
The transformed set is uniformly distributed on [0, 360) by design,
stabilising parameter estimation on the transformed scale. Interpreted
on the original scale, the transformation imposes greater smoothness
for values of covariate which are less frequently observed in the sample,
and allows greater parameter flexibility for more frequently observed
values, in a natural way according to the rate of occurrence of events
for different covariate values.

3. Inference

A posterior estimate for the joint distribution of all marginal (gamma
and GP) and conditional extremes model parameters, as described in
Section 2.2 and Table 2, is estimated using Bayesian inference. Likeli-
hoods for all models, and a description of the spline parameterisation
used, is provided in Section 2. Here, we provide a brief discussion of
prior specification and the inference procedure.

3.1. Distribution for hyper-parameters

Distributions for marginal threshold non-exceedance probabilities
𝜅1, 𝜅2 are set by inspection of GP tail diagnostic plots. Conditional ex-
tremes non-exceedance probabilities {𝜆𝑗} are similarly set by inspection
of conditional extremes model diagnostics; we do not learn about these
hyper-parameters during inference.

Specification of a reasonable distribution for B-spline roughness
coefficients 𝜏2 is challenging. For example, inference for each of the
gamma and GP marginal directional-seasonal models involves estima-
tion of two parameters, each of which has a roughness coefficient
in direction and season. Thus, specifically, the GP high tail marginal
model requires specification of a joint prior for four roughness coef-
ficients 𝜏2𝜉𝜃 , 𝜏

2
𝜉𝜙, 𝜏2𝜁∗𝜃 and 𝜏2𝜁∗𝜙, where 𝜃 and 𝜙 refer to direction and

season respectively. We estimate reasonable combinations for these
hyper-parameters using a cross-validation scheme. The intention of the
scheme is to identify combinations of 𝜏2 which yield good predictive
performance of any model of interest. We partition the sample into 𝑛𝐶𝑉
blocks, withhold one block and estimate the model for the remaining
blocks using Bayesian inference, for specified choices of 𝜏2 parameters.
Then we evaluate the predictive log-likelihood using the withheld
block: large log-likelihood values indicate good predictive performance.
We repeat this procedure until each block has been withheld exactly
once, and use the sum of predictive log-likelihoods over all blocks as
an estimate of the relative predictive performance for different choices
of 𝜏2. We exponentiate the predictive log-likelihood, and normalise its
integral to unity over the four-dimensional domain of 𝜏2, using the
resulting empirical density as a prior for the joint distribution of 𝜏2𝜉𝜃 ,
𝜏2𝜉𝜙, 𝜏2𝜁∗𝜃 and 𝜏2𝜁∗𝜙. Since this scheme is computationally slow for four or
more 𝜏2s, we use an approximate calculation which proceeds as follows.
First, (a) we use the cross-validation scheme to estimate a common 𝜏2

across all four margins. Then (b) we use the cross-validation scheme
to find an optimal ratio of 𝜏2𝜉 ∕𝜏

2
𝜁∗ for both direction and season starting

from the solution to (a). Then finally (c) use the cross-validation scheme
to evaluate the predictive performance on a two-dimensional 𝜏2𝜉𝜃 × 𝜏

2
𝜉𝜙

domain with fixed (optimal) 𝜏2𝜉 ∕𝜏
2
𝜁∗ ratio. Fig. 3 shows the variation of

predictive log-likelihood with 𝜏2𝜉𝜃 and 𝜏2𝜉𝜙, with optimal ratio log10(𝜏2𝜉 )−
log10(𝜏2𝜁∗ ) = −1.7. We do not learn about 𝜏2 in the Bayesian inference.

