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A B S T R A C T

The influence of forward speed on stochastic free-surface crossing, in a Gaussian wave field, is investigated.
The case of a material point moving with a constant forward speed is considered; the wave field is assumed
stationary in time, and homogeneous in space. The focus is on up-crossing events, which are defined as the
material point crossing the free surface, into the water domain. The effect of the Doppler shift (induced
by the forward speed) on the up-crossing frequency, and the related conditional joint distribution of wave
kinematic variables is analytically investigated. Some general trends are illustrated through different examples,
where three kinds of wave direction distribution are considered: unidirectional, short-crested anisotropic, and
isotropic. The way the developed approach may be used in the context of slamming on marine structures is
briefly discussed.
1. Introduction

From an engineering standpoint, two quantities related to the
chance of free-surface crossing for an object travelling in an ocean
wave field may be of interest: (i) the average frequency of crossing
events; (ii) the related joint probability distribution of wave kinematic
variables, given crossing. The present study focuses on up-crossing
events, which are defined as follows: the free surface up-crosses the
object, or equivalently the object down-crosses the free surface (into
the water domain). An up-crossing event will lead to a water entry
phenomenon, which may induce significant hydrodynamic loads on
the structure of the object (see e.g. Korobkin and Pukhnachov, 1988;
Faltinsen, 2006; Kapsenberg, 2011; Wang and Guedes Soares, 2017).
Therefore, the knowledge of (i) and (ii) may be valuable for the design
of a marine structure that will be exposed to water wave impacts.
Down-crossing events (i.e. water-exit events) may also be of practical
interest in ship design; for example to assess the risk of efficiency
loss due to the (partial) emersion of an appendage or a propeller.
Moreover, water exit events can also generate high-intensity transient
hydrodynamic loads (see e.g. Baarholm and Faltinsen, 2004; Korobkin
et al., 2017; Breton et al., 2020). The theoretical approach, developed
in the present paper for up-crossing events, may be readily transposed
to down-crossing events.

If the considered object (for instance, a ship appendage or a hull
section) is sufficiently small compared to water wave wavelengths, the
body geometry may be reduced to a single material point regarding the
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risk of free-surface crossing. Then, the problem becomes more tractable
and may be addressed by using the level-crossing theory of stochastic
processes, based on the pioneering work of Rice (1944, 1945) and
subsequent works (see for example Lindgren, 2012, Chapter 8, and
references therein). When the motions of the water waves are modelled
at the first order (Airy wave theory), the randomness of the related
kinematic variables can be modelled through Gaussian processes. Then,
the average up-crossing frequency and the related joint probability
distribution of kinematic variables are both analytically tractable.

When the material point moves with a given forward velocity, the
motion-induced Doppler shift has a non-trivial effect on the encounter
wave spectrum. Lindgren et al. (1999) investigated the effect of Doppler
shift on the distribution of the zero crossing wave period (the time
between successive mean level down- and up-crossings) measured in
the frame of a moving body, but they did not consider the related
conditional distribution of kinematic variables. More recently, Aberg
et al. (2008) also investigated the effect of Doppler shift on the distri-
bution of some wave characteristics measured along the direction of
body motion (namely the wave slope, waveheight and wavelength). In
the context of slamming on ships, following the pioneering work of
Ochi (1964b,a) and Ochi and Motter (1971, 1973), different authors
investigated the stochastic properties of slamming-induced loads and
structural stresses, including the effect of forward speed in the analy-
sis. In most studies, however, the vertical component of the relative
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fluid velocity is considered as the only kinematic variable relevant
to the estimate of slamming loads (see for example Ochi and Motter,
1973; Rassinot and Mansour, 1995; Wang et al., 2002; Hermundstad
and Moan, 2007; Dessi and Ciappi, 2013; Wang and Guedes Soares,
2016). This assumption greatly simplifies the problem by reducing
the conditional distribution of kinematic variables (used as an input
for the impact model), given up-crossing, to a univariate distribution,
which is of Rayleigh type in the framework of linear wave theory.
However, this univariate approach may provide unreliable predictions,
since slamming loads may be sensitive to other kinematic variables
(e.g. Scolan and Korobkin, 2015), such as the acceleration (added-mass
effect), the tangential velocity, or the angular position of the object
relative to the local free surface (e.g. Hascoët et al., 2019). Going
beyond a univariate approach, the early study of Belik and Price (1982)
investigated the effect of accounting for the tangential component of
the water entry velocity, in the context of slamming on high-speed
vessels. They considered only long-crested (unidirectional) sea states
and carried out their investigation through numerical experiments,
where the random sampling of impact kinematic variables was obtained
from the numerical realisation of Gaussian waves and ship responses.
More recently, Helmers et al. (2012) analytically considered the joint
distribution of several kinematic variables (namely the fluid vertical
velocity, the fluid vertical acceleration, the wave slope, and the sea-
keeping roll angle) to estimate the probability distribution of impact
loads on a wedge-shaped body exposed to irregular waves; however,
these authors did not consider scenarii where the body has a forward
speed and focused on unidirectional sea states.

The present study is devoted to the analytical investigation of the
effect of forward speed on the conditional joint distribution of wave
kinematic variables, given up-crossing. The effect of forward motion
on the related up-crossing frequency is also analysed. The case of a
material point moving through a Gaussian wave field, at a constant
velocity, in a horizontal plane (i.e. at a given altitude), is investigated.
Both long-crested (unidirectional) and short-crested (multidirectional)
wave fields are considered. Section 2 sets the framework of the present
study. In Section 3, the case of a body at rest is first considered as
a preamble. Then, in Section 4, the effect of forward speed on the
up-crossing frequency and the related conditional joint distribution of
kinematic variables is analytically investigated; it is illustrated through
a few examples. Section 5 briefly discusses how the developed frame-
work may be used in the context of slamming. The paper ends with a
concluding summary in Section 6.

2. Framework and assumptions

The present section sets the framework of the analysis to be devel-
oped in Sections 3 and 4.

2.1. Water waves modelled as a Gaussian field

In the present paper both long-crested (unidirectional) and short-
crested (multidirectional) seas are considered. Let the wave motions be
described in a spacetime coordinate system (𝑡, 𝑥, 𝑦, 𝑧), where the origin
of the space coordinates, 𝑂, is a fixed point in the reference frame of the
mean flow (i.e. the reference frame where there is no mean current), lo-
cated on the plane of the mean free surface, and 𝑧 is directed along the
ascending vertical (see Fig. 1 for a sketch of the problem formulation).
In the most general case, the free surface elevation 𝜂 (measured along
the vertical direction 𝑧) can be modelled as a stochastic process which
depends on the time 𝑡 and on the two horizontal space coordinates, 𝑥
and 𝑦. If a linear wave model is assumed, this stochastic process can be
modelled as Gaussian. Besides, in the present study, the considered sea
states are assumed to be stationary in time and homogeneous in space.
Then the Gaussian process 𝜂 is fully characterised – in a probabilistic
sense – by its mean (which is zero in the present case) and its two-
dimensional one-sided variance density spectrum 𝐺(𝜔, 𝜃) (defined for
2

Fig. 1. Sketch of the problem. A material point (black dot) moves uniformly, at an
altitude 𝑧 = 𝑎, in a stationary and homogeneous Gaussian wave field. The problem is
formulated in a space coordinate system 𝑂𝑥𝑦𝑧 attached to the reference frame of the
mean flow (i.e. the reference frame where there is no mean current). The origin of
the space coordinate system, 𝑂, and the time origin are chosen so that the material
point coordinates are (𝑥0 = 0, 𝑦0 = 0, 𝑧 = 𝑎), at 𝑡 = 0. Unless otherwise specified, the
flow velocity and acceleration are measured in the reference frame of the mean flow.
The multidirectional sea state is modelled as the superposition of Airy waves, whose
direction of propagation is noted 𝜃. The material point moves at a speed 𝑉𝑠 (relative
to the mean flow) and heads along the direction 𝜓 .

𝜔 > 0 and 𝜃 ∈]−𝜋, 𝜋]), where 𝜔 is the intrinsic wave angular frequency
(measured in the reference frame of the mean flow), and 𝜃 the direction
of wave propagation in the plane 𝑂𝑥𝑦. In this framework, a realisation
of the random wave field may be numerically approximated as the sum
of independent Airy waves (see e.g. Ochi, 2005; Holthuijsen, 2007)

𝜂(𝑥, 𝑦, 𝑡) ≃
𝑁
∑

𝑛=1

𝑄
∑

𝑞=1
𝑎𝑛𝑞 cos

[

𝜔𝑛𝑡 − (𝑘𝑛 cos 𝜃𝑞)𝑥 − (𝑘𝑛 sin 𝜃𝑞)𝑦 + 𝜙𝑛𝑞
]

, (1)

where the frequencies and directions, 𝜔𝑛, 𝜃𝑞 , account for the discreti-
sation of the two-dimensional wave spectrum. The wave amplitudes
and phases, 𝑎𝑛𝑞 and 𝜙𝑛𝑞 , are independent random variables. The wave
amplitudes, 𝑎𝑛𝑞 , follow individual Rayleigh distributions of modes

𝜎𝑛𝑞 =
√

𝐺(𝜔𝑛, 𝜃𝑞)𝛥𝜔𝑛𝛥𝜃𝑞 , (2)

where 𝛥𝜔𝑛 and 𝛥𝜃𝑞 are the sizes of frequency and direction discreti-
sation intervals. The wave phases, 𝜙𝑛𝑞 , are uniformly distributed over
] − 𝜋, 𝜋]. The wave numbers, 𝑘𝑛, are related to the wave frequencies,
𝜔𝑛, through the dispersion relation

𝜔2
𝑛 = 𝑔𝑘𝑛 tanh 𝑘𝑛ℎ , (3)

where 𝑔 is the acceleration due to gravity (𝑔 = 9.81 m s−2 is assumed
in the present paper), and ℎ is the water depth. In the following
sections, the transfer functions of different kinematic variables will
be introduced. To that end, it is convenient to introduce the complex
notation and express the surface elevation as

𝜂(𝑥, 𝑦, 𝑡) ≃
𝑁
∑

𝑛=1

𝑄
∑

𝑞=1
Re

{

𝐴𝑛𝑞 exp
(

𝑖
[

𝜔𝑛𝑡 − (𝑘𝑛 cos 𝜃𝑞)𝑥 − (𝑘𝑛 sin 𝜃𝑞)𝑦
])}

, (4)

where 𝑖 is the imaginary unit, and

𝐴𝑛𝑞 = 𝑎𝑛𝑞 exp
{

𝑖𝜙𝑛𝑞
}

, (5)

are the wave complex amplitudes.
In the present approach, the space coordinate system (𝑥, 𝑦, 𝑧) is

Eulerian. A Lagrangian-type linear wave model could have been an
attractive alternative, as this kind of model has been shown to account
for interesting wave features (see e.g. Gjøsund, 2003; Fouques et al.,
2006; Lindgren and Lindgren, 2011), which are missed by the Eulerian
linear model (e.g. the steepening of crests and flattening of troughs).
However the Lagrangian approach leads to a model which is nonlinear
(with respect to wave amplitudes) when expressed in an Eulerian
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coordinate system, even when it is restricted to the first order. This
nonlinear feature would have hindered the analytical developments to
be set out in Sections 3–4.

2.2. Wave direction distribution

Most equations developed in Sections 3–4 assume that the frequency
and direction dependencies in the two-dimensional spectrum can be
separated as follows:

𝐺(𝜔, 𝜃) = 𝐷(𝜃)𝑆(𝜔). (6)

n the above equation, 𝑆 is the frequency spectrum, and 𝐷 is a nor-
alised function, defined for 𝜃 ∈] − 𝜋, 𝜋], and satisfying,
𝜋

−𝜋
d𝜃 𝐷(𝜃) = 1 . (7)

his frequency–direction separation is assumed, in order to further
nalytical developments. However, it is not theoretically restrictive and
ormulae valid in the general case (where this assumption would not
old) are always introduced beforehand.

