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A B S T R A C T

Optimising the operation and maintenance (O&M) and logistics strategy of offshore wind farms implies the de-
cision problem of selecting the vessel fleet for O&M. Different strategic decision support tools can be applied to
this problem, but much uncertainty remains regarding both input data and modelling assumptions. This paper
aims to investigate and ultimately reduce this uncertainty by comparing four simulation tools, one mathematical
optimisation tool and one analytic spreadsheet-based tool applied to select the O&M access vessel fleet that
minimizes the total O&M cost of a reference wind farm. The comparison shows that the tools generally agree on
the optimal vessel fleet, but only partially agree on the relative ranking of the different vessel fleets in terms of
total O&M cost. The robustness of the vessel fleet selection to various input data assumptions was tested, and the
ranking was found to be particularly sensitive to the vessels' limiting significant wave height for turbine access.
This is also the parameter with the greatest discrepancy between the tools, implying that accurate quantification
and modelling of this parameter is crucial. The ranking is moderately sensitive to turbine failure rates and vessel
day rates but less sensitive to electricity price and vessel transit speed.
1. Introduction

With more than 3200 offshore wind turbines connected to the Eu-
ropean grid at the start of 2016 (EWEA, 2016), operation and mainte-
nance (O&M) of these assets is a key challenge to achieve commercially
viable projects. The estimated contribution of O&M to the life cycle cost
of an offshore wind farm varies significantly, accounting from 15 to 30%
(Musial and Ram, 2010; Wiser et al., 2016). Offshore logistics and vessels
are major contributors to the O&M costs, estimated to account for almost
45% (GL Garrad Hassan, 2013; Smart et al., 2016), and are decisive
factors in ensuring high availability of the wind turbines and hence high
electric power production. As offshore wind farms are remote, unmanned
and often difficult to access due to weather restrictions, the offshore lo-
gistics related to O&M becomes a highly complex task. Since most
offshore wind farms have been in operation for only a few years, there is a
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general lack of O&M industry experience. Developers, original equip-
ment manufacturers (OEM), operators, and financial institutions are
looking for tools to guide decision making when deciding on mainte-
nance strategies, vessels, manning, and investments. The problem is
exacerbated for non-OEMs, since much of the existing operating experi-
ence has been gained during the initial warranty period. This increases
the uncertainty for non-OEMs around future operations.

This paper focuses on decision support tools applied to the selection
of the O&M vessel fleet, i.e. the crew transfer vessels or other logistics
solutions for accessing the wind turbines to conduct maintenance. This is
an example of a decision problem in offshore wind O&M that has
received much attention both in the research literature and in the in-
dustry. For instance, optimising the offshore logistics solution and
investigating its robustness to assumptions are often done as a part of due
diligence in preparation for the investment decision for offshore wind
7
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projects. In practice, a number of aspects must be considered in the se-
lection of O&M vessels, such as the technical, hydrodynamic evaluation
of the accessibility of the turbines by the vessels (Wu, 2014; Guanche
et al., 2016). However, this paper takes a higher-level, strategic
perspective and considers the economic evaluation of the vessels as part
of the overall logistics system of the wind farm. The research literature
reports a number of tools for such economic evaluation that have been
applied to the problem of selecting the O&M vessel fleet, including an-
alytic cost tools (Besnard et al., 2013), simulation tools (Dalgic et al.,
2014, 2015a, 2015b; Endrerud et al., 2015; Sperstad et al., 2016) and
mathematical optimisation tools (Halvorsen-Weare et al., 2013; Gun-
degjerde et al., 2015). For comprehensive reviews of strategic decision
support tools for offshore wind O&M and logistics more generally, see
Hofmann (2011) and Shafiee (2015).

As a large number of strategic decision support tools have already
been developed, the purpose of this paper is emphatically not to present
yet another new or improved tool. The work is rather motivated by the
need to reduce the uncertainties that still remain related to both
modelling assumptions and input data for such tools. Uncertainties
related to input data assumptions have been studied in some of the
works cited above using sensitivity analysis. Sensitivity analysis for
offshore wind O&M is also treated more generally in Martin et al.
(2016). However, the insights from previous sensitivity studies may
have restricted generality as they depend on the modelling assumptions
implemented in the particular decision support tool considered in each
study. Uncertainties related to modelling assumptions intrinsic to the
tools were previously addressed in Dinwoodie et al. (2015) by
comparing four different simulation tools for calculating O&M costs
and wind farm availability. In that study, a reference wind farm case
with relevant input data was defined, and baseline results were re-
ported for the different tools. The comparison revealed how different
tools can produce significantly different results because of dissimilar
modelling assumptions. However, Dinwoodie et al. (2015) considered
only simulation tools for O&M, and the study did not consider the
application of the tools as decision support tools for optimising the
O&M strategy.

In this paper, four simulation tools, one mathematical optimisation
tool and one analytic spreadsheet-based tool have been tested on the
reference case from Dinwoodie et al. (2015) to compare how they rank a
predefined set of vessel fleets. The objectives of this work is to answer the
following research questions: a) How robust is the ranking of vessel fleets
to the kind of decision support tool that is used? Even if different decision
support tools disagree on the absolute performance measures of different
vessel fleets for offshore wind O&M, do they still agree on the relative
ranking of the vessel fleets? b) How robust is the ranking of the vessel
fleets given by each tool to the assumptions made for different key input
parameters?

Although previous work has compared different offshore wind O&M
decision support tools qualitatively (Hofmann, 2011), this is the first time
the robustness of offshore wind O&M decision support has been inves-
tigated quantitatively, using more than one tool. Furthermore, it is the
first study to consider sensitivities in the ranking of different vessel fleets.
Addressing these research questions through a comparison of different
tools can identify the direction for further model validation and devel-
opment work, reducing the uncertainty associated with decision support
for offshore wind O&M and logistics. Furthermore, model comparison
and sensitivity studies can identify which uncertainties in the input data
are most important to consider and may also provide other recommen-
dations for using advanced tools to support offshore wind O&M and lo-
gistics decisions.