3.2. Prior for B-spline coefficients

All other model parameters, described using tensor-product
B-splines, require specification of a prior distribution for the corre-
sponding vector of spline coefficients 𝜷. Motivated by the outline in
Section 2, following Green and Silverman (1994), the prior density is
given by

𝑓 (𝜷|𝜏2) ∝ 1

(𝜏2)
rk(𝐊)
2

exp
(

− 1
2𝜏2

𝜷′𝐊𝜷
)

, (20)

where rk(𝐊) is the rank of the penalty matrix. Thus as the value of
𝜏2 increases, the prior distribution for 𝜷 becomes narrower and the
resulting spline estimate less variable.
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Fig. 2. Quantile regression example illustrating the components of tensor-product P-splines in 2 dimensions and the effect of roughness penalty. The coloured surfaces show the
individual Tensor-product B-splines each multiplied by its respective 𝛽-coefficient. Quadratic B-splines (𝑞 = 2) and first order penalty have been used.

3.3. MCMC proposal generation

Posterior distributions are approximated using Markov Chain Monte
Carlo with a Metropolis–Hastings (MH) sampling scheme. For example,
for the GP high tail, the basic MH scheme seeks to estimate the posterior
distribution

𝑓 (𝜷𝜉 , 𝜷𝜁∗ |Data) ∝ 𝑓 (Data|𝜷𝜉 , 𝜷𝜁∗ ) × 𝑓 (𝜷𝜉 , 𝜷𝜁∗ )

by iteratively sampling from the set of full conditionals

𝑓 (𝜷𝜉 |Data, 𝜷𝜁∗ ) ∝ 𝑓 (Data|𝜷𝜉 , 𝜷𝜁∗ ) × 𝑓 (𝜷𝜉 )

𝑓 (𝜷𝜁∗ |Data, 𝜷𝜉 ) ∝ 𝑓 (Data|𝜷𝜉 , 𝜷𝜁∗ ) × 𝑓 (𝜷𝜁∗ )

for specified choices of hyper-parameters 𝜅1, 𝜅2 and {𝜏2}. For example,
a proposal 𝜷†

𝜉 for 𝜷𝜉 is generated from the current state using a
proposal density 𝑔. In this work, we assume 𝑔 represents a random
walk from a multivariate Gaussian density with covariance matrix 𝑪.
Well-chosen correlated proposals improve the rate of convergence, and
mixing of MCMC chains. Therefore, following Rue (2001) and Lang and
Brezger (2004) for starting iterations, we set 𝑪 = (𝑩𝑇

2 𝑩2 + 𝑷 )−1 where
matrix 𝑷 incorporates four 𝜏2s and four penalty matrices 𝑲 , and 𝑩2
represents a directional-seasonal tensor-product B-spline basis matrix
as explained in Randell et al. (2016). After sufficient iterations, we then
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Fig. 3. Predictive log-likelihoods for GP high tail estimation for 𝐻𝑚0,𝑝,𝑒𝑞 . Yellow indicates better predictive performance. Left panel shows cross-validation for optimal ratio 𝜏2𝜉 ∕𝜏
2
𝜁∗ .

Right panel shows cross-validation across the two-dimensional 𝜏2𝜉𝜃 × 𝜏
2
𝜉𝜙 domain using the optimal ratio log10(𝜏2𝜉 ) − log10(𝜏2𝜁∗ ) = −1.7. A random sample of combinations of 𝜏2 from

the resulting empirical density is shown as black dots.

follow Roberts and Rosenthal (2009) in setting

𝑪 = 2.382(1 − 𝜖)2𝜮
𝑝

+ 0.01𝜖2
𝑰𝑝
𝑝
, (21)

where 𝑝 is the number of parameters being estimated, 𝜮 is the empirical
covariance matrix estimated from previous iterations of the Markov
chain, and 𝑰𝑝 is a 𝑝×𝑝 identity matrix. We use 𝜖 = 0.05 as recommended
by Roberts and Rosenthal (2009). The proposed state is then accepted
with probability

min
⎛

⎜

⎜

⎝

1,
𝑓 (𝜷†

𝜉 |Data, 𝜷𝜁∗ )𝑔(𝜷
†
𝜉 → 𝜷𝜉 )

𝑓 (𝜷𝜉 |Data, 𝜷𝜁∗ )𝑔(𝜷𝜉 → 𝜷†
𝜉 )

⎞

⎟

⎟

⎠

.