In the different illustrative examples given below, three different
ypes of wave direction distribution are considered:

1. Unidirectional sea state, with a spreading function given by

𝐷1(𝜃) = 𝛿(𝜃) , (8)

where 𝛿 denotes the Dirac delta function. Following this dis-
tribution, all waves propagate in the direction of increasing
𝑥-coordinate.

2. Multidirectional anisotropic sea state, with a spreading function
given by

𝐷2(𝜃) = (2∕𝜋) cos2 𝜃 , for |𝜃| < 𝜋∕2
0 , for |𝜃| > 𝜋∕2 .

(9)

3. Isotropic sea state, with a spreading function

𝐷3(𝜃) = 1∕2𝜋 , 𝜃 ∈] − 𝜋, 𝜋] . (10)

.3. Spectral shape

In the illustrative examples reported below, the considered sea
tates are assumed to have a JONSWAP frequency spectrum (Hassel-
ann et al., 1973):

(𝜔) = 𝑁0𝐻2
𝑠𝜔

4
𝑝𝜔

−5 exp

[

− 5
4

(

𝜔
𝜔𝑝

)−4
]

𝛾exp
[

−(𝜔−𝜔𝑝)2∕2𝜎2𝜔2𝑝
]

(11)

with
𝜎 = 0.07 , for 𝜔 ≤ 𝜔𝑝

0.09 , for 𝜔 > 𝜔𝑝 .
(12)

𝐻𝑠 is the significant wave height and 𝜔𝑝 is the peak angular frequency
of the spectrum. 𝛾 is a parameter which controls the magnitude of the
peak of the spectrum relative to its high-frequency tail; in all examples
it is set to its ‘‘typical’’ value 𝛾 = 3.3. The normalisation factor, 𝑁0, is
such that

𝐻2
𝑠 = 16∫

+∞

0
𝑆(𝜔) d𝜔 . (13)

Besides, the wave spectrum is truncated at low and high frequencies
in order to discard excessively long and short waves: 1% of wave
variance (which is proportional to wave energy) is truncated at the
low-frequency and high-frequency ends (in total 2% of wave energy
is disregarded).1 The normalisation of the spectrum following Eq. (13)

1 This assumption is not critical for the theoretical developments which
ollow; another truncation level may have been adopted. However, note that
3

is performed before the truncation. For 𝛾 = 3.3, this leads to a low-
requency cutoff 𝜔min ≃ 0.74𝜔𝑝 and a high-frequency cutoff 𝜔max ≃
3.0𝜔𝑝. The average zero-crossing wave period is given by

𝑧 = 2𝜋
√

𝑚0
𝑚2

, (14)

where 𝑚𝑝 denotes the 𝑝th moment of the wave spectra,

𝑚𝑝 = ∫

+∞

0
𝜔𝑝𝑆(𝜔)d𝜔 . (15)

Following these assumptions about the spectral shape, the numerical
values of the first five moments are
𝑚0 ≃ 0.0613 𝐻𝑠

2 ,
𝑚1 ≃ 0.0720 𝐻𝑠

2𝜔𝑝 ,
𝑚2 ≃ 0.0918 𝐻𝑠

2𝜔𝑝2 ,
3 ≃ 0.130 𝐻𝑠

2𝜔𝑝3 ,
4 ≃ 0.208 𝐻𝑠

2𝜔𝑝4 .

(16)

.4. Considered kinematic variables

In Sections 3 and 4, analytical formulae will be provided for the
oint probability distribution of wave kinematic variables, given up-
rossing. The variables considered in the present study are the follow-
ng:

• 𝜂(𝑥, 𝑦, 𝑡): the free surface elevation
• 𝑢(𝑥, 𝑦, 𝑡), 𝑣(𝑥, 𝑦, 𝑡): the horizontal components of the fluid velocity

in the plane 𝑧 = 0, along the 𝑥-axis and 𝑦-axis, respectively.
• 𝑢,𝑡(𝑥, 𝑦, 𝑡), 𝑣,𝑡(𝑥, 𝑦, 𝑡): the components of the fluid acceleration in

the plane 𝑧 = 0, along 𝑥-axis and 𝑦-axis respectively.2
• 𝑤(𝑥, 𝑦, 𝑡): the vertical component of the fluid velocity in the plane
𝑧 = 0. In the linear wave model, 𝑤 = 𝜂,𝑡.

• 𝑤,𝑡(𝑥, 𝑦, 𝑡): the vertical component of the fluid acceleration in the
plane 𝑧 = 0.

• 𝜂,𝑥(𝑥, 𝑦, 𝑡), 𝜂,𝑦(𝑥, 𝑦, 𝑡): the slope components of the free surface
along 𝑥-axis and 𝑦-axis respectively.

ncluding other first-order kinematic variables (such as the free surface
urvature) in the analysis to be developed in Sections 3–4, would be
traightforward. In the present study, the first-order flow velocity and
cceleration components at 𝑧 = 0, are considered as a direct proxy

for the kinematics at the free surface. This assumption is in line with
several ‘‘stretching’’ schemes used to alleviate the deficiencies of the
linear wave theory in describing the near-surface fluid kinematics for
irregular sea states (e.g. Wheeler, 1970; Chakrabarti, 1971; Horng,
1991). Conversely, other techniques such as linear extrapolation above
𝑧 = 0 (e.g. Xu, 1995) or ‘‘Delta stretching’’ (Rodenbusch and Forristall,
1986) would yield a different proxy for the fluid kinematics at the free
surface.

The kinematic variables listed above were selected as potentially
relevant for the computation of hydrodynamic loads on a marine
structure (see Section 5 for a discussion in the context of slamming).
Hence, the considered horizontal velocity and acceleration components
are those of the fluid. When the interest would be on the horizontal
motions of the free surface itself (e.g. for remote sensing applica-
tions), the approach developed below may still be used to compute the
probability distribution of the relevant variables. Note however that
different definitions are admissible to describe the horizontal motions

the truncation of the high-frequency end will matter when coming to practical
applications, such as the study of wave-induced slamming loads. In such
applications, the exposed part of the solid body should be sufficiently small
compared to water wave wavelengths, so that it can be modelled as a single
material point regarding the risk of free surface crossing.

2 In the present paper, 𝑄,𝑣 denotes the derivative of the function 𝑄 with

respect to the variable 𝑣.
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of the free surface. These different definitions translate into nonlinear
relations involving partial derivatives of 𝜂, which would complicate
the computation of the resulting distributions (for more details, see
Baxevani et al., 2003).

3. Free surface up-crossing at a fixed material point

3.1. Non-conditional distribution of kinematic variables

When the body is assumed to be at rest, located at (𝑥0, 𝑦0, 𝑧 = 𝑎),
the wetting of the material point stands for the up-crossing of the level
𝑎 by the stochastic process

𝜂0(𝑡) = 𝜂(𝑥0, 𝑦0, 𝑡) , (17)

whose time derivative is given by

𝜂̇0(𝑡) = 𝜂,𝑡(𝑥0, 𝑦0, 𝑡) . (18)

The kinematic variables introduced in Section 2.4 – measured at the
location of the material point at a given time – may be gathered in a
random vector3:

𝑍𝐴 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜂 = 𝜂0
𝑢
𝑣
𝑤,𝑡
𝑤 = 𝜂̇0
𝜂,𝑥
𝜂,𝑦
𝑢,𝑡
𝑣,𝑡

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (19)

As the different kinematic variables are obtained from linear transfor-
mations of 𝜂, the random vector, 𝑍𝐴, is Gaussian. The mean vector
of 𝑍𝐴 is zero. The coefficients of its covariance matrix, 𝛴𝑍𝐴 , may be
computed as
[

𝛴𝑍𝐴
]

𝑘,𝑙
= ∫

𝜋

−𝜋
d𝜃 ∫

+∞

0
d𝜔 Re

{

𝑘(𝜔, 𝜃)̄𝑙(𝜔, 𝜃)
}

𝐺(𝜔, 𝜃) , (20)

where 𝑘 (resp. 𝑙) is the complex transfer function whose input
and output are respectively the sea surface elevation 𝜂 and the 𝑘th
(resp. 𝑙th) variable of the random vector 𝑍𝐴; ̄𝑙 denotes the complex
conjugate of 𝑙. The linear wave theory yields the following transfer
functions (following the complex notation adopted in Eq. (4)):

𝜂(𝜔, 𝜃) = 1
𝑢(𝜔, 𝜃) = cos 𝜃 ⋅ 𝑔𝑘(𝜔)∕𝜔
𝑣(𝜔, 𝜃) = sin 𝜃 ⋅ 𝑔𝑘(𝜔)∕𝜔
𝑤,𝑡 (𝜔, 𝜃) = −𝜔2

𝑤(𝜔, 𝜃) = 𝑖𝜔
𝜂,𝑥 (𝜔, 𝜃) = −𝑖 cos 𝜃 ⋅ 𝑘(𝜔)
𝜂,𝑦 (𝜔, 𝜃) = −𝑖 sin 𝜃 ⋅ 𝑘(𝜔)
𝑢,𝑡 (𝜔, 𝜃) = 𝑖 cos 𝜃 ⋅ 𝑔𝑘(𝜔)
𝑣,𝑡 (𝜔, 𝜃) = 𝑖 sin 𝜃 ⋅ 𝑔𝑘(𝜔) .

(21)

In the linear wave model, the horizontal acceleration components and
slope components are linearly related through
[

𝑢,𝑡
𝑣,𝑡

]

= −𝑔
[

𝜂,𝑥
𝜂,𝑦

]

. (22)

Hence, two of these four variables should be discarded when consider-
ing the joint normal distribution of kinematic variables (otherwise the
covariance matrix would be singular). In the subsequent development,

3 In the present paper, when considering a time stochastic process, (𝑡)
nd  are respectively used to denote the stochastic process itself and its value
t a given time (which is a random variable). Similarly, in the case a random
ield  (𝑥, 𝑦, 𝑡),  denotes its value at a given location and at a given time.
4

,𝑡 and 𝑣,𝑡 are discarded, and the remaining variables are collected in a
educed vector

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜂 = 𝜂0
𝑢
𝑣
𝑤,𝑡
𝑤 = 𝜂̇0
𝜂,𝑥
𝜂,𝑦

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (23)

esides, the transfer functions of Eq. (21) are either real or imagi-
ary, which implies that 𝑍 can be split in two independent Gaussian
ectors,

=

⎡

⎢

⎢

⎢

⎢

⎣

𝜂 = 𝜂0
𝑢
𝑣
𝑤,𝑡

⎤

⎥

⎥

⎥

⎥

⎦

, (24)

nd

=
⎡

⎢

⎢

⎣

𝑤 = 𝜂̇0
𝜂,𝑥
𝜂,𝑦

⎤

⎥

⎥

⎦

, (25)

hose covariance matrices are given by expressions of the form of
q. (20). In terms of probability density function, the above consid-
rations translate into

𝑍 (𝜂, 𝑢, 𝑣, 𝑤,𝑡, 𝑤, 𝜂,𝑥, 𝜂,𝑦) = 𝑓𝑋 (𝜂, 𝑢, 𝑣, 𝑤,𝑡) × 𝑓𝑌 (𝑤, 𝜂,𝑥, 𝜂,𝑦) , (26)

where 𝑓𝑍 , 𝑓𝑋 , 𝑓𝑌 , are the respective multivariate normal density
functions of the Gaussian vectors 𝑍, 𝑋, and 𝑌 .

Case of infinite water depth with frequency–direction separation.
In the case of infinite water depth, the dispersion relation simplifies
into

𝑘 = 𝜔2

𝑔
. (27)

Then, by further assuming the independence of wave direction and
frequency distributions (Eq. (6)), the covariance matrix of the vectors
𝑋 and 𝑌 can be expressed in terms of wave spectrum moments:

𝛴𝑋 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑚0 𝛼10𝑚1 𝛼01𝑚1 −𝑚2
𝛼20𝑚2 𝛼11𝑚2 −𝛼10𝑚3

𝛼02𝑚2 −𝛼01𝑚3(Sym.)
𝑚4

⎤

⎥

⎥

⎥

⎥

⎦

(28)

𝛴𝑌 =
⎡

⎢

⎢

⎣

𝑚2 −𝛼10𝑚3∕𝑔 −𝛼01𝑚3∕𝑔
𝛼20𝑚4∕𝑔2 𝛼11𝑚4∕𝑔2(Sym.)