The rest of the paper is organized as follows. Section 2 explains the
proposed methodology for O&M vessel fleet optimisation and sensitivity
analysis. The reference wind farm, vessel alternatives and decision sup-
port tools used are also introduced in this section. Section 3 presents the
results for the vessel fleet ranking and sensitivity analysis. The results are
discussed in Section 4, after which the paper is concluded in Section 5 by
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summarizing key findings and suggesting implications for the use of
strategic decision support tools for selecting the O&M vessel fleet.

2. Methodology

This section describes the proposed methodology for O&M vessel
fleet optimisation and sensitivity analysis. The focus is on the selection of
the access vessel fleet, i.e. the fleet of crew transfer vessels (CTV) and/or
other vessel concepts for transferring and allowing technicians access to
the turbines. The section first defines the optimisation problem and then
introduces the decision support tools used for evaluating different vessel
fleets. This is followed by a description of the base case specifications for
the reference wind farm and the different vessel types and the vessel fleet
alternatives that are considered. Finally, the methodology and cases for
the sensitivity analysis are described.

2.1. Vessel fleet ranking

In this section an optimisation problem for the selection of a vessel
fleet for O&M of an offshore wind farm is formulated. A solution space of
possible vessel fleet alternatives is defined, and for all alternatives in the
solution space, the performance of the vessel fleets are evaluated and
ranked according to the value of the objective function f. The optimal
vessel fleet is the one with the lowest value of f. For this optimisation
problem, a simple objective function, referred to as the total O&M cost, is
defined to capture the trade-off between O&M costs and wind farm
availability:

f ¼ Total O&M cost

¼ Direct O&M costþ Lost revenue due to downtime (1)

Lost revenue due to downtime, or lost production or downtime costs,
is the difference between theoretical revenue for the ideal case of no
wind turbine downtime and actual revenue. This can be expressed
mathematically as follows:

Lost revenue due to downtime ¼ Pel

XNhours

t¼1

XNturbines

j¼1

Etheor;j;t �
�
1� Aj;t

�
(2)

Here, Pel is the electricity price, i.e. the revenue generated per MWh,
measured in £. The analysis considers a period of Nyears with a number of
hours Nhours ¼ Nyears � 365� 24. Etheor;j;t is the electricity production in
units MWh of turbine j in hour t, given the wind speed and turbine power
curve and given that the turbine is available to generate electric power.
The availability Aj;t of wind turbine j in hour t is 0 during downtime and 1
when the turbine is available to generate electric power.

Direct O&M cost is here composed by the following cost components:

Direct O&M cost ¼ Vessel costþ Personnel costþ Total repair cost (3)

In reality, there are also a number of other direct O&M cost compo-
nents that are not included in this equation (GL Garrad Hassan, 2013;
Smart et al., 2016), but this simplification is made to focus on the key cost
elements that may vary between different O&M vessel fleets. Cost ele-
ments that do not vary between different vessel fleets are constant terms
in the optimisation problem and do not impact the optimal vessel
fleet selection.

The vessel cost is the sum of day rates (i.e. charter costs per day) for
all vessels in the O&M vessel fleet:

Vessel cost ¼ Nyears � 365�
X

v

ðDay rateÞv (4)

The personnel cost is the sum of annual salaries for all Ntech main-
tenance technicians working in the wind farm:

Personnel cost ¼ Nyears � Ntech � Annual technician salary (5)
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Total repair cost is the sum of all repair costs (including costs of spare
parts and consumables but excluding vessel and personnel cost) for all
maintenance tasks considered in the problem:

Total repair cost ¼
X

i

Ntask; i � ðRepair costÞi (6)

Here, Ntask; i is the number of maintenance tasks completed for failure
category i. All cost variables are calculated for the same period of Nyears of
the operational phase of the wind farm.

In the case of corrective maintenance at a turbine, downtime is
incurred from the time of occurrence of a turbine failure and until the
maintenance task is completed. In the case of pre-determined, preventive
maintenance (PM) of a turbine, downtime is only incurred while tech-
nicians are carrying out the PM task at the turbine or accessing the tur-
bine. Including lost revenue due to downtime in the objective function
ensures that a possible vessel fleet solution is penalised for not having the
capacity to perform corrective maintenance in a timely manner. It does
not, on the other hand, ensure that the vessel fleet is also capable of
completing the pre-determined, preventive maintenance that is sched-
uled for the wind turbines. The tools that are considered will typically
give corrective maintenance tasks priority over preventive maintenance
tasks. This may result in vessel fleet solutions where the total O&M cost is
low, but where not all the preventive maintenance tasks are completed.
This is important to take into account in the vessel fleet ranking, since
delaying preventive maintenance beyond the recommended mainte-
nance intervals may adversely affect wind turbine reliability in the long
run. Precisely how reliability is affected by maintenance is very difficult
to quantify until sufficient operating experience is obtained, and none of
the tools in this paper attempts to capture this relationship explicitly. In
these analyses, vessel fleets that are unable to complete all PM are always
considered inferior to vessel fleets that are able to complete all PM.
Therefore, the vessel rankings are performed based on two decision rules
applied in a hierarchical fashion: First, the vessel fleets are ranked ac-
cording to the percentage of the planned PM tasks they have performed.
Second, all vessel fleets that have completed the same percentage of PM
tasks (±0.1%) are ranked according to their total O&M cost.
Table 1
Base case failure data for the reference case (from Dinwoodie et al. (2015)).