3.4. Full model inference

The procedure detailed above is appropriate for estimating the
posterior distribution of parameters for any one of the marginal gamma,
lower or upper GP tail for any characteristic variable 𝑋𝑗 , or any condi-
tional extremes model 𝑋𝑗′ |𝑋𝑗 . Full model inference requires estimation
of parameters of all model components in a hierarchical order. As
outlined in Section 2, marginal distributions are first estimated for
each 𝑋𝑗 in turn; conditional extremes models are then estimated for
{𝑋𝑗′}𝑗′≠𝑗 |𝑋𝑗 for each 𝑋𝑗 in turn. This is described in more detail below.

Initially (a) the rate of occurrence model for storm events is fitted
across the covariate domain. Then marginal analysis is made for each
characteristic variable (e.g. 𝐻𝑚0,𝑝,𝑒𝑞 , 𝑇𝑝), involving the following steps:
(b) Fit the gamma distribution to all events and save a number of
independent posterior samples of parameters from the MCMC chain.
(c) For each sample of the gamma parameters from (b), sample a low
threshold probability, compute the extreme value threshold, perform
GP inference, and save a number of independent posterior samples of
parameters. (d) Repeat (c) for the high GP tail. Steps (b)–(d) results in
the generation of 𝑛𝛤 samples of gamma parameters, and 𝑛𝛤 × 𝑛𝐺𝑃 GP
samples.

For a given conditioning variate, all required conditional extremes
models can then be estimated contemporaneously to accumulate vec-
tors of residuals, preserving dependencies between residuals corre-
sponding to different choices of marginal and conditional extremes
parameters; these dependencies can then be carried over into storm
simulations. Uncertainty in the conditional extremes model threshold
probabilities {𝜆𝑗} is accounted for by sampling a new value for each

new selection of marginal GP model parameters used. For conditioning
variate 𝑋𝑗 , the inference procedure is as follows: (e) Sample a thresh-
old non-exceedance probability 𝜆𝑗 and identify events for which the
value of 𝑋𝑗 exceeds this. (f) Estimate conditional extremes models for
{𝑋𝑗′}𝑗′≠𝑗 |𝑋𝑗 for each conditioning variate 𝑋𝑗 in turn. Retain posterior
parameter estimates and sets of residuals for the last iteration of the
MCMC only. (g) Accumulate an array of conditional extremes residuals.
Steps (e)–(g) generate 𝑛𝛤 × 𝑛𝐺𝑃 sets of conditional extremes model
parameters and residuals.

The above procedure (a)–(g) yields an equal number of posterior
samples of marginal and conditional model parameters, and associated
residuals, providing a characterisation of the marginal and joint struc-
ture of the set of characteristics variables 𝑋. A number of threshold
choices for both marginal tails and conditional extremes are incor-
porated in this sample, accounting for threshold uncertainty, on a
specified prior interval of threshold non-exceedance probabilities. It is
our experience that this straightforward approach to incorporation of
threshold variability is useful, and superior to ignoring the effects of
threshold choice.

4. Estimation of extreme values

The procedure described in the previous section is used to simulate
realisations of characteristic variables 𝑋 corresponding to long return
periods; this allows estimation of extreme values for those characteristic
variables. Historical storm trajectories are then allocated to realisations
of characteristic variables from simulation, by matching values of
simulated and historical characteristics variables; this allows simulation
of full intra-storm time-series {𝑿̃(𝑠)}|𝑿 for arbitrary return periods for
each sea state 𝑠 in a storm. As storm trajectories are simulated for each
storm event, this procedure further allows convolution of long-term
distributions of sea state variables with short-term (within sea state)
distributions of one or more responses, and hence the estimation of the
long-term distribution of response: a typical example in this respect
is convolution of the long-term distribution of sea states 𝐻𝑚0 with
the short-term distribution of maximum crest height (within sea state)
to obtain the long-term distribution of the maximum crest elevation.
Extreme values are thence obtained by straightforward simulation. In
layman’s terms, such a simulation simply consists in sampling a very
large number of storms, storm trajectories and short-term responses,
reading off the 𝑇 -year extreme value as the ⌈𝑃∕𝑇 ⌉th largest value
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Fig. 4. Characteristic variable 𝐻𝑚0,𝑝,𝑒𝑞 against covariates PWD (left) and season 𝜙 (right).