𝛼02𝑚4∕𝑔2

⎤

⎥

⎥

⎦

. (29)

In Eqs. (28)–(29), 𝑚𝑝 denotes the 𝑝th moment of the wave frequency
spectrum (see Eq. (15)), and 𝛼𝑝𝑞 are numerical factors accounting for
the directional spreading of waves:

𝛼𝑝𝑞 = ∫

𝜋

−𝜋
d𝜃 𝐷(𝜃) cos𝑝 𝜃 sin𝑞 𝜃 . (30)

3.2. Conditional distribution given up-crossing

Let 𝑍̌ and 𝑋̌ denote respectively the random vectors containing
the variables of 𝑍 and 𝑋, except for 𝜂 = 𝜂0. The conditional density
function of 𝑍̌, given that 𝜂0(𝑡) is up-crossing the level 𝑎, can be written
as (see for example Lindgren, 2012):

𝑓𝑍̌|𝜂0(𝑡)↑𝑎
=

𝑤𝑓𝑍̌|𝜂=𝑎

∫

+∞

0
𝜉𝑓𝑤|𝜂=𝑎(𝜉) d𝜉

, 𝑤 > 0 , (31)

where 𝑓𝑍̌|𝜂=𝑎 and 𝑓𝑤|𝜂=𝑎 are the conditional density functions of 𝑍̌ and
𝑤 = 𝜂̇ , given 𝜂 = 𝑎. Taking advantage of the independence of the
0
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Table 1
Values of the coefficients 𝛼𝑝𝑞 Eq. (30), for the three wave direction distributions which
re considered as illustrative examples in Section 3.4. These coefficients account for the
ffect of the wave direction distribution on the covariance matrices of the kinematic
ariables (see Eqs. (28)–(29)). Each column corresponds to a coefficient, and each line
o a wave direction distribution (see Eqs. (8)–(9)–(10)).

𝛼10 𝛼01 𝛼11 𝛼20 𝛼02
𝐷1 1 0 0 1 0
𝐷2 8∕3𝜋 0 0 3∕4 1∕4
𝐷3 0 0 0 1∕2 1∕2

vectors 𝑋 and 𝑌 , Eq. (31) may also be written :

𝑓𝑍̌|𝜂0(𝑡)↑𝑎
= 𝑓𝑋̌|𝜂=𝑎 ×

𝑤𝑓𝑌

∫

+∞

0
𝜉𝑓𝑤(𝜉) d𝜉

, 𝑤 > 0 , (32)

here 𝑓𝑋̌|𝜂=𝑎 is the conditional density function of 𝑋̌, given 𝜂 = 𝑎,
(which is Gaussian) and 𝑓𝑤 is the non-conditional density function
of 𝑤. The normalisation factor appearing in Eq. (32) can be readily
calculated, yielding:

𝑓𝑍̌|𝜂0(𝑡)↑𝑎
=

√

2𝜋
𝑚2
𝑓𝑋̌|𝜂=𝑎 ×𝑤𝑓𝑌 , 𝑤 > 0 . (33)

3.3. Up-crossing frequency

The average up-crossing frequency of the level 𝑧 = 𝑎, by the sea
surface elevation, is given by Rice’s formula (Rice, 1945):

𝜇↑
0 (𝑎) = ∫

+∞

0
𝜉𝑓𝜂,𝑤(𝑎, 𝜉) d𝜉 , (34)

here 𝑓𝜂,𝑤 is the non-conditional bivariate density function of 𝜂 and
. In the present case, where the considered stochastic process 𝜂0(𝑡) is
aussian, the up-crossing frequency can be further expressed as:

↑
0 (𝑎) =

1
2𝜋

√

𝑚2
𝑚0

exp
(

− 𝑎2

2𝑚0

)

. (35)

3.4. Illustrative examples

This subsection illustrates the effect of the up-crossing conditioning
on the distribution of the wave kinematic variables. The water depth is
assumed to be infinite. Three different sea states are considered: these
sea states have the same wave frequency distribution (see Section 2.3)
but have a different wave direction distribution, following Eqs. (8)–
(9)–(10). As a result, from one case to another, the non-conditional
covariance matrices of the kinematic variables, 𝛴𝑋 and 𝛴𝑌 , differ
only through the coefficients 𝛼𝑝𝑞 (see Eqs. (28)–(29)). The numerical
alues of these coefficients, obtained for each considered sea state,
re reported in Table 1. The numerical values of the first five wave
pectrum moments, also necessary to compute 𝛴𝑋 and 𝛴𝑌 , have been
eported in Eq. (16).

.4.1. Unidirectional sea state
As a first illustrative example, Fig. 2 shows the univariate density

unctions of the different variables, given up-crossing, for a material
oint standing at an altitude 𝑎 = 𝐻𝑠∕4, in a unidirectional sea state
see Eq. (8)). The kinematic variables have been nondimensionalised,
o that the density functions reported in Fig. 2 do not depend on
he actual values of 𝐻𝑠 and 𝑇𝑝. For testing purpose, these conditional
nivariate distributions have been computed by using two different
ethods:

1. Analytical calculation by successive integration of the multivari-
ate density function given in Eq. (33). The detailed expressions
of the resulting univariate density functions are reported in
5

Appendix A.1. n
2. Level-crossing detection in Monte-Carlo realisations of the sea
state, following the random phase/amplitude model briefly de-
scribed in Section 2.1. For each realisation, complex wave
amplitudes (see Eq. (5)) are drawn randomly and the corre-
sponding free surface elevation is obtained from Eq. (4). The
other kinematic variables (𝜂,𝑥, 𝑤, 𝑤,𝑡, 𝑢, 𝑢,𝑡) are computed from
expressions similar to Eq. (4), where the appropriate complex
amplitudes are obtained by using the transfer functions given in
Eq. (21). To compute the time sequence of the different vari-
ables, the fast Fourier transform has been advantageously used
(see for example §5.6 in Lindgren et al., 2013). For the results
reported in Fig. 2, 1000 sea state realisations were simulated,
each of them over a physical duration of 104𝑇𝑝, leading to the
detection of 7 348 281 up-crossings in total.

Both methods show an excellent agreement on the distributions. Be-
sides, the Monte Carlo ‘‘empirical’’ up-crossing frequency is also in good
agreement with the analytical expression (Eq. (35)), which yields, using
the frequency moments given in Eq. (16), the numerical value 𝜇↑

0 (𝑎 =
𝐻𝑠∕4) ≃ 0.735∕𝑇 𝑝. Note that the Monte Carlo approach is numerically
demanding, since the total number of detected up-crossings should be
quite large to reach a reasonable statistical precision (especially in the
tails of the distributions). The present calculation required a total CPU
time of about one hour (on a personal computer).

In order to check the analytical developments provided throughout
the present paper, Monte-Carlo simulations were also used to estimate
the results reported in Fig. 3 (conditional distributions, given up-
crossing, for a material point at rest in a multidirectional sea state),
Fig. 4 (up-crossing frequency as a function of forward speed), and
Fig. 5 (conditional distributions, given up-crossing, for a material point
with forward motion). The agreement between analytical and numer-
ical results was good; however, for reasons of clarity, Monte Carlo
results are not shown in Figs. 3–4–5

The nature of the different conditional univariate distributions,
shown in Fig. 2, is as follows:

• The vertical component of the fluid velocity, 𝑤, given up-crossing,
follows a Rayleigh distribution of mode

√

𝑚2.
• The univariate distributions of 𝑢 and 𝑤,𝑡, given up-crossing, are

normal (see Appendix A.1.1).
• The univariate distributions of 𝑢,𝑡 and 𝜂,𝑥 (which are linearly

related through Eq. (22)), given up-crossing, result from the
convolution of a normal distribution with a Rayleigh distribution
(see Appendix A.1.2).

he analytical expressions of these distributions (see Appendix A.1)
how that a change in the assumed crossing level (here 𝑎 = 𝐻𝑠∕4 has
een assumed), would affect the conditional distributions of 𝑢 and 𝑤,𝑡,
nly through their mean value (see Appendix A.1.1). The conditional
istributions of 𝑤, 𝑢,𝑡 and 𝜂,𝑥, do not depend on the value of the crossing
evel 𝑎.

.4.2. Multidirectional sea states
To illustrate the effect of wave directional spreading, the bivari-

te density functions of the horizontal velocity components (𝑢, 𝑣), the
orizontal acceleration components (𝑢,𝑡, 𝑣,𝑡), and the slope components
𝜂,𝑥, 𝜂,𝑦), given up-crossing, are shown in Fig. 3. Two different direction
istributions are considered: anisotropic and isotropic (𝐷2 and 𝐷3
efined in Eqs. (9)–(10)). The univariate distributions of the vertical
omponents of the fluid velocity and acceleration (𝑤 and 𝑤,𝑡), given up-
rossing, are not sensitive to the direction distribution of random waves
see Appendix A.1 along with Eq. (28)): therefore, they are identical to
he ones shown in Fig. 2 and are not reproduced in Fig. 3.

For both considered sea states, the symmetry of the direction distri-
ution about the 𝑦 = 0 plane translates into 𝛼11 = 𝛼01 = 0 (see Table 1).
he nullity of 𝛼11 implies that the variables 𝑢, 𝑢,𝑡, 𝜂,𝑥 respectively do
ot depend on 𝑣, 𝑣 , 𝜂 , when non-conditioned (see Eqs. (28)–(29)).
,𝑡 ,𝑦
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T
C
a

Fig. 2. Univariate density functions of random kinematic variables, given up-crossing – body at rest in a unidirectional sea state. The material point is fixed at an altitude 𝑎 = 𝐻𝑠∕4.
he dashed black lines show the analytical density functions obtained from successive integrations of Eq. (33). The solid grey lines show the results obtained from the Monte
arlo simulation of sea state realisations, based on the random phase/amplitude model (Section 2.1). As the sea is assumed to be unidirectional along the 𝑥-axis, the variables 𝑣,𝑡
nd 𝜂,𝑦 are identically zero.
Fig. 3. Density functions of random kinematic variables, given up-crossing – multidirectional sea states. The material point is at rest, at an altitude 𝑎 = 𝐻𝑠∕4. The three figures
show isodensity lines of the bivariate distributions of the pairs (𝑢, 𝑣), (𝑢,𝑡 , 𝑣,𝑡), (𝜂,𝑥 , 𝜂,𝑦), given up-crossing, in nondimensional form. Results are shown for two different wave direction
distributions: anisotropic (Eq. (9)), shown as solid lines, and isotropic (Eq. (10)), shown as dashed lines. The levels of the isodensity lines are (0.01;1) for the velocity distribution,
and (0.003;1) for the acceleration and slope distributions.
Besides, the nullity of 𝛼01 implies that 𝑣, 𝑣,𝑡, 𝜂,𝑦 do not depend neither
on 𝜂, nor on 𝑤. Therefore, their univariate distributions are not affected
by the level-crossing conditioning. It also implies that the level-crossing
conditioning does not alter the independence of the pairs (𝑢, 𝑣), (𝑢,𝑡, 𝑣,𝑡),
(𝜂,𝑥, 𝜂,𝑦): then, their conditional bivariate density functions are equal to
the product of the respective conditional univariate density functions.