Failure category Manual
reset

Minor
repair

Medium
repair

Annual
service

Active maintenance time
(hours)

3 7.5 22 60

Required technicians 2 2 3 3
Failure rate (per turbine
per year)

7.5 3.0 0.275 n/a

Repair cost (£) 0 1000 18 500 18 500
2.2. Description of the decision support tools

Six different strategic decision support tools with different modelling
methodologies have been applied for the work reported in this paper.
Four of the tools are simulation tools: 1) The NOWIcob tool developed by
SINTEF Energy Research (Hofmann and Sperstad, 2013, 2014), 2)
MAINTSYS developed by the University of Stavanger and Shoreline
(Endrerud et al., 2014, 2015) 3) the ECUME model developed by EDF
R&D (Douard et al., 2012) and 4) the Strathclyde University offshore
wind OPEX model (StrathOW-OM) (Dalgic et al., 2015a). These simula-
tion tools were also presented and compared in Dinwoodie et al. (2015).
In this paper, also 5) the MARINTEK vessel fleet optimisation model
(Stålhane et al., 2016) and 6) the Energy Research Centre of the
Netherland's (ECN) O&M Tool (Obdam et al., 2011) are included. Except
from the MARINTEK vessel fleet optimisation model, these tools can be
viewed as long-term cost estimation tools that can be applied for plan-
ning purposes and strategic decision support. Although all the decision
support tools have been developed independently, they are all considered
applicable to the problem of selecting O&M vessel fleets and are hence
comparable for the purposes of this paper. All the tools are developed in
cooperation with the industry (offshore wind farm devel-
opers/owners/operators) and have been applied to provide decision
support for actual wind farm projects. It could be noted that, being
designed for strategic applications, the tools are not applicable to oper-
ational (short-term) decision support.

The four simulation tools are based on a discrete-event time-
sequential Monte Carlo simulation modelling approach. They produce
estimates of performance parameters such as wind farm availability and
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O&M costs as output parameters. Applying the simulation tools to an
optimisation problem, the tools must evaluate each of the alternative
solutions of the problem and estimate its objective value based on these
output parameters. By using a mathematical optimisation tool such as the
MARINTEK tool, on the other hand, all alternatives may be evaluated
implicitly through the optimisation procedure, which then only returns
the solution with the lowest objective value. However, for this work the
MARINTEK optimisation tool has also been set to consider only one
vessel fleet at a time to allow for comparison with the simulation tools. In
the optimisation tool, a penalty term is included in the objective function
to explicitly penalize vessel fleets for each PM task that they are not,
according to the tool, able to complete. Both the simulation tools and the
optimisation tool are dynamic in the sense that they capture the time
dependence resulting from metocean conditions and stochastic wind
turbine failures.

The ECN O&M Tool is a commercially available Microsoft Excel tool
developed to estimate long-term annual average O&M costs and other
outputs. As such it is not dynamic in the sense described above for the
simulation and optimisation tools but treats several aspects of O&M in a
more simplified manner. However, it allows significant user control over
inputs and for this work was modified by analysts at the National
Renewable Energy Laboratory (NREL) to represent specific vessel capa-
bilities, costs, and metocean conditions as detailed as for the other tools.
The ECN O&MTool includes a set of macros for post-processing of results
that optimise the use of resources. In contrast to the simulation tools, the
ECN O&M Tool hence automatically estimates the number of technicians
and vessels needed to fully complete repairs for each season for an
average year.

2.3. Description of reference case

For the computational study, the performance of 10 alternative vessel
fleets used for the O&M of a reference offshore wind farm have been
compared. The reference wind farm is based on Dinwoodie et al. (2015),
which defined a number of reference cases designed for comparing O&M
simulation tools. These reference cases specify representative values for
the minimal set of input parameters needed to run such tools in a
meaningful manner. The base case from Dinwoodie et al. (2015),
including wind turbine data, metocean data, failure data and vessel data,
is henceforth simply referred to as the reference case. The reference wind
farm consists of 80 Vestas V90 3.0 MWwind turbines located 50 km from
an onshore maintenance base.

The failure data for the reference case are given in Table 1. The failure
data used in Dinwoodie et al. (2015) are assumed but the present study
does not include the failure categories of major repair and major
replacement. The reason for leaving out these failure categories is that
they require that specialist vessels (referred to as Field Support Vessels
and Heavy Lift Vessels in the reference case) are chartered. The results
from optimal vessel fleet selection are not significantly affected by the
presence or absence of other failure categories requiring specialist vessels
(Sperstad et al., 2016). The reason is that the interactions between
maintenance tasks performed by access vessels and maintenance tasks
performed by specialist vessels are negligible. Thus, the decision of when,
and for how long, to charter specialist vessels to perform these mainte-
nance tasks, and as an extension their contribution to the objective



Table 2
Base case parameter values specifying the vessel types.

Vessels Hs limit (m) Vessel speed (knots) Day rate (£) Technician capacity Access time (min)

Crew transfer vessel (CTV) 1.5 20 1750 12 15
Surface effect ship (SES) 2.0 35 5000 12 15
Small accommodation vessel (SAV) 2.0 20 12 500 12 15
Mini mother vessel (MM) 2.5 14 25 000 16 30
Daughter vessel 1.2 16 n/a 6 15
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function, can be seen as independent of the fleet of access vessels.
However, such failure categories can contribute substantially to the sta-
tistical uncertainty in simulation results (Sperstad et al., 2016), which
makes a statistically significant comparison of different vessel fleets more
computationally demanding. Furthermore, the modelling of the charter
of Heavy Lift Vessels (or jack-up vessels) has previously been identified as
a major source of discrepancies between different tools (Dinwoodie et al.,
2015). Therefore, only maintenance categories where only crew transfer
vessels are required for the maintenance are considered: three corrective
maintenance categories (manual reset, minor repair and medium repair)
and one preventive maintenance task (annual service). For more infor-
mation on these maintenance categories and the failure data set, we refer
to Smart et al. (2016). A corrective maintenance strategy as in the
reference case is assumed, and it is assumed that corrective maintenance
tasks are always given priority over preventive maintenance tasks.