Fig. 5. Characteristic variables 𝑇𝑝 and WL𝑟𝑒𝑠𝑖 on 𝐻𝑚0,𝑝,𝑒𝑞 .

Fig. 6. Characteristic variables 𝑇𝑝 and WL𝑟𝑒𝑠𝑖 on covariate PWD.

in a simulation of 𝑃 years. We note alternative methods for deriving
extreme values from numerical integration, presented in Ross et al.
(2017), and from importance sampling.

4.1. Simulation of storm characteristic variables

The simulation procedure followed to simulate characteristic vari-
ables in one year of (statistical storm) events is as follows: (a) Sample a

joint set of marginal and conditional extremes model parameters to use;
(b) Sample the number of events to be simulated from a Poisson dis-
tribution with expected annual rate of occurrence; (c) Assign covariate
values to each storm event using the fitted non-stationary rate func-
tion for each conditioning variable; (d) Sample the magnitude of the
conditioning variable from its marginal non-stationary distribution; (e)
Estimate magnitudes of conditioned variables above the conditional ex-
treme model quantile threshold using the conditional extremes model.
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Fig. 7. Posterior median parameter estimates for the marginal model of 𝐻𝑚0,𝑝,𝑒𝑞 . Estimates for the upper tail generalised Pareto scale parameter 𝜁2 are adjusted to a nominal
non-exceedance probability of 0.4.

For non-exceedances of the conditional extremes threshold, estimate
the magnitude of conditioned variables by sampling with replacement
from the original sample of threshold non-exceedances; and (f) store the
annual maximum value observed, and values of other variables given
occurrences of annual maxima of conditioning variates. The 𝑇 -year
extreme values are typically estimated as a quantile of the distribution
of the annual maximum with non-exceedance probability exp (−1∕𝑇 ).
The period 𝑃 of simulation (in years) needs to be considerably longer
than the return period 𝑇 of interest. In the current work, we impose
𝑃 ≥ 100𝑇 ; in other words, a 100 year extreme value requires simulation
of around 10.000 years.

Extreme values found in this way incorporate sources of epistemic
uncertainty from model estimation as described above. Larger model-
fitting uncertainty will inflate extreme values; inflation can be large for
return periods considerably longer than the period 𝑃0 of the historical
data.

4.2. Simulation of storm trajectories

The hourly evolution of each storm event is required to estimate the
long-term distribution of short-term responses. For each storm event

simulated using the procedure described in Section 4.1, we achieve
this by adopting a historical storm trajectory, the values of character-
istic variables for which are similar to those of the simulated storm
event, and associate it after some adjustment with the simulated storm,
following Feld et al. (2015). In short, we (a) identify a sample of
historical storms similar to the simulated storm event; (b) select one
of these at random, the ‘‘matched’’ storm, and (c) scale, stretch and
rotate the matched historical storm trajectory such that characteristic
storm variables calculated from the modified trajectory matches those
of the simulated event.

Historical storm events, similar to the simulated storm, are found
by computing a ‘‘storm dissimilarity’’ for all historical storms given the
simulated storm event. For historical observations {𝑥H𝑗𝑖}

𝑛
𝑖=1 of each of 𝑝

characteristic variables 𝑋𝑗 , and the corresponding simulated value 𝑥S𝑗𝑘,
dissimilarity is calculated using

𝑑𝑗𝑖𝑘 =
|𝑥H𝑗𝑖 − 𝑥

S
𝑗𝑘|

𝜎H𝑗
(22)

for historical storm 𝑆𝑖 and simulated storm 𝑆𝑘. 𝜎H𝑗 is the standard
deviation of 𝑋𝑗 over all historical storms, used to standardise the



Ocean Engineering 195 (2020) 106665

11

H.F. Hansen et al.