In the case of the isotropic sea state (𝐷3), two additional remark-
able properties can be noted: 𝛼10 = 0 and 𝛼20 = 𝛼02. Then, the
random variables 𝑢, 𝑢,𝑡, 𝜂,𝑥, 𝑣, 𝑣,𝑡, 𝜂,𝑦 are not affected by the level-crossing
conditioning (due to 𝛼10 = 𝛼01 = 0). Moreover, 𝑢, 𝑢,𝑡, 𝜂,𝑥 have the
same variance as 𝑣, 𝑣 , 𝜂 (due to 𝛼 = 𝛼 ). This explains why the
6

,𝑡 ,𝑦 20 02
corresponding isodensity contours, shown as dashed lines in Fig. 3,
are centred circles.

In the case of the anisotropic sea state, 𝑢 non-conditionally depends
on 𝜂 (correlation coefficient ≃ 0.94), and 𝑢,𝑡, 𝜂,𝑥 non-conditionally de-
pend on 𝑤 (correlation coefficients ≃ +0.92 and ≃ −0.92, respectively).
The random variable 𝑢, given up-crossing, follows a normal distribution
with a non-zero mean and a reduced variance (see Eqs. (A.2)–(A.3)
in Appendix); the conditional variance of 𝑢 is smaller than the one
of 𝑣, although it is the opposite for non-conditional variances. The
‘‘egglike’’ shape of the isodensity contours of the conditional bivariate
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distributions of (𝑢,𝑡, 𝑣,𝑡) and (𝜂,𝑥, 𝜂,𝑦), is due to the conditional uni-
variate distributions of 𝑢,𝑡 and 𝜂,𝑥 being the convolution of a normal
distribution with a Rayleigh distribution (see Appendix A.1.2).

4. Body with horizontal motion

The present section analytically investigates the effect of Doppler
shift on stochastic up-crossing, when the considered material point has
a forward speed in the reference frame of the mean flow. The Sec-
tion 4.1 is a preamble, where the concepts of encounter wave frequency
and encounter wave spectrum are briefly reminded. The new up-
crossing condition is defined in Section 4.2. The following paragraph
(Section 4.3) introduces an extra kinematic variable that need to be
considered in the problem, along with the related non-conditional dis-
tribution. Then, the general expression of the conditional distribution
of kinematic variables, given up-crossing, is specified in Section 4.4; the
related up-crossing frequency is considered in Section 4.5. The section
ends with illustrative examples (Section 4.6).

4.1. Encounter wave frequency and encounter wave spectrum

Encounter wave frequency. The material point is now assumed to
move at a constant speed, 𝑉𝑠 (which may be positive or negative), in
a plane parallel to the mean free surface, at a given altitude 𝑧 = 𝑎.
The heading of the material point, 𝜓 , is measured relative to the 𝑥-
axis of the frame in which the problem is formulated (see Fig. 1). The
encounter frequency between the moving body and a water wave of
angular frequency 𝜔, propagating along a direction 𝜃, can be expressed
as

𝜔̃(𝜔, 𝜃) = 𝜔 − 𝑉𝑠 cos (𝜓 − 𝜃)𝑘(𝜔) , (36)

where 𝑘(𝜔) is the dispersion relation. For 𝑉𝑠 cos (𝜓 − 𝜃) > 0, waves
approach from behind, and two different intrinsic wave frequencies
may give the same encounter frequency. When 𝑉𝑠 cos (𝜓 − 𝜃) > 𝜔∕𝑘,
the material point catches up with the water waves and the encounter
frequency becomes negative.

Encounter wave spectrum. The two-dimensional encounter wave
spectrum is then given by

𝐺̃(𝜔̃, 𝜃) =
|

|

|

|

𝜕𝜔
𝜕𝜔̃

|

|

|

|

(𝜔̃, 𝜃) ×
𝑅(𝜔̃,𝜃)
∑

𝑟=1
𝐺(𝜔𝑟(𝜔̃, 𝜃), 𝜃) , (37)

here |𝜕𝜔∕𝜕𝜔̃| is the Jacobian related to the variable substitution.
(𝜔̃, 𝜃) is the number of distinct intrinsic frequencies corresponding

o the encounter frequency, 𝜔̃, for a given direction, 𝜃. Or, stated
ifferently, 𝑅 is the number of real solutions of Eq. (36), when 𝜔 is
he unknown. For a given water depth, ℎ, a given heading, 𝜓 , and a
iven forward speed, 𝑉𝑠, the number of solutions may be 0, 1 or 2,
epending on the values of 𝜔̃ and 𝜃. When two solutions exist, the two
orresponding contributions of the intrinsic wave spectrum have to be
ummed, which explains the summation operator in Eq. (37).

If the water depth is finite, the Jacobian, |𝜕𝜔∕𝜕𝜔̃|, has no simple
losed-form expression; when infinite water depth can be assumed, the
acobian reads
𝜕𝜔
𝜕𝜔̃

|

|

|

|

(𝜔̃, 𝜃) =
[

1 − 4 cos (𝜓 − 𝜃)𝜔̃∕𝜔𝑠
]−1∕2 , (38)

with

𝜔𝑠 =
𝑔
𝑉𝑠
. (39)

q. (37) shows that the motion-induced Doppler shift has a non-trivial
ffect on the encounter wave spectrum. However, as it is developed
elow, the computation of the conditional distribution of kinematic
ariables, given up-crossing, does not require the explicit use of the
ncounter spectrum 𝐺̃. Hence, the properties of the encounter spectrum
re not further investigated here; more details on this subject can be
ound in Lindgren et al. (1999).
7

𝑓

.2. Up-crossing condition

When the material point moves at a constant velocity, in a horizon-
al plane, a water entry event stands for the up-crossing of the level 𝑎
y the stochastic process

𝑠(𝑡) = 𝜂
(

𝑥0 + [𝑉𝑠 cos𝜓]𝑡, 𝑦0 + [𝑉𝑠 sin𝜓]𝑡, 𝑡
)

, (40)

here (𝑥0, 𝑦0) is the position of the body at 𝑡 = 0.

.3. Non-conditional distribution of kinematic variables

As 𝜂(𝑥, 𝑦, 𝑡) is a Gaussian field, stationary in time and homogeneous
n space, 𝜂𝑠(𝑡) is a stationary Gaussian process; its variance density
pectrum corresponds to the encounter wave frequency spectrum

̃(𝜔̃) = ∫

𝜋

−𝜋
d𝜃𝐺̃(𝜔̃, 𝜃) . (41)

he time derivative of this stochastic process, 𝜂̇𝑠(𝑡), may be physically
nterpreted as the velocity of the free surface elevation measured in
he reference frame of the moving material point. Besides, as the
aterial point moves in a horizontal plane, the vertical velocity (and

cceleration) of the fluid particles is the same when measured in the
eference frame of the mean flow and the reference frame of the moving
aterial point. As a consequence, for a moving material point, 𝜂̇𝑠 is
ot equal to the vertical component of the fluid velocity, to the leading
rder (this point is further discussed in Section 5.2). Then, compared
o the case of a material point at rest (see Section 3.1, Eq. (23)), it is
ecessary to introduce 𝜂̇𝑠 as an extra variable in the considered random
ector of kinematic variables:

𝑠 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜂 = 𝜂𝑠
𝑢
𝑣
𝑤,𝑡
𝑤
𝜂,𝑥
𝜂,𝑦
𝜂̇𝑠

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (42)

he different kinematic variables collected in 𝑍𝑠 are measured at the
nstant location of the moving material point, at a given time. The
omponents of the fluid velocity and acceleration, 𝑢, 𝑣, 𝑤, 𝑤,𝑡, 𝑢,𝑡,
,𝑡 (the last two variables are absent from 𝑍𝑠, due to their linear
elationship with 𝜂,𝑥 and 𝜂,𝑦; see Eq. (22)) are still measured in the
eference frame of the mean flow. As the extra component, 𝜂̇𝑠, results
rom a linear transformation of 𝜂, the random vector 𝑍𝑠 is Gaussian. Its
ean vector is zero. The transfer functions of the first 7 components are

till given by Eq. (21), while the transfer function of 𝜂̇𝑠 can be expressed
s

𝜂̇𝑠 (𝜔, 𝜃) = 𝑖𝜔̃(𝜔, 𝜃) . (43)

s 𝜂̇𝑠 is imaginary, it is again possible to split the random vector
𝑠 into two independent Gaussian random vectors. A first vector,
, whose components and covariance matrix remain the same (see
qs. (24)–(28)). A second vector, 𝑌𝑠, which includes the additional
andom variable 𝜂̇𝑠, compared to the vector 𝑌 defined in Eq. (25),

𝑠 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑤
𝜂,𝑥
𝜂,𝑦
𝜂̇𝑠

⎤

⎥

⎥

⎥

⎥

⎦

. (44)

𝑠 is a zero-mean Gaussian vector, whose covariance matrix, 𝛴𝑌𝑠 , has
n expression of the form of Eq. (20). The non-conditional probability
ensity function of kinematic variables can be expressed as
𝑍𝑠 (𝜂, 𝑢, 𝑣, 𝑤,𝑡, 𝑤, 𝜂,𝑥, 𝜂,𝑦, 𝜂̇𝑠) = 𝑓𝑋 (𝜂, 𝑢, 𝑣, 𝑤,𝑡) × 𝑓𝑌𝑠 (𝑤, 𝜂,𝑥, 𝜂,𝑦, 𝜂̇𝑠) , (45)
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where 𝑓𝑌𝑠 is the probability density function of 𝑌𝑠. The covariance
matrix of 𝑌𝑠 may be further expressed as

𝛴𝑌𝑠 =

⎡

⎢

⎢

⎢

⎢

⎣

(

𝛴𝑌
)

𝑚11̃
−𝜏10∕𝑔
−𝜏01∕𝑔

𝑚11̃ −𝜏10∕𝑔 −𝜏01∕𝑔 𝑚2̃

⎤

⎥

⎥

⎥

⎥

⎦

, (46)

here 𝑚2̃ denotes the 2nd order moment of the encounter wave spec-
rum,

𝑚2̃ = ∫

𝜋

−𝜋
d𝜃 ∫

+∞

−∞
d𝜔̃ 𝜔̃2𝐺̃(𝜔̃, 𝜃)

= ∫

𝜋

−𝜋
d𝜃 ∫

+∞

0
d𝜔 𝜔̃(𝜔, 𝜃)2𝐺(𝜔, 𝜃) ,

(47)

11̃ is defined as

11̃ = ∫

𝜋

−𝜋
d𝜃 ∫

+∞

0
d𝜔 𝜔 ⋅ 𝜔̃(𝜔, 𝜃)𝐺(𝜔, 𝜃) , (48)

nd 𝜏𝑝𝑞 is defined as

𝑝𝑞 = ∫

𝜋

−𝜋
d𝜃 cos𝑝(𝜃) sin𝑞(𝜃)∫

+∞

0
d𝜔 𝑔𝑘(𝜔)𝜔̃(𝜔, 𝜃)𝐺(𝜔, 𝜃) . (49)

q. (47) gives two alternative expressions, depending on which wave
pectrum (𝐺̃ or 𝐺) is used for the integration. Conversely, 𝑚11̃ and 𝜏𝑝𝑞

cannot be readily expressed in terms of encounter spectrum, because
𝜔̃ may not be an injective function of 𝜔 (for a given angle 𝜃, see
Section 4.1).