As in the reference case, the metocean data used in this study come
from the FINO 1 offshore research platform (BSH, 2012). However, for
the present study, the same historical 8-year wind and wave time series
are used for all decision support tools. In other words, those tools that
have the functionality for generating synthetic metocean time series do
not employ this functionality. The reason for this choice is to ensure that
the comparison is not biased by any differences in the generation of
synthetic metocean time series, as such modelling differences were found
for the reference case to be a source of discrepancies between results from
different tools (Dinwoodie et al., 2015).

2.4. Description of vessel fleet alternatives

In addition to a standard CTV based on the specifications in the
reference case, three other access vessel concepts are considered. A sur-
face effect ship (SES) is an advanced crew transfer vessel with higher
service speed and higher limiting significant wave height (Hs) for tech-
nician access/transfer to the turbine. Both CTV and SES need to return to
the onshore maintenance base at the end of each shift. A small accom-
modation vessel (SAV) is an access vessel that also offers offshore ac-
commodation for the technicians. A mini mother vessel (MM) is a
somewhat larger vessel offering offshore accommodation and hosts two
small daughter vessels. Technicians can be transferred from the MM to
the turbines both via the daughter vessels and directly via a gangway or
similar access system. The SAV and the MM vessel types are assumed to
stay offshore for 14 days before they have to spend 1 day travelling back
to shore to resupply.

The specifications of the vessel types are given in Table 2 and are, in
part, based on experience from research projects with offshore wind farm
developers/owners/operators. In addition to the input parameters used
in the reference case to describe the CTV, the access time of the vessels has
been introduced. This parameter describes the time it takes from when
Table 3
Definition of the vessel fleets considered.

Vessels Fleet 1 Fleet 2 Fleet 3 Fleet 4

Crew transfer vessel (CTV) 2 3 1 2
Surface effect ship (SES) 0 0 1 1
Small accommodation vessel (SAV) 0 0 0 0
Mini mother vessel (MM) 0 0 0 0
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the vessel is in the vicinity of the turbine to when the last technician is on
the turbine, with the equipment needed to start working. This parameter
is introduced to model the crew transfer capabilities of the vessels more
accurately for the vessel fleet comparison. The same time is assumed to
be required for picking up the technicians as for deploying them to the
turbine. Internal travel distances within the wind farm are neglected in
the tools which have this as an input parameter, but the time spent
travelling within the wind farm can be regarded as included in the ac-
cess time.

Technicians operating from the onshore maintenance base, and
transported by CTVs or SESs, work 1 � 12 h shifts each day, and tech-
nicians operating from a SAV or a MM work 2 � 12 h shifts per day. It is
assumed that the number of technicians available for working from the
vessels each shift equals the maximal number the vessels have capacity
for transporting or accommodating (the technician capacity). Since the
SAV and MM vessels operate with two shifts per day, these vessels
accommodate twice the number of technicians available to work each
shift: For the MM vessel, e.g., there are 8 technicians working day shifts
and 8 technicians working night shifts. Although two working shifts for
access vessel operations may not be common industry practice today, it is
likely to be relevant for mother vessels and similar access vessel concepts
in the future.

The composition of the 10 vessel fleet alternatives considered in the
computational study is given in Table 3. This defines the solution space
considered for the optimisation problem. The ECN O&M Tool is only able
to produce results for a subset of these fleet compositions. Since the tool's
post-processing of results estimates the number of vessels required to
fully complete repairs, the number of vessels is not specified by the user.
For example, the ECN results for the vessel fleet “2 CTV” indicates that
two CTVs are needed in three seasons and three CTVs are needed in one
season; hence the vessel fleet “3 CTV” is not represented in the results for
the ECN O&M Tool. Furthermore, the MAINTSYS model is not able to
represent the MM.
2.5. Sensitivity analysis

From the procedure described in Section 2.1, it is possible to obtain
the ranking of the n alternative vessel fleets; the rank of vessel fleet i is
denoted by ri. Changing the assumptions of the input data may change
how a tool assesses the performance of a vessel fleet and thus how well
the decision support tool ranks it compared to the alternatives. To assess
the robustness of the results from a tool, the sensitivity index of the
objective function has been considered. The total O&M cost is denoted
f(x) as a function of an input parameter x, where x for instance could be
the service speed of a given vessel. The following sensitivity index is
then defined:
Fleet 5 Fleet 6 Fleet 7 Fleet 8 Fleet 9 Fleet 10

0 1 0 1 0 0
2 2 0 0 3 0
0 0 1 1 0 0
0 0 0 0 0 1
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cf ¼ ½j f ðx0 þ ΔxÞj þ jf ðx0 � ΔxÞj �=2
Δx

⋅
x0

f ðx Þ: (7)
Table 4
Definition of sensitivity cases considered.

Sensitivity case
label

Change for
CTV

Change for
SES

Change for
SAV

Change for
MM

Failure rate X X X X
Electricity price X X X X
Day rate all
vessels

X X X X

CTV day rate X
SES day rate X
SAV day rate X
MM day rate X
Hs all vessels X X X X
Hs CTV X
Hs SES X
Hs SAV X
Hs MM X
Speed all vessels X X X X
Speed CTV X
Speed SES X
0

This sensitivity index measures the changes in the performance (i.e.
objective value) of a vessel fleet, as assessed by one of the tools, when an
input parameter x is changed by ±Δx. As it measures the sensitivity to
changes around a base case value x ¼ x0, it is a local sensitivity index. A
two-sided sensitivity index is chosen to average over the effect of
increasing and decreasing the input parameter. For instance, if changing
x by increasing or decreasing x0 by 20% also changes f ðx0Þ by 20%, the
sensitivity index is cf ¼ 1.