Fig. 8. Directional variation of posterior marginal model parameter estimates for 𝐻𝑚0,𝑝,𝑒𝑞 , on 15th January. Shown are median (black line), 50% credible interval (dark grey band)
and 95% credible interval (light grey band).

dissimilarity for each 𝑋𝑗 . Then the overall dissimilarity of 𝑆𝑘 from 𝑆𝑖
is calculated as

𝑑2𝑖𝑘 =
𝑝
∑

𝑗=1
𝑑2𝑗𝑖𝑘. (23)

For each 𝑆𝑘, a matched historical storm 𝑆𝑖∗ is then selected from the
set of historical storms yielding one of the lowest values of 𝑑𝑖𝑘. This is
then adjusted (as described in the next paragraph) and adopted as the
storm trajectory for simulated storm 𝑆𝑘. Typically, the matched storm
is selected from the 20 least dissimilar storms; experience suggests that
inferences are not overly sensitive to this number.

Next we sample the matched historical storm trajectory 𝑥̃H𝑗𝑖∗ (𝑠),
adjusting it such that the characteristic variable from the adjusted
storm trajectory is equal to that of the simulated storm. Adjustment
is performed using a constant linear additive term (for directional
covariates only) and a constant linear scaling factor (otherwise) applied
to the entire storm trajectory. Thus for a (non-covariate) characteristic
variable 𝑋𝑗 such as 𝐻𝑚0,𝑒𝑞 and simulated storm 𝑆𝑘, we define scale
factor 𝜐𝑗𝑘

𝜐𝑗𝑘 =
𝑥S𝑗𝑘
𝑥H𝑗𝑖∗

(24)

and use it to adjust the matched historical storm trajectory 𝑥̃H𝑗𝑖∗ (𝑠) such
that

𝑥̃S𝑗𝑘(𝑠) = 𝜐𝑗𝑘 × 𝑥̃H𝑗𝑖∗ (𝑠). (25)

Wave, wind and current directional covariates are corrected in
the analogous manner. Typically, peak or mean wave direction is
used as characteristic covariate for marginal and conditional extremes
models; wind and current directions are not modelled statistically.
The same additive directional correction is used to rotate all of wave,
wind and current directions, such that wind-wave and current-wave
misalignment from the historical storm is maintained in the simulated
storm.

The duration of the simulated storm event is a function of the
simulated characteristic storm variables 𝜎𝑒𝑞 (number of waves in the

storm) and 𝑇02 (average duration in seconds of each wave). So that the
simulated storm trajectory has the right duration, the time axis for the
simulated storm is adjusted according to

𝑡S𝑗𝑘 = 𝑡H𝑗𝑖∗ × 𝜐𝑗𝑘𝑇02 × 𝜐𝑗𝑘𝜎𝑒𝑞 , (26)

with 𝜐𝑗𝑘𝑇02 and 𝜐𝑗𝑘𝜎𝑒𝑞 being the scaling factors applicable for 𝑇02 and
storm duration 𝜎𝑒𝑞 , respectively.

5. Application to North Sea

The marginal and conditional extremes models introduced in Sec-
tion 2 are estimated for hindcast time-series of wave, current and
wind. A large number of marginal and conditional extremes models
are estimated; only a small subset of these are presented here, corre-
sponding to non-stationary directional-seasonal models, with 𝐻𝑚0,𝑝,𝑒𝑞
used as conditioning variate for conditional extremes models. Space
also prevents presentation of all the diagnostic information generated
during model estimation. Nevertheless we hope that the illustrations in
this section give at least a flavour of the analysis.

5.1. Hindcast data and exploratory data analysis

The sample used for model estimation is taken from a hindcast
at a location in the Danish sector of the North Sea, for a period of
approximately 37 years. The hindcast model uses CFSR wind fields
(Saha et al. 2010, Saha et al. 2014) to force local models for waves,
water levels and currents using MIKE21 Spectral Waves (Sørensen
et al. 2005) and MIKE21 Hydrodynamics (DHI 2017) respectively.
Independent statistical storm events are then isolated and characteristic
variables and covariates estimated.