From Eqs. (46)–(47)–(48)–(49), it appears that the computation
of 𝛴𝑌𝑠 does not require the use of the encounter spectrum 𝐺̃. The
knowledge of 𝛴𝑌𝑠 is sufficient to compute the conditional distribution of
kinematic variables, given up-crossing, and the related up-crossing fre-
quency. Hence, as anticipated in Section 4.1, the explicit computation
of the encounter spectrum 𝐺̃ is not required for the present matter.

ase of infinite water depth with frequency–direction separation.
f the water depth is infinite and the wave frequency/direction distri-
utions are independent, Eqs. (47)–(48)–(49) can be further expressed
s

11̃ = 𝑚2 −
𝛽1
𝜔𝑠
𝑚3 , (50)

𝜏10 = 𝛼10𝑚3 −
[

cos (𝜓)𝛼20 + sin (𝜓)𝛼11
] 𝑚4
𝜔𝑠

, (51)

𝜏01 = 𝛼01𝑚3 −
[

cos (𝜓)𝛼11 + sin (𝜓)𝛼02
] 𝑚4
𝜔𝑠

, (52)

𝑚2̃ = 𝑚2 −
2𝛽1
𝜔𝑠

𝑚3 +
𝛽2
𝜔𝑠2

𝑚4 , (53)

here the coefficients 𝛽1 and 𝛽2 are given by

𝛽1 = ∫

𝜋

−𝜋
d𝜃 cos (𝜃 − 𝜓)𝐷(𝜃)

= cos (𝜓)𝛼10 + sin (𝜓)𝛼01 ,
(54)

nd

𝛽2 = ∫

𝜋

−𝜋
d𝜃 cos2(𝜃 − 𝜓)𝐷(𝜃)

= 1
2
[

1 + cos (2𝜓)(𝛼20 − 𝛼02) + 2 sin (2𝜓)𝛼11
]

.
(55)

.4. Conditional distribution given up-crossing

Adopting similar notations as in Section 3.2, let 𝑍̌𝑠 (resp. 𝑋̌) denote
he random vector containing the variables of 𝑍𝑠 (resp. 𝑋), except
or 𝜂𝑠 = 𝜂. The conditional density function of 𝑍̌𝑠, given that 𝜂𝑠(𝑡) is
p-crossing the level 𝑎, reads

𝑍̌𝑠|𝜂𝑠(𝑡)↑𝑎
=

𝜂̇𝑠𝑓𝑍̌𝑠|𝜂=𝑎
+∞
d𝜉 𝜉𝑓𝜂̇ |𝜂=𝑎(𝜉)

, 𝜂̇𝑠 > 0 , (56)
8

∫0 𝑠 a
hich may also be written as

𝑍̌𝑠|𝜂𝑠(𝑡)↑𝑎
=

√

2𝜋
𝑚2̃
𝑓𝑋̌|𝜂=𝑎 × 𝜂̇𝑠𝑓𝑌𝑠 , 𝜂̇𝑠 > 0 . (57)

When comparing the case of a fixed material point (see Section 3)
nd the case of a moving material point (present section), up-crossings
re checked for two different stochastic processes, 𝜂0(𝑡) and 𝜂𝑠(𝑡) respec-
ively. Hence the population sampled from up-crossing conditioning is
lso different a priori. However, the random vector 𝑋̌ depends solely
n the variable 𝜂𝑠, but not on the variable 𝜂̇𝑠 – here it is important to
ifferentiate the stochastic process 𝜂𝑠(𝑡) from the random variable 𝜂𝑠,
hich is the value of 𝜂𝑠(𝑡) at a given time. As the probabilistic properties
f 𝜂𝑠 are the same as those of 𝜂0 (including its dependency relation
ith 𝑋̌), the conditional distribution of 𝑋̌, given up-crossing, turns
ut to be unaffected by the horizontal motion of the material point
it depends solely on the crossing level, 𝑎). Conversely, the random
ector 𝑌 (defined in Eq. (25)) does not depend on 𝜂𝑠, but depends on
𝜂̇𝑠, whose probabilistic properties are affected by the velocity (𝑉𝑠) and
eading (𝜓) of the material point. Hence, the conditional distribution of
, given up-crossing, is found to be affected by the horizontal motion of

he material point, which reflects the fact that the underlying sampled
opulation is indeed statistically different when the material is given a
orizontal motion (see Section 4.6 for illustrative examples).

.5. Up-crossing frequency

Similarly to Eq. (35), the up-crossing frequency for a material point
oving at a constant speed is given by:

↑
𝑠 = 1

2𝜋

√𝑚2̃
𝑚0

exp
(

− 𝑎2

2𝑚0

)

. (58)

ase of infinite water depth with frequency–direction separation.
f the water depth is infinite and the wave frequency/direction distri-
utions are independent, Eqs. (39)–(53) may be combined to express
2̃ as follows:

2̃ = 𝑚2 − 2
𝑚3
𝑔
𝛽1𝑉𝑠 +

𝑚4

𝑔2
𝛽2𝑉

2
𝑠 . (59)

From Eq. (59) it appears that, for a given sea state and given heading,
̃ 2 is a quadratic function of 𝑉𝑠, which reaches a minimum value

𝑚̃min
2 = 𝑚2 −

𝑚3
2

𝑚4

𝛽12

𝛽2
(60)

or a velocity

𝑠
min = 𝑔

𝑚3
𝑚4

𝛽1
𝛽2
. (61)

he corresponding minimum up-crossing frequency can be readily
btained by substituting Eq. (60) into Eq. (58). When the ship velocity
ecomes much larger than the phase velocity of waves, the up-crossing
requency tends to the asymptote

↑
𝑠 ∼

𝑉𝑠 → ±∞
1
2𝜋

|

|

𝑉𝑠||
𝑔

√

𝑚4
𝑚0

√

𝛽2 exp
(

− 𝑎2

2𝑚0

)

, (62)

where 𝜇↑
𝑠 becomes linearly dependent on |

|

𝑉𝑠||. Physically, it corresponds
o a situation where the wave field can be considered as ‘‘frozen’’ at a
iven time.

.6. Illustrative examples

Figs. 4–5 illustrate how the up-crossing frequency and the related
onditional distribution of kinematic variables are affected by the
orward speed of the material point. Five different configurations are
onsidered; they are listed in Table 2. The considered sea states are
he same as in Section 3.4. Compared to the case of a material point
t rest, the consideration of forward motion required to introduce the
dditional kinematic variable, 𝜂̇ , along with four additional covariance
𝑠
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Table 2
List of the different configurations considered for illustrative purpose in Section 4.6.
Each line of the table corresponds to a configuration. The first column specifies a name
which is used to identify the configuration. The second column specifies the assumed
direction distribution of waves (see Section 2.2). The third column specifies the heading
of the material point. For these five configurations, Figs. 4–5 respectively show how
the up-crossing frequency and the related conditional distribution of kinematic variables
are affected by the forward speed of the material point.

Name Direction distribution Heading

𝐶1 𝐷1 (Eq. (8)) 𝜓 = 0
𝐶2 𝐷2 (Eq. (9)) 𝜓 = 0
𝐶3 𝐷2 (Eq. (9)) 𝜓 = 𝜋∕4
𝐶4 𝐷2 (Eq. (9)) 𝜓 = 𝜋∕2
𝐶5 𝐷3 (Eq. (10)) 𝜓 = 0

Fig. 4. Up-crossing frequency, 𝜇↑
𝑠 , as a function of the forward speed, 𝑉𝑠. Both

uantities are nondimensionalised by using the peak wave period, 𝑇𝑝 = 2𝜋∕𝜔𝑝, and
the related phase velocity, 𝑐𝑝 = 𝑔∕𝜔𝑝. The material point is assumed to move at an
altitude 𝑎 = 𝐻𝑠∕4. Five different configurations are considered, as listed in Table 2.

coefficients (see Section 4.3). For infinite water depth, as assumed in
the present examples, Eqs. (50) to (55) provide closed-form expres-
sions for these four additional covariance coefficients, as functions of
frequency moments, 𝑚𝑝, coefficients 𝛼𝑝𝑞 , and material point heading,
𝜓 . For the assumed spectrum shape, the numerical values of the first
five frequency moments are given in Eq. (16). The numerical values of
the coefficients 𝛼𝑝𝑞 , for the different direction distributions, have been
reported in Table 1.

4.6.1. Up-crossing frequency
Fig. 4 shows the evolution of the up-crossing frequency, 𝜇↑

𝑠 , as a
function of the velocity of the material point, 𝑉𝑠, for the different
configurations listed in Table 2. As the wave frequency spectrum, 𝑆(𝜔),
is the same for the five configurations, all the curves intersect at 𝑉𝑠 = 0.
Indeed, when the material point is at rest, the up-crossing frequency is
not sensitive to the directional spreading of the sea state. In all cases,
the function 𝜇↑

𝑠 (𝑉𝑠) shows a minimum, whose coordinates are given by
Eqs. (58)–(60)–(61). All curves are symmetrical about the vertical axis
passing through their minimum, which reflects the fact that 𝜇↑

𝑠 (𝑉𝑠) is
the square root of a quadratic function (see Eqs. (58)–(60)). For the
configurations 𝐶4-𝐶5, the minimum up-crossing frequency is obtained
for 𝑉𝑠 = 0: this is due to the symmetry of the wave direction
distribution about the direction perpendicular to the material point
heading, which implies 𝛽1 = 0, resulting in 𝑉𝑠min = 0 (see Eq. (61)).

The minimum up-crossing frequency is strictly greater than zero for
all considered configurations, which is related to two different effects.
First, the dispersion relation of water waves implies that individual
9

waves of different frequencies propagate with different phase speeds; t
Table 3
Mode of the conditional distribution of 𝜂̇𝑠, given up-crossing. The kinematic variable
̇ 𝑠, given up-crossing, follows a Rayleigh distribution, whose mode is equal to

√

𝑚2̃ (see
Eq. (53)). The present table reports the values taken by this mode, in nondimensional
form (

√

𝑚2̃∕𝐻𝑠𝜔𝑝), for the different cases illustrated in Fig. 5. In Fig. 5, for each of the
five configurations listed in Table 2, four different forward speeds are considered. Each
line of the present table corresponds to a configuration, and each column corresponds
to a forward speed. As the chosen forward speeds are different for the configurations
𝐶1-𝐶2-𝐶3 and 𝐶4-𝐶5, the reported values are divided into two different subtables.
When the material point is at rest, 𝜂̇𝑠 coincides with 𝑤, variable which does not depend
on the directional spreading of the sea state; this explains why the values reported for
𝑉𝑠∕𝑐𝑝 = 0 are identical (equal to ≃ 0.303) for all configurations.

𝑉𝑠∕𝑐𝑝 = −3 𝑉𝑠∕𝑐𝑝 = 0 𝑉𝑠∕𝑐𝑝 = 0.7 𝑉𝑠∕𝑐𝑝 = 4

𝐶1 1.66 0.303 0.108 1.54
𝐶2 1.47 0.303 0.117 1.31
𝐶3 1.22 0.303 0.183 1.06

𝑉𝑠∕𝑐𝑝 = 0 𝑉𝑠∕𝑐𝑝 = 0.6 𝑉𝑠∕𝑐𝑝 = 1.3 𝑉𝑠∕𝑐𝑝 = 4

𝐶4 0.303 0.332 0.424 0.962
𝐶5 0.303 0.360 0.517 1.33

then a material moving at a constant velocity cannot maintain a con-
stant position relative to all individual waves. In the present illustrative
examples, an infinite water depth has been assumed; the effect of
wave dispersion would be much reduced in shallow water. Second,
the projections of wave propagation speeds, along the material point
heading, are further scattered by the directional spreading of waves.
This second effect is accounted for, in Eq. (60), by the factor 𝛽12∕𝛽2.
This factor is equal to 1 for a unidirectional sea (except for a material
moving exactly abeam a unidirectional sea, degenerate case where the
up-crossing frequency does not depend on the forward speed) and less
than 1 otherwise. Then, for a given frequency spectrum, 𝑆(𝜔), the
smallest possible minimum up-crossing frequency is obtained for a uni-
directional sea, which is consistent with the results reported in Fig. 4.
In the case of the unidirectional sea (𝐶1), it is also interesting to note
that the minimum up-crossing frequency is reached for 𝑉𝑠min < 𝑐𝑝, the
former being the phase velocity corresponding to the peak of the wave
frequency spectrum. This velocity ordering is due to the contribution
of short waves in the tail of the assumed JONSWAP spectrum.

Finally, when |

|

𝑉𝑠|| ≫ 𝑐𝑝, the ordering of the asymptotic slopes ob-
tained for the different configurations can be understood from Eq. (62).
As the wave frequency spectrum, 𝑆(𝜔), is the same in all consid-
ered cases, the difference in the asymptotic slopes is governed by
the geometrical factor

√

𝛽2. For the five configurations considered
ere, 𝐶1 to 𝐶5, the respective geometrical factors can be analyti-
ally computed (by using Eq. (55) and Table 1), which gives

√

𝛽2 =
1;
√

3∕2; 1∕
√

2; 1∕2; 1∕
√

2.