However, if the performance estimate for a vessel fleet changes for
changing assumptions, this does not necessarily mean that the rank of the
vessel fleet when compared to the alternatives also changes. For each
input parameter x, the ranking of vessel fleet i can be expressed as a
function of that parameter as riðxÞ. The overall ranking of the vessel fleets
can be expressed as the sequence friðxÞgni¼1. To investigate how robust
the ranking of the vessel fleets is, a measure of the ranking's sensitivity to
changes in different input parameters is needed. The Spearman's rank
correlation coefficient ρ, has been introduced as a measure of how much
the ranking of the vessel fleets friðxÞgni¼1 for one value of x differs from
the ranking for another value of x (Walpole et al., 1993). Denoting the
base case value of x as x0, the Spearman's rank correlation coefficient can
be expressed as follows:

ρðxÞ ¼ 1� 6
Pn

i¼1½riðxÞ � riðx0Þ�2
nðn2 � 1Þ (8)

This correlation coefficient by definition equals one for the base case,
ρðx ¼ x0Þ ¼ 1, and it decreases if the ranking of the vessel fleets changes
as one is moving away from the base case, as ρðxÞ � 1:

To measure howmuch a ranking changes when changing parameter x
by Δx, a sensitivity index cx for the rank correlation is defined as follows:

cx ¼ 1� ½ρðx0 þ ΔxÞ þ ρðx0 � ΔxÞ �=2
Δx=x0

(9)

If neither increasing nor decreasing x by Δx changes the ranking of
the vessel fleets, the Spearman's rank correlation coefficients will equal
one and the rank sensitivity index cx will be zero. If changing the
parameter value changes the value, however, cx >0, and the magnitude
of cx increases as the correlation coefficient ρðxÞ decreases.

For sensitivity analysis, a number of input parameters have been
considered that are assumed to influence the ranking of the vessel fleet
alternatives: 1) Expected average failure rates are generally uncertain
and may depend on a number of factors. The number of failures also
greatly impacts the maintenance requirements of the wind farm that the
vessel fleet needs to serve. 2) The expected revenue generated by the
wind farm project per MWh of electric energy that is produced (the
electricity price): The future values of this parameter may be certain or
uncertain depending on the electricity market and what support scheme
is in place, if any. Changes in this parameter can also be taken to
represent changes in the assumptions about wind power production
depending on turbine performance or wind speeds. 3) Vessel day rates
are generally uncertain for the wind farm owner/operator in the devel-
opment and planning phase and they constitute an appreciable part of the
direct O&M cost. 4) The average limiting significant wave height (Hs) for
technicians to access the turbines should be understood as an effective
limit for Hs when averaging over sea states (characterised by wave di-
rection, wave period, etc. in addition to Hs) where the operation is
possible and safe. Hence, the actual value of this parameter depends on
the metocean conditions at the wind farm site and is generally uncertain
(Sperstad et al., 2014). 5) The service speed of a vessel is typically stated
by the vessel provider. However, there is uncertainty associated with the
actual average vessel speed, which may depend on e.g. sea states or the
maintenance strategy.

Sensitivity cases for each of the vessel fleets are defined by changing
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the assumptions for each of these input parameters to a higher and lower
level around the assumptions of the base case. The base case values x0 are
defined in Table 1 for the failure rate assumptions and in Table 2 for the
vessel assumptions, and the base case electricity price is 90 £/MWh. The
sensitivity cases considered are listed in Table 4, which also shows which
vessels a parameter changes for each of the cases. New simulations need
to be carried out for the parameters failure rate, Hs limit and vessel speed,
whereas sensitivity analyses can be performed for vessel day rates and
the electricity price simply by post-processing simulation results from the
base case.

3. Computational study

This section presents the results of the computational study using six
different decision support tools for O&M vessel fleet selection. Results for
the objective value for different vessel fleet alternatives and the sensi-
tivity of these results are presented in Section 3.1. Section 3.2 presents
the resulting ranking of the vessel fleets, and in Section 3.3 the sensitivity
of this ranking to changes in input data assumptions is considered.

3.1. Objective function sensitivity analysis

Each of the tools described in Section 2.2 has been used to evaluate
the objective function as described by Eqs. (1) and (2) for each of the 10
vessel fleet cases described in Section 2.3. For each of the simulation
tools, the number of Monte Carlo iterations was chosen so that the sta-
tistical uncertainty in the objective value was sufficiently low for
comparing the different vessel fleets with that tool. The exact number of
iterations was not equal for all tools because different tools have levels of
statistical variability in the Monte Carlo results and different procedures
for selecting the number of iterations.

A comparison of the performance of the different vessel fleets as
evaluated by the different decision support tools is shown in Fig. 1. To
allow a clearer comparison of the relative performance of the different
vessel fleets across different tools, the objective value estimates for each
tool have been scaled to the value of the vessel fleet with the lowest
objective value according to that tool. In other words, for each tool, the
vessel fleet with the lowest objective value is shown with objective value
100%. In the previous study conducted with many of the same tools by
Dinwoodie et al. (2015), it was observed that the absolute value of the
total O&M cost varied significantly between different tools. For the
present study, the primary interest is rather on the differences between
the tools in how they rank different vessel fleets. Therefore, relative total
O&M cost values, rather than absolute values, are considered.