Fig. 4 illustrates the directional and seasonal variation of 𝐻𝑚0,𝑝,𝑒𝑞 .
Directions of increased rate of occurrence of storms are apparent,
reflecting fetch effects; the most severe events emerge from approxi-
mately 315◦N. 𝐻𝑚0,𝑝,𝑒𝑞 shows smooth seasonal variation in storm sever-
ity; the most severe events occur in the winter months from November
to February. Fig. 5 shows the characteristic peak period 𝑇𝑝 and residual
water level (or ‘‘surge’’) WL𝑟𝑒𝑠𝑖 on 𝐻𝑚0,𝑝,𝑒𝑞 , and Fig. 6 shows the same
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Fig. 9. Tails of the distribution of 𝐻𝑚0,𝑝,𝑒𝑞 for different directional intervals, empirically estimated from the original hindcast sample (black dots), and from simulation under the
fitted marginal mode. For each direction, black dashed lines show the simulated median, dark grey band the central 50% credible interval and the light grey band the corresponding
95% credible interval. Empirical and model estimates for the rate of occurrence are given in the legend.

parameters on the characteristic wave direction PWD. The relationship
between WL𝑟𝑒𝑠𝑖 and 𝐻𝑚0,𝑝,𝑒𝑞 appears rather unclear from inspection of
Fig. 5. However, comparing Fig. 6 with Fig. 4 suggests that, given PWD,
this relationship is somewhat more straightforward. Large negative
surge amplitudes are related to events from the south-east, whereas the
largest positive surge amplitudes occur for waves from the north-west.
This direction also coincides with the largest values of both 𝐻𝑚0,𝑝,𝑒𝑞 and
𝑇𝑝 and corresponds to the direction of largest free fetch.

5.2. Marginal modelling

Posterior median estimates for marginal model parameters of𝐻𝑚0,𝑝,𝑒𝑞
are shown in Fig. 7 as function of the direction and season. Estimates
for gamma shape 𝛼 and scale 𝜇 both exhibit minima for summer storms
from approximately 180◦N. The estimate for upper tail generalised
Pareto shape 𝜉2 does not show much variability with covariates. The
corresponding scale parameter 𝜁2 exhibits a clear maximum for winter
storms from approximately 315◦N, reflecting evidence from Fig. 4.
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Fig. 10. Posterior median parameter estimates from conditional extremes model parameters of WL𝑟𝑒𝑠𝑖|𝐻𝑚0,𝑝,𝑒𝑞 .

We note that, to generate this estimate, we have adjusted samples of
generalised Pareto scale estimates from the MCMC so that they all
correspond to a marginal non-exceedance probability 𝜓2 of 0.4 .

Posterior distributions of parameter estimates from Fig. 7 are further
illustrated in Fig. 8, for ‘‘season’’ corresponding to the 15th January.
From the figure, it is clear that directional variation is of importance
for all parameters except 𝜉2 in this case.

Fig. 9 compares empirical tails of the distribution of 𝐻𝑚0,𝑝,𝑒𝑞 , gener-
ated from Monte-Carlo simulations under the model, with the actual
hindcast sample for different directional intervals. A large number
of realisations of the same length (37 years) as the hindcast were
simulated. Marginal parameter uncertainty was included by randomly
drawing new parameter estimates from the sample of posterior esti-
mates for every realisation of 37 years. Posterior median and 95%
credible intervals for the tail are illustrated in the figure. The hindcast
tail is generally found to lie within the 95% uncertainty interval as
would be expected from a reasonable model.

5.3. Conditional extremes modelling

Posterior median parameter estimates for 𝑎, 𝑏, 𝑚 and 𝑠 from the
conditional extremes model of characteristic residual water level WL𝑟𝑒𝑠𝑖

conditioned on 𝐻𝑚0,𝑝,𝑒𝑞 are shown in Fig. 10 as functions of direction
and season. For all parameters, it is clear that directional variability
is more prominent than seasonal variability; further, directions around
315◦ show the greatest directional variability.

Posterior distributions of parameters from Fig. 10 as a function of
direction are illustrated in Fig. 11, again for 15th January.