4.6.2. Kinematic variables which are not affected by the speed of advance
The conditional distribution of the kinematic variables (𝑢, 𝑣, 𝑤,𝑡),

iven up-crossing, is not affected by the horizontal motion of the
aterial point, but depends solely on its altitude, 𝑎 (see Section 4.4

or an explanation). Therefore, the effect of level-crossing conditioning
n these variables, is identical to the one illustrated in Section 3.4, for
he three considered wave direction distributions, 𝐷1, 𝐷2, 𝐷3.

.6.3. Kinematic variables which are affected by the speed of advance
Among the kinematic variables considered in the present paper, the

onditional distributions of 𝑤, 𝜂,𝑥, 𝜂,𝑦, 𝑢,𝑡 and 𝑣,𝑡, given up-crossing, are
ffected by the speed of advance of the material point, through their
ependence on 𝜂̇𝑠 (see Sections 4.3–4.4). Conversely, they do not de-
end on the assumed altitude of the material point, 𝑎. Fig. 5 illustrates
he effect of the forward speed on the conditional distributions of these
ive kinematic variables, given up-crossing, for the five configurations
isted in Table 2.

The random variable 𝜂̇𝑠, given up-crossing, follows a Rayleigh dis-
√

𝑚 (see Eq. (53)). This distribution
ribution with a mode equal to 2̃
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is not represented in Fig. 5, but the value of its mode, computed for
the different considered configurations, is reported in Table 3. As the
up-crossing frequency depends on 𝑉𝑠 solely through the term √

𝑚2̃ (see
q. (58)), the curves shown in Fig. 4 can be used as a direct proxy (up
o a numerical factor) for the evolution of the mode √

𝑚2̃ as a function
of 𝑉𝑠. Conversely, when 𝑉𝑠 ≠ 0, the velocity of the free surface elevation
measured in the reference frame of the mean flow, 𝜂,𝑡 = 𝑤, given
up-crossing, is not Rayleigh-distributed anymore. Indeed, the moving
material point may cross the sloped free surface even though the sea
elevation, 𝜂, is locally decreasing. Instead, the conditional distribution
of 𝑤, given up-crossing, results from the convolution of a Rayleigh
distribution with a normal distribution (see Appendix A.2.1).

The evolution of the conditional bivariate density function of
(𝑢,𝑡, 𝑣,𝑡), as a function of 𝑉𝑠, follows the one of (𝜂,𝑥, 𝜂,𝑦) in a symmetric
way, since these variables are linearly related through Eq. (22). The
effect of the forward speed on the bivariate distribution of (𝜂,𝑥, 𝜂,𝑦),
given up-crossing, is discussed below, individually for the different
considered configurations.

Configuration 𝐶1: unidirectional sea. As the sea is assumed to be
unidirectional along the 𝑥-axis, the variables 𝑣,𝑡 and 𝜂,𝑦 are identically
zero. The distributions of 𝜂,𝑥, 𝑢,𝑡 and 𝑤, given up-crossing, are all
ignificantly affected by the forward speed of the material point. In
he asymptotic case where 𝑉𝑠∕𝑐𝑝 → +∞ the conditional distribution

of 𝜂,𝑥, given up-crossing, converges towards a Rayleigh distribution
of mode

√

𝑚4∕𝑔, while in the limit 𝑉𝑠∕𝑐𝑝 → −∞, this is −𝜂,𝑥 which
converges towards the same Rayleigh distribution. Mathematically, this
asymptotic behaviour can be explained as follows. The material point
heading is 𝜓 = 0 and all waves propagate in the direction 𝜃 = 0; then,
the transfer function of 𝜂̇𝑠 is asymptotically equivalent to

𝜂̇𝑠 (𝜔, 𝜃 = 0) ∼
𝑉𝑠 → ±∞

− 𝑖𝑉𝑠𝑘(𝜔) , (63)

leading to the equivalence relation

𝜂,𝑥 ∼
𝑉𝑠 → ±∞

𝜂̇𝑠∕𝑉𝑠 . (64)

As the conditional distribution of 𝜂̇𝑠, given up-crossing, is of Rayleigh
type, Eq. (64) explains the asymptotic behaviour of the conditional
distribution of 𝜂,𝑥. From a physical viewpoint, Eq. (64) reflects the
fact that the free surface can be considered as ‘‘frozen’’ at a given
time, when 𝑉𝑠 → ±∞. In practice, Fig. 5 shows that for 𝑉𝑠∕𝑐𝑝 =
+4 (resp. 𝑉𝑠∕𝑐𝑝 = −3), 𝜂,𝑥 (resp. −𝜂,𝑥) is already very close to be
Rayleigh-distributed.

Configurations 𝐶2 → 𝐶4: material point moving in a short-crested
anisotropic sea with different headings. In the configurations 𝐶2-
𝐶3-𝐶4, the material point is moving in a short-crested anisotropic sea,
with a heading different for each configuration. When |

|

𝑉𝑠||∕𝑐𝑝 ≫ 1, the
symptotic behaviour is reminiscent of the one discussed for config-
ration 𝐶1. In this asymptotic regime, the free surface may be again
onsidered as frozen (except for waves propagating exactly abeam,
.e. with directions satisfying cos (𝜓 − 𝜃) = 0). Let 𝜂,𝓁 denote the wave

slope measured along the direction of motion of the material point. The
transfer function of 𝜂,𝓁 is given by

𝜂,𝓁 (𝜔, 𝜃) = −sgn(𝑉𝑠)𝑖 cos (𝜃 − 𝜓)𝑘(𝜔) (65)

while the transfer function of 𝜂̇𝑠 is asymptotically equivalent to

𝜂̇𝑠 (𝜔, 𝜃) ∼
𝑉𝑠 → ±∞

− 𝑖𝑉𝑠 cos (𝜃 − 𝜓)𝑘(𝜔) , for cos (𝜃 − 𝜓) ≠ 0, (66)

which induces4

𝜂̇𝑠 ∼
𝑉𝑠 → ±∞

|

|

𝑉𝑠||𝜂,𝓁 . (67)

4 The only exception would the degenerate situation where all waves
ropagate exactly abeam, with cos (𝜃 − 𝜓) = 0, leading to 𝜂,𝓁 = 0 and 𝜂̇𝑠 = 𝜂̇,

regardless of the value of 𝑉 .
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𝑠 s
As a consequence, the univariate distribution of 𝜂,𝓁 , given up-crossing,
converges to a Rayleigh distribution. This explains the shift of the
bivariate density function of (𝜂,𝑥, 𝜂,𝑦) towards the direction of motion,
as |

|

𝑉𝑠|| increases ( Fig. 5, middle column).
For the heading 𝜓 = 0 (configuration 𝐶2), 𝜂,𝑦 is independent of 𝜂̇𝑠,

hich implies that the distribution of 𝜂,𝑦 is not affected by the level-
rossing conditioning: it remains a centred normal distribution. Besides,
,𝑦 and 𝜂,𝑥, non-conditioned, are independent variables (since 𝛼11 = 0,
ee Section 3.1 and Table 1). Then, the combination of these two fea-
ures implies that 𝜂,𝑥 and 𝜂,𝑦, given up-crossing, are also independent.
he univariate distribution of 𝜂,𝑥, given up-crossing, results from the
onvolution of a Rayleigh distribution with a normal distribution (see
ppendix A.2.1).

For headings 𝜓 = 𝜋∕4;𝜋∕2 (configurations 𝐶3 and 𝐶4), 𝜂,𝑥 and 𝜂,𝑦
oth depend on 𝜂̇𝑠. Then, the bivariate density function of (𝜂,𝑥, 𝜂,𝑦),
iven up-crossing, takes a more complicated form, whose analytical
xpression is detailed in Appendix A.2.2. Although 𝜂,𝑥 and 𝜂,𝑦, non-
onditioned, are independent, the level-crossing conditioning intro-
uces a dependence. For the configuration 𝐶4, only positive velocities
re considered because of the symmetry of this configuration; a change
f sign in 𝑉𝑠 would have no effect on the distribution of 𝑤, and would
hange the bivariate density functions of the pairs (𝜂,𝑥, 𝜂,𝑦) and (𝑢,𝑡, 𝑣,𝑡)
nto their reflexion through the 𝑥-axis.

onfiguration 𝐶5: isotropic sea. In an isotropic wave field, the bi-
ariate density function of (𝜂,𝑥, 𝜂,𝑦), given up-crossing, does not depend
n the heading of the material point, except for a rotation, since the
roblem has been formulated in a frame which is not aligned with the
irection of motion. In the present example, 𝜓 = 0 has been assumed.
ote also that for all density functions shown in Fig. 5, configuration
5, only positive forward speeds have been assumed. A change of sign

n 𝑉𝑠 would have no effect on the distribution of 𝑤, and would simply
hange the bivariate density functions of (𝜂,𝑥, 𝜂,𝑦) and (𝑢,𝑡, 𝑣,𝑡) into their
eflexion through the 𝑦-axis. The conditional density function of (𝜂,𝑥, 𝜂,𝑦)
hifts towards the direction of motion as 𝑉𝑠 increases; this tendency can
e understood in the same way as explained above for configurations
2 → 𝐶4. Similarly to configuration 𝐶2, in configuration 𝐶5, 𝜂,𝑥 and
,𝑦, given up-crossing, are independent variables.

. Discussion about the use of the stochastic model in the context
f slamming

The conditional distribution of wave kinematic variables, given free-
urface up-crossing, may be of practical interest for questions related to
he resulting water entry events. One application may be the prediction
f the slamming load distribution for the design of a marine structure
hich will be exposed to wave impacts. This possible application
as a motive for the choice of kinematic variables considered in the
resent study (see Section 2.4). The present section discusses the use of
he stochastic framework introduced in Sections 3–4, for applications
elated to slamming. First, the different combinations of kinematic vari-
bles which may be considered are discussed in Section 5.1, in the light
f existing studies on stochastic slamming in irregular waves. Then,
ection 5.2 explains how the velocity and acceleration components of
he fluid may be expressed in a local frame relevant for the water
ntry problem. Section 5.3 briefly mentions the possibility of taking
nto account seakeeping motions in the stochastic analysis. Finally, the
otential need to take into account the temporal evolution of kinematic
ariables during water entry events, and how it may be implemented,
s discussed in Section 5.4.

.1. Considered kinematic variables

The normal component (relative to the free surface) of the fluid
elocity is the most decisive variable, when addressing the question of

lamming loads on a marine structure. In many stochastic approaches
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Fig. 5. Conditional density functions of kinematic variables, given up-crossing, for a moving material point. As in Figs. 2–3, the density functions are represented in nondimensional
form. Five configurations are considered, as listed in Table 2. For all bivariate distributions, the levels of the two isodensity contours are (0.003;1). In the case of the unidirectional
sea (𝐶1), no wave propages along the 𝑦-axis; therefore, 𝑣,𝑡 = 0 and 𝜂,𝑦 = 0, and no bivariate density function is represented. For each configuration, the legend in the top right
corner of the left figure indicates the nondimensional forward speeds, 𝑉𝑠∕𝑐𝑝, for which the density functions have been plotted; the heading of the moving material point is shown
as a grey arrow in the middle figure.
it is the only considered random variable, the slamming loads being
assumed to be weakly dependent on the other kinematic variables (see
for example Ochi and Motter, 1973; Rassinot and Mansour, 1995; Wang
et al., 2002; Hermundstad and Moan, 2007; Dessi and Ciappi, 2013;
Wang and Guedes Soares, 2016). Helmers et al. (2012) implemented a
more comprehensive stochastic approach, where the conditional joint
distribution of four kinematic variables (vertical velocity, vertical accel-
eration, wave slope, and seakeeping heel angle) was used to estimate
the probability distribution of impact loads on a wedge-shaped body,
exposed to unidirectional waves, with no forward speed. As they used
an analytical Wagner-type (Wagner, 1932) water entry model (com-
putationally fast), Helmers et al. (2012) could perform the transfer
of the distribution of kinematic variables through the impact model
by using a Monte Carlo sampling. If they are identified as relevant,
additional kinematic variables, such as the tangential velocity of the
fluid (see for example Belik and Price (1982)), may be included in
11
the stochastic analysis. Generally, the more numerous the considered
kinematic variables, the more elaborate the impact model need to be.
The most advanced analytical models based on Wagner’s theory can,
in principle, take into account all the kinematic variables considered in
the present analysis (see e.g. Scolan and Korobkin, 2015). If the water-
entry model is computationally demanding (e.g. CFD simulations), as
an alternative to Monte Carlo sampling, other approaches such as
metamodels or reliability methods may be used to probe the probability
distribution of slamming loads and stresses.