The results in Fig. 1 are shown with vessel fleets ordered from the
lowest to the highest charter cost of the vessel fleet (left to right). In
general, the following trend can be expected for the total O&M cost as a



Fig. 1. Total O&M cost for the vessel fleets for each decision support tool relative to the vessel fleet found to be optimal for that tool.
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function of the charter cost of the vessel fleet: The total O&M cost is high
for the least expensive fleets since they have insufficient capacity to
perform all of the corrective O&M tasks at the wind farm and therefore
result in a high revenue lost due to downtime. Increasing the vessel cost,
the total O&M cost then decreases towards a minimum as a trade-off is
being made between vessel cost and downtime costs. For the most
expensive fleets, the total O&M cost then increases again since the in-
crease in vessel costs are larger than the reduction in revenue lost due to
downtime for these vessel fleets. This general trend can be seen in Fig. 1
for most of the tools. However, Fig. 1 also shows several differences
between the results from different tools, and these differences will be
investigated in more detail below.

It is important to keep in mind that the objective values shown in
Fig. 1 alone do not identify whether or not the vessel fleet is able to
complete all annual services. Therefore, the fraction of annual services
completed is presented in Table 5. The MARINTEK tool does not give the
exact percentage of annual services completed so “<99.90%” means that
not all of them were performed.

Fig. 1 shows a similarity in how the tools evaluate the differences in
performance between the vessel fleets for the base case. For instance, all
tools agree that the least expensive alternatives, “2 CTV” and “3 CTV”,
are insufficient for the maintenance requirements of the reference case.
However, the tools disagree strongly on the relative performance dif-
ference between these fleets and the better performing ones. For the
MARINTEK tool, the explanation is that the objective function for this
optimisation tool explicitly includes a penalty cost for not completing all
maintenance activities. For the StrathOW-OM model, the low relative
performance of “2 CTV” and “3 CTV” can be explained by this tool having
in general less optimistic modelling assumptions than the other tools.
This leads to overall lower availability estimates, and the effect is
aggravated for cases with insufficient maintenance resources. These re-
sults are in line with the findings in Dinwoodie et al. (2015), which
concluded that differences between tools are most pronounced for cases
where maintenance resources are heavily constrained.

The tools also disagree strongly on the performance of the “SAV”
vessel fleet. All simulation tools agree that a single SAV is unable to
Table 5
Fraction of annual services completed for each vessel fleet for each of the decision support tool

2 CTV 3 CTV 1 CTV þ1 SES 2 CTV þ1 SES 2 SE

ECUME 95.39% 99.98% 98.94% 100.00% 100.
NOWIcob 100.00% 100.00% 100.00% 100.00% 100.
StrathOW-OM 73.69% 100.00% 97.85% 100.00% 100.
MARINTEK <99.90% <99.90% 100.00% 100.00% 100.
MAINTSYS 100.00% 100.00% 100.00% 100.00% 100.
ECN 100.00% 100.00% 100.00% 100.00% 100.
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complete all the required annual services due to its small capacity for
technicians. In the MARINTEK tool this again results in large penalty
costs being added to the total O&M cost. Only the ECN O&M Tool is able
to complete all annual services with using 1.25 SAVs annually (i.e., two
SAVs were required for a single season of the year). However, the ECN
O&M Tool's estimate of the objective function is far above that of most
vessel fleets. The ECN O&M Tool is incentivized to complete annual
services in a different manner than in the other tools. Annual services are
completed, but the SAVs are operating nearly continuously throughout
the year in order minimize turbine downtime. The results presented in
Fig. 1 highlight the importance of taking into account the completion of
preventive maintenance in assessing the performance of access vessels.
They also illustrate the importance of how preventive and corrective
maintenance is prioritised in O&M tools. Separate tests also showed that
changing these priorities gave substantial differences in results for some
of the tools.

To investigate how strongly the objective value is affected by
different input parameters, the sensitivity index of the total O&M cost as
defined in Eq. (7) has been calculated. The results for relative changes of
Δx=x0 ¼ ± 20 % to the values all the considered parameters are given in
Fig. 2. Here the results for each parameter are averaged over all vessel
fleets for which the parameter is relevant. The normalization of the
sensitivity index is such that a value of 1 means that increasing the input
parameter by 20% gives a 20% increase in the total O&M cost. As can be
seen by the figure, there is only partial agreement between the tools as to
which parameters affect the total O&M cost the most. The day rates and
the speed of the vessels seem to have little effect on the total O&M cost,
while the objective function on average is most sensitive to changes in
the wave height limits of the vessels. There is also a considerable sensi-
tivity to changes in the price of electricity and the failure rates. Both of
these influence the total downtime cost of the wind farm, which is one of
the major cost components. For some wave height limit parameters, the
results for the sensitivity index for MARINTEK and StrathOW-OM are
outside the range chosen for Fig. 2.

For electricity price and vessel day rates, a linear relationship be-
tween the value of the parameter and the objective value of a given vessel
s.

S 1 CTV þ2 SES 1 SAV 1 SAV þ1 CTV 3 SES 1 MM

00% 100.00% 84.67% 100.00% 100.00% 100.00%
00% 100.00% 71.47% 100.00% 100.00% 100.00%
00% 100.00% 90.38% 100.00% 100.00% 100.00%
00% 100.00% <99.90% 100.00% 100.00% 100.00%
00% 100.00% 98.00% 100.00% 100.00% n/a
00% 100.00% 100.00% 100.00% 100.00% 100.00%



Fig. 2. Sensitivity of the objective value averaged over all vessel fleets.
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fleet would be expected. This trend is evident in Fig. 2 where the sensi-
tivity of all tools to changes in these parameters is more or less the same.
The effect of changing the limiting wave height parameter has a great
impact on the objective value of all tools; however, the magnitude of the
impact varies to a large extent. Finally, changing the speed of the vessels
seems to have little effect on the objective value of all tools. An expla-
nation for this may be that the objective value as a function of the speed is
more similar to a step function where there are only small changes in the
objective value until the speed reaches a given threshold value, at which
point it will increase/decrease drastically. Increasing the speed of a vessel
will only improve the objective value significantly if the additional time
available at a wind farm can be used to perform additional maintenance
tasks. Thus, this parameter is likely to have a greater impact if the wind
farm is located further offshore than in our tests, or if the parameters are
changed by considerably more than 20%.