There is directional variation in conditional extremes model param-
eter estimates, but practically no seasonal variation. This tallies with
physical understanding of processes at play in a semi-enclosed basin
like the North Sea. Strong winds result in large significant wave heights
for effectively all directions; the same winds drive negative surge for
some directions and positive surge for others. It appears that these
processes do not result in seasonal variation in extremal dependence,
over and above that already captured by marginal extremal models
for 𝐻𝑚0,𝑝,𝑒𝑞 and WL𝑟𝑒𝑠𝑖. The directional dependence between storm
surge and extreme significant wave height is further illustrated in
Fig. 12. This figure illustrates the modelled distribution of storm surge
conditional on 𝐻𝑚0,𝑝,𝑒𝑞 exceeding the 1-year and 100-year quantile
respectively, as function of peak wave direction. The model appears
to capture both the negative dependence for wave directions in the in-
terval of 225◦N–270◦N and the positive dependence for wave directions
around 315◦N. It also provides reasonable estimates of the variance of
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Fig. 11. Posterior distributions of conditional extremes model parameters for WL𝑟𝑒𝑠𝑖|𝐻𝑚0,𝑝,𝑒𝑞 on 15th January as a function of PWD. Black line show median, dark grey patch the
50% band and the light grey patch the 95% confidence band.

the storm surge associated with extremes of 𝐻𝑚0,𝑝,𝑒𝑞 , as illustrated by
the quantiles of the conditioned distributions.

Figs. 13–15 illustrate the output of simulations under the fitted
model. The left hand panel of Fig. 13 shows characteristic 𝐻𝑚0,𝑝,𝑒𝑞
against PWD; the right hand panel shows the corresponding relation-
ship for hourly sea-state variable 𝐻𝑚0 on PWD. As described in the
figure caption, the colour of a simulated event varies with the rate of
occurrence of that event (thereby making it possible to perceive varia-
tions in rate of occurrence even when individual events are no longer
identifiable in the figure). The original hindcast sample has been added
to the plots for reference. The simulation corresponds to 50,000 years
with only significant wave heights above 4 metres included. Contours
of constant probability density are also shown as solid lines; the density
for all points on this contour is equal to the maximum density (i.e. rate
of occurrence, over all directions) corresponding to the marginal 10-
and 100-year extreme value estimates.

Fig. 14 shows realisations of characteristic storm length 𝜎𝑒𝑞 (on
natural logarithmic scale) against 𝐻𝑚0,𝑝,𝑒𝑞 (left) and PWD (right). 𝜎𝑒𝑞
decreases with increasing storm severity. Directional variation is rather
weak, with some evidence that storms from approximately 135◦N are
more persistent; no meteorological explanation for this is offered here.

The left hand panel of Fig. 15 shows characteristic spectral peak
period 𝑇𝑝 on 𝐻𝑚0,𝑝,𝑒𝑞 ; the right hand panel gives the corresponding plot
of 𝑇𝑝 on 𝐻𝑚0 for hourly sea states. The variance of 𝑇𝑝 for given 𝐻𝑚0
is generally larger than that of 𝑇𝑝 for the same value of 𝐻𝑚0,𝑝,𝑒𝑞 , both
for hindcast and simulated data. This effect is caused by the fact that
sea states during storm rise are steeper (i.e. larger 𝐻𝑚0∕𝑇 2

𝑝 ) than at
storm peak, and less steep during storm decay; this feature may be
important to capture well in storm modelling since wave breaking is
more frequent in steep sea states. For certain short-term responses, this
effect might be as important as variation of significant wave height
around the storm peak.

6. Discussion and conclusions

We present an approach to joint modelling of multiple features
of wind-driven storm events in a statistically-rigorous and physically-
reasonable manner. The method is comprised of (a) estimation of

summary variables for storms, referred to in this work as character-
istic variables (b) marginal extreme value modelling of characteristic
variables, non-stationary with respect to covariates, (c) non-stationary
conditional extremes modelling of characteristic variables given ex-
treme values of a different conditioning characteristic variable, (d)
subsequent modelling of within-storm evolution of related sea state
variables, corresponding to storm rise and decay, and (e) simulation
under the fitted model to estimate joint samples of storm characteris-
tic and sea state variables corresponding to arbitrary return periods,
and thereby estimation of extreme values for structural design and
reassessment.