5.2. Velocity and acceleration components in the local frame of the free
surface

When the considered solid body moves forward through the wave
field, some attention is required regarding the fluid motion components
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Fig. 5. (continued).
to be used as an input for the water entry model. These components
should be specified as normal and tangential, relative to the local
free surface. For the sake of simplicity, let consider a two-dimensional
situation (it can be readily generalised to three dimensions), where a
material point moves through a unidirectional sea, along the 𝑥-axis. Let
consider an up-crossing event where the material point crosses the free
surface at a point 𝐶, and let define a local fixed frame (𝐶, 𝑡⃗, 𝑛), where
the vectors 𝑡⃗ and 𝑛 are locally tangent and normal to the free surface,
at up-crossing. The situation is sketched in Fig. 6. To the leading order
(consistent with the order of approximation of the linear wave model),
the relative fluid velocity, in the local frame (𝐶, 𝑡⃗, 𝑛), reads

𝑉r ≃ (𝑢 − 𝑉𝑠)
⏟⏟⏟

≃𝑣𝑡

𝑡⃗ + (𝑉𝑠𝜂,𝑥 +𝑤)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

≃𝑣𝑛

𝑛 . (68)

Note that the term 𝑉𝑠𝜂,𝑥 should not be neglected, since 𝑉𝑠 may be
significantly larger than the magnitude of 𝑤, even for vessels with
moderate speeds. Hence, to the leading order, the relative normal
velocity of the fluid is equal to the relative velocity of the free surface
elevation:

𝑣𝑛 ≃ 𝑉𝑠𝜂,𝑥 +𝑤 = 𝜂̇𝑠 . (69)

From a physical standpoint, the relation 𝑣𝑛 ≃ 𝜂̇𝑠 can be interpreted as
the kinematic free-surface condition, expressed to the leading order, in
the reference frame of the moving material point.

Regarding the relative fluid acceleration, its components in the local
fixed frame (𝐶, 𝑡⃗, 𝑛), to the leading order, read

𝐴r ≃ 𝑢,𝑡
⏟⏟⏟

≃𝑎𝑡

𝑡⃗ + 𝑤,𝑡
⏟⏟⏟

≃𝑎𝑛

𝑛 , (70)

where the assumption that the material point moves with a constant
velocity has been taken into account. Contrary to the result obtained
for the velocity, to the leading order, the normal component of the fluid
acceleration does not equal the acceleration rate of the free surface
elevation, measured in the frame of the moving material point.
12
Fig. 6. Local frame for the water entry problem. The material point moves along the
𝑥-axis with a constant velocity, 𝑉𝑠. It crosses the water free surface, represented as
a dashed line, at a point 𝐶. When addressing a question related to the water entry
phenomenon (e.g. to estimate slamming loads), it is convenient to express kinematic
variables in a local fixed frame (𝐶, 𝑡⃗, 𝑛), where 𝑡⃗ and 𝑛 are locally tangent and normal
to the free surface, respectively.

5.3. Accounting for seakeeping motions

The present study focused on the effect of the forward velocity on
the up-crossing frequency and the related conditional distribution of
kinematic variables. Accounting for seakeeping motions in the present
stochastic analysis would present no specific difficulties, as long as the
seakeeping motions are linearly modelled. The way forward to include
seakeeping motions in the present stochastic approach is described in
Appendix B.

5.4. Time evolution of kinematic variables during the water entry

When considering the level-crossing problem in the context of slam-
ming, another important question is whether the wave kinematics can
be considered as fixed during the slamming event. Indeed, the present
study focused on the joint distribution of kinematic variables at the
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free-surface crossing, without considering the subsequent evolution of
kinematic variables. Kinematic variables may be considered as fixed if
the characteristic time of the slamming event, 𝑡𝑠, is much smaller than
the characteristic encounter period of impacting waves, which may be
translated into

𝜔̃𝑡𝑠 ≪ 1 . (71)

The characteristic slamming time, 𝑡𝑠, may be roughly estimated as
the characteristic height of the exposed structure, ℎ𝑒, divided by the
characteristic impact velocity,

𝑡𝑠 ≃
ℎ𝑒

𝐻𝜔̃∕2
, (72)

here 𝐻 is the characteristic height of impacting waves. The com-
ination of Eqs. (71)–(72) shows that kinematic variables may be
onsidered as fixed during the impact event, if the vertical extension
f the body part exposed to slamming is much smaller than the char-
cteristic height of impacting waves; this may be typically the case for
ppendages, such as stabilising fins on a ship, or diving planes on a
urfaced submarine. Assuming fixed kinematic variables may be also
ustified for larger bodies, if the early stage of the water entry can be
onsidered as the most relevant with regard to hydrodynamic loads;
his may be typically the case for blunt bodies such as, for example, a
ulbous bow or the sections of a flat-bottomed ship.

Conversely, if the late stage of the wave impact and/or the sub-
equent water exit phase needs to be investigated, the subsequent
ime evolution of kinematic variables need to be considered for each
vent. This time evolution is stochastic by nature. The realisation of
tochastic trajectories, following up-crossing events, may be obtained
y means of Monte Carlo experiments, which may be computationally
emanding. These Monte Carlo experiments may be performed by using
wo different approaches: (i) the full realisation of a sea state, from
hich stochastic trajectories of water entries are extracted, after up-

rossing detections, (ii) the realisation of short sea state sequences,
tarting directly from initial up-crossing conditions which are drawn
rom the conditional distribution of kinematic variables, given up-
rossing. The option (ii) may prove numerically much more efficient,
specially when considering rare events; for instance, if the body is
ar from the mean sea level, or if a focus on extreme wave impacts
s needed. This option would also offer more flexibility to implement
ariance reduction techniques, such as importance sampling.

The subsequent evolution of kinematic variables, starting from ran-
om initial conditions, may be accounted for in a simplified deter-
inistic manner. Helmers et al. (2012) used such an approach to

ompute the time evolution of the free surface elevation, 𝜂0, after up-
rossing: starting from random initial up-crossing conditions for 𝜂̇0
nd 𝜂̈0, and assuming that the third time derivative, 𝜂0, is equal to
ts conditional mean, given the instantaneous value of the first time
erivative, 𝜂̇0, these authors obtained a deterministic expression for 𝜂0
s the solution of a second order differential equation. Alternatively,
nother option is to use regression techniques based on Slepian models
see e.g. Lindgren and Rychlik, 1991). This latter approach would
llow to also insert random intermediate conditions at intermediate
imepoints after upcrossing.

. Conclusions

The effect of forward speed on stochastic free-surface crossing has
een studied in the framework of the linear wave model. The present
tudy has focused on up-crossing events (i.e. the crossing of the free
urface by the object, into the water domain); however, the model
ay be readily modified to include both up-crossing and down-crossing

vents, or focus on down-crossing events only. The conditional distri-
ution of kinematic variables, given up-crossing, has been shown to be
ignificantly affected by the forward velocity of the considered material
oint. The effect on the related up-crossing frequency has been also
13
investigated. The analysis has been carried out analytically, and formu-
lae have been given for the general case of multidirectional waves in
water of finite depth. In the specific case where the water depth can be
assumed infinite and the sea state has a two-dimensional spectrum with
separated frequency/direction dependencies, analytical developments
have been furthered to express the conditional distribution of kinematic
variables and the up-crossing frequency in terms of wave frequency
moments and non-dimensional coefficients accounting for the wave
directional spreading.

The prediction of the probability distribution of slamming loads
on a ship may be a particular application of the present stochastic
model. The considered solid body has to be small compared to water
wave wavelengths, so the present theory can be used. This condition
may be fulfilled for small crafts, or specific structures on large ships
(e.g. appendages, bulbous bow, ship sections). The way forward to
include seakeeping motions in the analysis has been briefly sketched in
Appendix. Different possible approaches to perform the transfer of the
probability distribution of kinematic variables, through a water entry
model, have been discussed.
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Appendix A. Conditional distributions of kinematic variables,
given up-crossing

A.1. Body at rest

This appendix section gives explicit analytical expressions for the
conditional density functions of kinematic variables – given that 𝜂0(𝑡)
up-crosses the level 𝑎 – represented in Figs. 2–3. The free surface
elevation is given, 𝜂 = 𝑎. The vertical velocity component, 𝑤, follows
a Rayleigh distribution of mode

√

𝑚2, whose density function is given
by:

𝑓𝑤|𝜂0(𝑡)↑𝑎(𝑤) =
𝑤
𝑚2

exp
(

− 𝑤2

2𝑚2

)

, 𝑤 ≥ 0 . (A.1)

he other kinematic variables of the Gaussian vector 𝑍𝐴 (see Eq. (19))
either depend on 𝜂 = 𝜂0, or on 𝑤 = 𝜂̇0, or on neither; none of
the kinematic variables considered in Section 3 depends concurrently
on both 𝜂 and 𝑤. Generic expressions for their respective univariate

conditional density functions, given up-crossing, are detailed below.
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A.1.1. Variables which depend on 𝜂 (i.e. 𝑢, 𝑣, 𝑤,𝑡)
Variables which depend on 𝜂 follow conditional distributions of

Gaussian type. By denoting 𝜁 the considered variable, its conditional
mean is given by

𝐸
{

𝜁 |𝜂0(𝑡) ↑ 𝑎
}

= 𝐸 {𝜁 |𝜂 = 𝑎} =
Cov(𝜁, 𝜂)
𝑚0

𝑎 , (A.2)

and its conditional variance by

Var
{

𝜁 |𝜂0(𝑡) ↑ 𝑎
}

= Var {𝜁 |𝜂 = 𝑎} = Var(𝜁 ) −
Cov(𝜁, 𝜂)2

𝑚0
, (A.3)

where Cov(𝜁, 𝜂) is the non-conditional covariance of 𝜁 and 𝜂. The
elevant non-conditional covariances may be found in the expression
f the related covariance matrix, 𝛴𝑋 (see Eq. (28)).