3.2. Vessel fleet ranking

Table 6 shows the vessel fleet ranking for all tools for the reference
case when it is also required that the vessel fleets be capable of
completing all preventive maintenance as explained in Section 2.1. For
this reference case, it is clear that there are some fleets that all tools find
to be good and some fleets that all tools agree are bad. However, for many
Table 6
The vessel fleet ranking for each of the decision support tools according to the total O&M cost, ta
indicates a higher ranking of a vessel fleet for a tool.
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of the fleets, the tools disagree on the actual ranking, just as they disagree
on the relative performance as shown in Fig. 1. The fact that the relative
performance curves in Fig. 1 are so different for different tools also makes
it less likely that different tools in general would agree on the optimal
solution to the vessel fleet optimisation problem.

In Table 7, the Spearman's rank correlation between each pair of tools
is presented, as defined in Eq. (8). The ECUME, StrathOW-OM, and
MARINTEK tools seem to agree fairly well on the vessel ranking; the same
goes for NOWIcob and MAINTSYS. However, between many pairs of
tools there is virtually no correlation of the fleet rankings. Some pairs of
tools even have a slightly negative correlation, meaning that fleets
ranked high by one tool are generally ranked low by the other tool and
vice versa.

3.3. Vessel fleet ranking sensitivity analysis

Having found that there are differences in how different tools rank
different vessel fleets, also when one takes into account whether pre-
ventive maintenance is completed, an investigation into how sensitive
the rankings themselves are to changes in the inputs was carried out.
Changes in the correlation coefficients for the ranking are considered as a
measure of how robust the results for the vessel fleet ranking are. To be
able to compare the sensitivity of the vessel fleet ranking to changes in
king also into account that all annual services should be completed. A darker shade of grey



Table 7
The Spearman's rank correlation coefficient between the vessel fleet ranking for the different decision support tools.

ECUME NOWIcob StrathOW-OM MARINTEK MAINTSYS ECN

ECUME 1.00 0.28 0.76 0.83 0.45 �0.23
NOWIcob 0.28 1.00 �0.09 0.30 0.75 0.61
StrathOW-OM 0.76 �0.09 1.00 0.83 0.33 �0.10
MARINTEK 0.83 0.30 0.83 1.00 0.65 0.07
MAINTSYS 0.45 0.75 0.33 0.65 1.00 0.54
ECN �0.23 0.61 �0.10 0.07 0.54 1.00

Fig. 3. Sensitivity index as a measure of the sensitivity of the vessel fleet ranking to different input parameters.
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different parameters, the sensitivity index defined in Eq. (9) is consid-
ered. The results are shown in Fig. 3 for relative changes of Δx=x0 ¼
± 20 % to all the considered parameter values. The normalization of the
sensitivity index is such that a value of 1 means that changing the input
parameter by 20% gives a 20% decrease in the Spearman's rank corre-
lation function. The figure shows that the findings for the objective
function value sensitivities are also broadly valid for the ranking of the
vessel fleets: The ranking of different vessels is strongly dependent on the
Hs assumptions and appreciably less dependent on the vessel speed as-
sumptions. Simply put, the implication is that when ranking which vessel
fleets perform best, the ranking is robust to the uncertainty in the actual
speed of a vessel, but making inaccurate estimates for the accessibility of
a vessel could result in a completely different ranking. However, the Hs
limit could be a less important parameter for wind farms in milder
metocean conditions, as the metocean conditions of the reference case
are relatively harsh (Dinwoodie et al., 2015). It should also be pointed
out that the sensitivity to vessel speed would be stronger had a reference
wind farm with a greater distance to shore been chosen. Fig. 3 also shows
that different tools disagree strongly on the extent to which the vessel
fleet ranking is affected by changes in the different parameters. Most
importantly, there is a wide span between the tools in the sensitivity of
the ranking to changes in Hs and in the failure rate.

The sensitivity case “Hs all vessels” can also be interpreted as inves-
tigating sensitivity to changes in the metocean data, since decreasing the
Hs limit of all vessels by 20% has the same effect as increasing the wave
height of all metocean states in the input data by 20%, and vice versa. As
can be seen in Fig. 3, this is one of the changes to which the tools are the
most sensitive. This indicates that representing the metocean data
correctly will also have a great impact on the vessel fleet ranking.

4. Discussion of the results

As shown in the comparison of the vessel fleet rankings and
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sensitivities in the preceding section, there are discrepancies between the
results from different decision support tools. One possible explanation for
the discrepancies is that tools assuming more efficient utilization of small
weather windows will favour less capable and less costly vessels. Tools
that do not allowmaintenance tasks to be split over multiple shifts or that
have pessimistic failure modelling may on the other hand favour vessel
fleets with higher capacity. For instance, the MARINTEK optimisation
tool has a time resolution of 6 h in considering weather windows, using
the worst-case metocean conditions during each 6-h period. In contrast,
the simulation tools consider metocean conditions with a time resolution
of 1 h. Some discrepancies for specific vessel fleets (e.g. for the SAV) were
also explained in Section 3.1 to be due to how the completion of pre-
ventive maintenance is taken into account in different tools. Apart from
this, it has proven challenging to pinpoint the modelling assumptions
that cause the discrepancies between different tools.