Inference is performed within a Bayesian framework, allowing esti-
mation of full joint posterior distributions, specification of appropriate
distributions for hyper-parameters and prior distributions for model pa-
rameters encoding prior engineering knowledge, and propagation and
quantification of uncertainty in a consistent fashion. Tensor products
of penalised B-splines are use to provide general representations of the
domain of covariates, providing flexible modelling of non-stationarity.
The storm model used provides a reasonable approach to isolation
of statistically independent storms, represented by characteristic vari-
ables and covariates, facilitating modelling of independent events. No
prior assumptions regarding storm shape, the directional and seasonal
dependence of storms, or the (extremal) dependence between charac-
teristic variables is necessary. Given characteristic variables, historical
storm trajectories representing storm rise and decay are exploited to
incorporate the effects of storm duration and within-storm variation.
Seasonal–directional design criteria may be obtained from the model
by simulation, and simulated sea state data may also be used directly
for subsequent structural reliability assessment, such as that carried out
for the Tyra field (Tychsen et al. 2016).

The model has been applied to hindcast data for a location in
the central North Sea. Diagnostics demonstrate that the model makes
reasonable predictions of extreme events for return periods of the order
of the length of the data record for the hindcast sample.

Accommodating the effects of uncertainty in decision-making is
critical: Bayesian inference is generally applicable to any statistical
modelling tasks, including optimal risk-based decision-making. When
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Fig. 12. Top panel shows 𝐻𝑚0,𝑝,𝑒𝑞 on PWD. Coloured lines, estimated under the fitted model, have constant annual exceedance probabilities corresponding to return periods of 1
year (blue) and 100 years (orange). Black and grey dots show the original hindcast above and below the blue level respectively. Lower panel shows WL𝑟𝑒𝑠𝑖 on PWD for events
with 𝐻𝑚0,𝑝,𝑒𝑞 above the level marked by the blue line in the top panel. Black dots show the corresponding hindcast data; the solid black line is their directional median. Blue and
orange lines mark the median of WL𝑟𝑒𝑠𝑖 associated with exceedances of 𝐻𝑚0,𝑝,𝑒𝑞 above the blue and orange lines in the top panel; the shaded areas mark intervals bounded by
the 10% and 90% quantiles of the corresponding conditional distributions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 13. Directional distribution of significant wave height. Scatter plots of 50,000 years of simulated data (coloured round markers) compared to hindcast data (black dots);
‘‘warmer’’ colours indicate higher rate of occurrence of simulated events. Left: Characteristic storm 𝐻𝑚0,𝑝,𝑒𝑞 vs. PWD. Right: Hourly values of 𝐻𝑚0 vs. PWD. Solid lines represent
directional density contours for 10- and 100-year marginal extreme values. Black discs indicate the original hindcast sample. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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Fig. 14. Directional distribution of storm length. Left: ln(𝜎𝑒𝑞 ) on 𝐻𝑚0,𝑝,𝑒𝑞 per storm. Right: ln(𝜎𝑒𝑞 ) on PWD per sea state. For other details, see Fig. 13.

Fig. 15. Joint distribution of spectral peak period and significant wave height. Left: Characteristic 𝑇𝑝 on 𝐻𝑚0,𝑝,𝑒𝑞 per storm. Right: 𝑇𝑝 on 𝐻𝑚0 per sea state. For other details, see
Fig. 13.

a Bayesian framework is not used, e.g. for analysis using maximum
likelihood estimation, bootstrap resampling (e.g. Davison and Hinkley
1997, Randell et al. 2015) provides a useful approach to uncertainty
quantification.

In the current work, we have established a model for the joint
tails of storm characteristic variables, with which the distributions
of arbitrary environmental or structural responses can be estimated
by simulation or equivalent numerical procedures. When the response
variable is known, and depending on the specific requirements of the
analysis, we note it might be useful to consider direct extreme value
analysis of values of the response, as opposed to a more complex joint
extreme value analysis of the environmental variables leading to the
response.
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