.1.2. Variables which depend on 𝑤 (i.e. 𝜂,𝑥, 𝜂,𝑦, 𝑢,𝑡, 𝑣,𝑡)
The conditional density function of a variable, 𝜉, which depends on

𝑤, is given by

𝑓𝜉|𝜂0(𝑡)↑𝑎(𝜉) = ∫

+∞

0

√

2𝜋
𝑚2
𝜒𝑓𝜉,𝑤(𝜉, 𝜒) d𝜒 , (A.4)

where 𝑓𝜉,𝑤 is the non-conditional bivariate density function of 𝜉 and 𝑤.
t may be convenient to express 𝑓𝜉|𝜂0(𝑡)↑𝑎 differently, as follows:

𝑓𝜉|𝜂0(𝑡)↑𝑎(𝜉) = ∫

+∞

0
𝑓𝑤|𝜂0(𝑡)↑𝑎(𝜒)𝑓𝜉|𝑤=𝜒 (𝜉) d𝜒 , (A.5)

where 𝑓𝑤|𝜂0(𝑡)↑𝑎 is given by Eq. (A.1) and 𝑓𝜉|𝑤=𝜒 is the conditional
distribution of 𝜉, given 𝑤 = 𝜒 . Then, by making the change of
variable

𝑧 =
|𝜌|𝜎𝜉
√

𝑚2
𝜒 , (A.6)

Eq. (A.5) may be transformed into

𝑓𝜉|𝜂0(𝑡)↑𝑎(𝜉) = ∫

+∞

0

𝑧
(𝜌𝜎𝜉 )2

exp

{

−1
2

(

𝑧
𝜌𝜎𝜉

)2
}

× 1
√

2𝜋
√

1 − 𝜌2𝜎𝜉
exp

{

−

[

𝜉 − sign(𝜌)𝑧
]2

2(1 − 𝜌2)𝜎2𝜉

}

d𝑧 ,

(A.7)

here 𝜎𝜉 is the non-conditional standard deviation of 𝜉, and 𝜌 =
ov(𝜉,𝑤)∕𝜎𝜉

√

𝑚2 is the non-conditional correlation coefficient between
and 𝑤. In the case where 𝜌 > 0, Eq. (A.7) corresponds to the

onvolution of a Rayleigh distribution of mode 𝜌𝜎𝜉 and a centred
normal distribution of variance (1 − 𝜌2)𝜎2𝜉 (which is the conditional
variance of 𝜉, given 𝑤). When 𝜌 < 0, there is a change of sign in
Eq. (A.7); then, through the change of variable 𝑧 → −𝑧, it can also be
expressed as a convolution, where the Rayleigh distribution is replaced
by its reflection about the axis 𝑧 = 0. Eq. (A.7) can be further expressed
as

𝑓𝜉|𝜂0(𝑡)↑𝑎(𝜉) =

√

1 − 𝜌2
2𝜋

1
𝜎𝜉

exp

{

−
𝜉2

2(1 − 𝜌2)𝜎2𝜉

}

×

[

1 +
√

𝜋
2

𝜌𝜉
√

1 − 𝜌2𝜎𝜉
exp

{

𝜌2𝜉2

2(1 − 𝜌2)𝜎2𝜉

}

×

(

1 + erf

[

𝜌𝜉
√

2(1 − 𝜌2)𝜎𝜉

])]

.

(A.8)

Aberg et al. (2008) proposed a more compact form for this type of dis-
tribution, by expressing it in terms of cumulative distribution function,
and making use of the standard normal distribution (see lemma 5.3
in Aberg et al., 2008).

Since the density function 𝑓𝜉|𝜂0(𝑡)↑𝑎 can be expressed as the convo-
ution of two elementary density functions (see Eq. (A.7)), the corre-
ponding random variable, 𝜉|𝜂 (𝑡) ↑ 𝑎, may be comprehended as the
14

0

sum (or difference for negative values of 𝜌) of two independent random
variables: (i) one being Rayleigh-distributed with a mode |𝜌|𝜎𝜉 , (ii) and
the other being normally distributed, with a mean equal to zero and a
variance equal to (1 − 𝜌2)𝜎2𝜉 (see also Aberg et al., 2008, lemma 5.1).
The ‘‘relative weight’’ of these two components is controlled by 𝜌, the
correlation coefficient between 𝜉 and 𝑤. As expected, for |𝜌| = 1 (resp.
𝜌 = 0) only the Rayleigh component (resp. the normal component)
emains.

.2. Material point with translational motion

This appendix section gives explicit analytical expressions for the
onditional distributions – given that 𝜂𝑠(𝑡) up-crosses the level 𝑎 –
epresented in Fig. 5. The free surface elevation is given, 𝜂𝑠 = 𝜂 =
𝑎. The variable 𝜂̇𝑠, given up-crossing, follows a Rayleigh distribution
of mode √

𝑚2̃ (see Eqs. (47)–(59)). The conditional distribution of
variables which depend on 𝜂𝑠 but not on 𝜂̇𝑠 (namely 𝑤,𝑡, 𝑢, 𝑣), is not
affected by the horizontal motion of the material point, and results
given in Appendix A.1.1 are still valid. As for the variables which
depend on 𝜂̇𝑠 (namely 𝑤, 𝑢,𝑡, 𝑣,𝑡, 𝜂,𝑥, 𝜂,𝑦), the analytical expression of
their conditional univariate distributions is given in Appendix A.2.1.
An analytical expression for the conditional bivariate distribution of
two variables which depend on 𝜂̇𝑠 is given in Appendix A.2.2. This
expression has been used to plot the isodensity lines of the pairs (𝜂,𝑥, 𝜂,𝑦)
and (𝑢,𝑡, 𝑣,𝑡), shown in Fig. 5.

A.2.1. Conditional distribution of a variable which depends on 𝜂̇𝑠
The conditional density function, given up-crossing, of a variable 𝜉,

which depends on 𝜂̇𝑠, may be expressed as

𝑓𝜉|𝜂𝑠(𝑡)↑𝑎(𝜉) = ∫

+∞

0

√

2𝜋
𝑚2̃
𝜒𝑓𝜉,𝜂̇𝑠 (𝜉, 𝜒) d𝜒 , (A.9)

hich is similar to Eq. (A.4). Then, in a way similar to the development
iven in Appendix A.1.2 (where the variable 𝑤 should be replaced

with 𝜂̇𝑠), 𝑓𝜉|𝜂𝑠(𝑡)↑𝑎 may be expressed as the convolution of a Rayleigh
istribution and a normal distribution; Eqs. (A.7)–(A.8) may be readily
eused, with 𝜌 now being the non-conditional correlation coefficient

between 𝜉 and 𝜂̇𝑠 (see the expression of the related covariance matrix,
𝛴𝑌𝑠 , in Eq. (46)).

A.2.2. Conditional bivariate distribution of two variables which depend on
𝜂̇𝑠

The conditional bivariate distributions of (𝑢,𝑡, 𝑣,𝑡) and (𝜂,𝑥, 𝜂,𝑦), rep-
resented in Fig. 5, require to consider the case of two variables which
both depend on the level-crossing velocity, 𝜂̇𝑠. In order to adopt general
notations, let 𝑄 be a Gaussian vector

𝑄 =
⎡

⎢

⎢

⎣

𝑞1
𝑞2
𝑞3

⎤

⎥

⎥

⎦

, (A.10)

where 𝑞1, 𝑞2, 𝑞3 denote respectively 𝑢,𝑡 (or 𝜂,𝑥), 𝑣,𝑡 (or 𝜂,𝑦), and 𝜂̇𝑠. Then
the bivariate density function of 𝑞1 and 𝑞2, given up-crossing, may be
expressed as

𝑔(𝑞1, 𝑞2) =
1
𝜎3

1

2𝜋 det
(

𝛴𝑄
)1∕2 ∫

+∞

0
d𝑞3 𝑞3 exp

{

−1
2
𝑄⊺𝛴−1

𝑄 𝑄
}

, (A.11)

where 𝛴𝑄 is the covariance matrix of the Gaussian vector 𝑄, and 𝜎3 is
he standard deviation of 𝑞3. Similarly to the explanation proposed
n Appendix A.1.2, the conditional bivariate distribution, 𝑔, may be

comprehended as resulting from the sum of two independent vectors.
The first vector may be expressed as

𝑅 =
[

𝜌13𝜎1
𝜌23𝜎2

]

𝑟 , (A.12)

where 𝜌𝑖𝑗 is the (unconditioned) correlation coefficient between the 𝑖th
and 𝑗th components of the vector 𝑄, 𝜎 is the (unconditioned) standard
𝑖
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deviation of the 𝑖th component of the vector 𝑄, and 𝑟 is a random
variable which is Rayleigh-distributed with a mode equal to 1. The
second vector is a zero-mean Gaussian vector, whose covariance matrix
is equal to the conditional covariance matrix of (𝑞1, 𝑞2), given 𝑞3.

After completing the square in the argument of the exponential
unction in Eq. (A.11), the following closed-form expression is ob-
ained:

(𝑞1, 𝑞2) =
1
𝜎3

1
8𝜋 det (𝛴𝑄)1∕2

exp
[

−𝐶(𝑞1, 𝑞2)
]

𝑎333∕2

×

{

2
√

𝑎33 −
√

𝜋𝐵(𝑞1, 𝑞2) exp
(

𝐵(𝑞1, 𝑞2)2

4𝑎33

)

×

[

1 − erf

(

𝐵(𝑞1, 𝑞2)
2
√

𝑎33

)]}

. (A.13)

The functions 𝐵 and 𝐶 are given by

𝐵(𝑞1, 𝑞2) = 2𝑎13𝑞1 + 2𝑎23𝑞2 (A.14)

𝐶(𝑞1, 𝑞2) = 𝑎11𝑞1
2 + 𝑎22𝑞22 + 2𝑎12𝑞1𝑞2 , (A.15)

and 𝑎𝑘𝑙 are numerical coefficients defined as

𝑎𝑘𝑙 =
1
2

[

𝛴−1
𝑄

]

𝑘𝑙
. (A.16)

Appendix B. Stochastic approach including seakeeping motions

Including seakeeping motions in the present stochastic approach
would require to consider a new stochastic process,

𝜂𝑏(𝑡) = 𝜂𝑠(𝑡) + 𝜁𝑠(𝑡) , (B.1)

where 𝜂𝑏 denotes the relative free surface elevation measured in the
frame of the moving material point. It is decomposed as the sum of 𝜂𝑠(𝑡),

hich accounts for the forward motion of the material point (Eq. (40)),
nd 𝜁𝑠(𝑡), which accounts for seakeeping motions around the average
orward motion. If the seakeeping motions are linearly modelled, 𝜁𝑠(𝑡)
esults from a linear transformation of 𝜂𝑠(𝑡), and consequently 𝜂𝑏(𝑡) is
lso a Gaussian process. Knowing the response amplitude operators of
he floating platform, along with the position of the material point on
his platform, the transfer function of 𝜁𝑠 can be readily expressed. The
ariable 𝜁𝑠 may also account for the diffraction waves as well as the
aves generated by the steady (forward) and unsteady motions of the
essel, if the related transfer functions are known – see for example
ermundstad and Moan (2005, 2007) who include the effect of the
aves generated by the forward motion of the ship in their analysis.
hen, in a way similar to Eq. (42), a new Gaussian vector collecting
he relevant kinematic variables should be defined,

𝑏 =
⎡

⎢

⎢

⎣

𝜂𝑏
𝜂̇𝑏
𝑍
𝑊

⎤

⎥

⎥

⎦

, (B.2)

here 𝑍
𝑊

contains the kinematic variables of interest (for example the
inematic variables necessary as the input of a water entry model).
he non-conditional probability distribution of 𝑍𝑏 is a multivariate
ormal distribution, whose covariance matrix may be expressed in the
ame way as Eq. (20). Let 𝑍̌𝑏 denote the random vector containing
he variables of 𝑍𝑏, except for 𝜂𝑏. The conditional density function of
inematic variables, given up-crossing, can be written as

𝑍̌𝑏|𝜂𝑏(𝑡)↑𝑎
(𝜂̇𝑏, 𝑍𝑊

) =

√

2𝜋
𝜎𝜂̇𝑏

𝜂̇𝑏 𝑓𝑍̌𝑏|𝜂𝑏=𝑎(𝜂̇𝑏, 𝑍𝑊
) , with 𝜂̇𝑏 > 0 , (B.3)

here 𝑎 is the altitude of the material point on calm water, and 𝜎𝜂̇𝑏 is
he non-conditional standard deviation of 𝜂̇𝑏. The related up-crossing
requency reads

↑

𝑏 = 1
2𝜋

𝜎𝜂̇𝑏
𝜎𝜂𝑏

exp

⎧

⎪

⎨

⎪

−1
2

(

𝑎
𝜎𝜂𝑏

)2⎫
⎪

⎬

⎪

, (B.4)
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where 𝜎𝜂𝑏 is the standard deviation of 𝜂𝑏 (which is not equal to
√

𝑚0,
due to seakeeping motions).
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