From this it may be concluded that what constitutes the best fleet to
perform maintenance at an offshore wind farm depends heavily on the
actual assumptions made in developing each decision support tool. Since
the tools compared in this paper were developed independently of each
other, and developed in cooperation with the industry, it is likely that the
differences in assumptions stem from the fact that different wind farm
owners/operators plan and perform their maintenance differently.
Consequently, it is important to ensure that the assumptions in the tool
reflect the operational strategy of the wind farm owner/operator. One
implication is that wind farm operators or other stakeholders may want
to use different and possibly complementary tools and estimation tech-
niques if it is uncertain what decision support tool has the overall most
representative assumptions for a particular wind farm project.

The reference wind farm considered is relatively close to shore.
Therefore, accommodation vessels and mother vessel concepts would
probably have been ranked higher for wind farms farther from shore than
in the results shown here. The small accommodation vessel and the mini
mother vessel included among the vessel fleets considered are examples
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of such vessel concepts. However, even for this reference case, different
tools disagreed strongly on the ranking of the small accommodation
vessel. Therefore, more work may be necessary to represent such vessel
alternatives in a way that is more realistic for a more accurate compar-
ison with conventional logistics strategies. For instance, as our results
showed, a small accommodation vessel with only six technicians avail-
able to do maintenance each shift does not have sufficient capacity to
handle the maintenance requirements of this reference wind farm.
Additional modelling considerations may also be required when using
shore-based maintenance logistics approaches for wind farms farther
offshore. For instance, it could be more important to capture the effect of
sea sickness, the effect of wave state-dependent vessel speeds and how
increased transit times might change task priorities and vessel utilization.

The solution space of possible combinations of the different vessels is
much larger than the 10 vessel fleets considered in this study. This means
that the optimal vessel fleet could, in principle, be in a part of the solution
space that has not been considered. When faced with a large solution
space, using mathematical optimisation rather than simulation may be
particularly advantageous. In fact, when the MARINTEK optimisation
tool was used to consider all possible combinations, i.e. not restricting the
solution space to the 10 combinations considered above, it was demon-
strated that “2 SES” remains the optimal solution according to that tool.
Although they are simplified representations, the vessel types included in
this study are believed to be representative of the kinds of alternatives
decisionmakers have to choose from. Furthermore, possible biases due to
the characteristics of any of the chosen vessel types are reduced by
considering the combined results for all the vessel fleet alternatives. In
this way, it the sensitivity trends exhibited by the results can be assumed
to be fairly general.

Due to the number of vessel fleet alternatives, the number of input
parameters varied in the sensitivity analysis, and the number of different
tools, a large total number of cases was considered for this work. For
practical reasons, compromises were necessary and a number of potential
cases and analyses omitted. For instance, a local sensitivity analysis was
performed, with parameter value changes restricted to ± 20 %. Hence it
would not be possible to identify any nonlinear effects for the different
parameters. Furthermore, in restricting the analysis to a one-at-a-time
approach it is not possible to identify any significant interactions be-
tween the different parameters. However, it is possible to argue intui-
tively for what the implications of such interactions are likely to be. For
example, when assuming a higher base electricity price than the base
case value, downtime costs would become higher relative to direct O&M
costs, and the sensitivities for e.g. Hs limits would be relatively stronger
than sensitivities for vessel day rates. See also Martin et al. (2016) for
other sensitivity analysis methods applied to offshore wind O&M.

5. Conclusions

In this study, six different strategic decision support tools for offshore
wind farm O&M and logistics were applied to the problem of selecting
the best O&M vessel fleet for a reference wind farm. It has been estab-
lished that the decision support tools show general agreement on which
vessel fleet is the best, but they agree only partially on the overall ranking
of the different vessel fleets. The tools agree only partially on how sen-
sitive the performance of each vessel fleet alternative (the objective
value) is to different input assumptions. However, they generally agree
on how sensitive the ranking of the vessel fleet alternatives is to different
input assumptions. The ranking of different vessel fleets is i) strongly
dependent on the assumption for the limiting significant wave height for
access, ii) appreciably less dependent on the vessel speed assumptions,
and iii) moderately dependent on assumptions for failure rates and vessel
day rates. Different tools disagree on precisely how sensitive the results
are to changes in these parameters, especially for failure rates and the
limiting significant wave height. The disagreements do not appear to be
due to differences intrinsic in the type of tool (e.g. based on simulation or
on mathematical optimisation) as such, but rather due to how optimistic
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or pessimistic the modelling assumptions are.
The work reported in this paper suggests some recommendations for

optimising the O&M and logistics strategies for offshore wind farms:
First, it is crucial to take into account the completion of preventive
maintenance (e.g. annual services) when evaluating the performance of
vessel fleets for O&M. The sum of direct O&M costs and lost revenue due
to downtime appears to be an appropriate objective function for making
the trade-off between availability and O&M costs but does not by itself
consider whether or not preventive maintenance is completed. In an
optimisation tool, non-completion of preventive maintenance can be
taken into account explicitly in the form of penalty terms in the objective
function or as constraints. When using a simulation tool for optimisation,
it may be necessary to take this into account separately. Furthermore,
results from our sensitivity analyses confirm that it is important to be
aware of and, if possible, to try to reduce uncertainties in input data,
particularly in the significant wave height limit. This also implies that it is
important to consider how metocean conditions and accessibility of the
turbines are modelled in the tool. Finally, since different tools provide
somewhat different results for the same input data, decision makers need
to ensure that the modelling assumptions are representative of the wind
farm project in question and might also consider using several tools to
support their decisions.
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