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Protection of the channel bed in waterways against scour phenomena in long contractions is a very
significant issue in channels design. Several field and experimental investigations were carried out to
produce a relationship between the scour depth due to the contracted channels width and the governing
variables. However, existing empirical equations do not always provide accurate scour prediction due to
the complexity of the scour process. This paper investigates local scour depth in long contractions of
rectangular channels using the Adaptive Neuro-Fuzzy Inference System (ANFIS) and Support Vector
Machines (SVM). For modeling of ANFIS and SVM, the input parameters that affect the scour phenomena
are average flow velocity, critical threshold velocity of sediment movement, flow depth, median particle
diameter, geometric standard deviation, un-contracted and contracted channel widths. Training and
testing stages of the models are carried out using experimental data collected from different literature.
The performances of the developed models are compared with those calculated using existing scour
prediction equations. The results show that the developed ANFIS model can predict scour depth more
accurately than SVM and the existing equations. A sensitivity analysis is also performed to determine the
most important parameter in predicting the scour depth in long contractions.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Occasionally, local scour occurs in waterways, riverbanks, barrages,
cofferdam, weirs, and bridge abutments due to a reduction inwidth of
the channel cross section. The width reduction increases the flow
velocity and caused an increase in the shear stress in the contraction
zone. When the bed sediment shear stress is larger than critical shear
stress for sediment entrainment, erosion in the contracted zone
occurs. The channel contraction can be divided into two types: long
and short contractions. For long contractions, the ratio of contraction
length to the approaching channel width is more than one or two
(Komura, 1966; Webby, 1984; Raikar, 2004).

A large number of experimental investigations have been per-
formed to find the scour mechanism in channel contraction
(Straub, 1934; Komura, 1966; Gill, 1981; Webby; 1984; Lim, 1993;
Lim and Cheng, 1998; Raikar, 2004; Dey and Raikar, 2005).
Empirical equations obtained by experimental observations are
not accurate enough to predict the scour depth. This is mainly due
to the complexity of the phenomena. Recently, different artificial
intelligence approaches such as Artificial Neural Networks (ANNs),
. Najafzadeh),
csylim@ntu.edu.sg (S.Y. Lim).
Genetic Programming (GP), Gene-Expression Programming (GEP),
Model Tree (MT), and Group Method of Data Handling (GMDH)
have been used to solve scour problem around hydraulic struc-
tures (e.g., Bateni et al., 2007a; Lee et al., 2007; Guven and Gunal,
2008a; Ayoubloo et al., 2010; Azamathulla et al., 2010; Etemad-
Shahidi and Ghaemi, 2011; Azmathulla et al. (2005); Etemad-
Shahidi et al. (2011); Guven et al. (2009); Najafzadeh and Barani,
2011; Azamathulla, 2012a, 2012b; Pal et al., 2012; Najafzadeh et al.,
2013).

From the predictive techniques, the Support Vector Machines
(SVM) and Adaptive Neuro-Fuzzy Inference System (ANFIS) model
were successfully utilized for solving different scour problems (e.g.,
Bateni and Jeng, 2007; Bateni et al., 2007b; Zounemat-Kermani et al.,
2009; Azmathulla et al., 2009; Muzzammil and Ayyub, 2010; Firat,
2009; Muzzammil, 2010; Kaya, 2010; Pal et al., 2011; Ghazanfari-
Hashemi et al., 2011; Hong et al., 2012; Pal et al., 2014; Akib et al.,
2014). However, the performing of the SVM and ANFIS based methods
for predicting the local scour depth in channels bed due to contracted
cross section has not been investigated yet.

In this study due to considerably complicated process of scour in
long contractions, the ANFIS and SVM models are developed to pre-
dict the scour depth which occurred in bed of rectangular channels.
The performances of the proposed ANFIS and SVM models are
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compared with several empirical equations to predict the maximum
scour depth in long contractions.
Table 1
Ranges of grouped input and output parameters for scour depth modeling.

Parameters Training Testing

d50=b1 0.000875–0.0237 0.000875–0.2375
h1=b1 0.0509–0.442 0.0360–0.32
b2=b1 0.25–4.062 0.33–4.062
Fr0 0.878–3.504 1.08–3.28
U1=Uc 0.321–1 0.431–1
σg 1.065–3.61 1.065–3.61
ρs=ρw 2.65 2.65
ds=b1 0.00131–0.29 0.0118–0.256
2. Review on the investigations of scour in long contractions

Traditional methods involved the measurements of scour
depths at existing bridge sites, sharp bends, and contractions or,
other locations where the natural channel configuration is com-
parable to that expected at the bridges site. Since 1934, many
laboratory tests have been proposed to measure the scour depth
experimentally and its prediction in long contractions. Several
empirical equations have been proposed to predict the scour depth
in long contraction. Straub (1934) initiated investigations of sedi-
ment transportation for prediction of scour depth in contractions
and un-contracted widths of channels. He presented an empirical
equation based on the Manning and Du Boy equations (Lim and
Cheng, 1998). Later, Laursen (1963) proposed a formula based on
the total sediment transport in a compound channel by assuming
that effects of the flow rate over the flood plains is negligible:

ds
h1

þ1¼ b2
b1

� ��0:75

ð1Þ

where ds,h1, b1, and b2 are the scour depth, flow depth, un-contracted
channel width, and contracted channel width, respectively.

Komura (1966) carried out experiments to investigate influ-
ences of sediment particles grading on scour depth. He suggested
an explicit equation based on characterizations of upstream flow
conditions, bed sediment size, and channel geometry as,

ds
h1

þ1¼ 1:6Fr0:2C ðσgÞ�0:5 b2
b1

� ��0:67

ð2Þ

in which, d50, FrC , and σg are the median particle diameter, Froude
number due to the approaching flow velocity required to initiate
sediment motion within un-contracted cross section of channel, and
geometric standard deviation, respectively. The FrC is expressed as
follows:

FrC ¼
UCffiffiffiffiffiffiffiffiffi
g:h1

p ð3Þ

where UC and g are the critical velocity of sediments and gravitational
acceleration, respectively.

Gill (1981) presented a formula by assuming that sediment rate
is proportional to the bed and critical shear stress:

ds
h1

þ1¼ 1:58
b2
b1

� ��0:857

ð4Þ

Lim (1993) proposed an empirical equation of equilibrium
scour depth in long contractions for both clear-water and live-bed
scour conditions.

ds
h1

þ1¼ 1:545Fr00:75
d50
h1

� �0:25 b2
b1

� ��0:75

ð5Þ

where Fr0 is the densimetric flow Froude number defined as,

Fr0 ¼
U1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g: ρS
ρw
�1

� �
d50

r ð6Þ

in which U1, ρS, and ρw are the average flow velocity, mass density
of sediments and water, respectively.

Lim and Cheng (1998) also presented a theory based on the con-
tinuity condition between flow and sediment transport. In case of field
studies, it was sufficiently accurate for most practical purposes. Li
(2002) carried out local scour experiments for contractions in cohesive
bed soils. He found that the scour depth due to the contracted cross
sections was linearly dependent on the Froude number. Dey and
Raikar (2005) carried out extensive investigations of scour in long
contractions at a rectangular channel. They proposed a new empirical
equation for the maximum scour depth under clear-water condition.
3. Analysis of effective parameters on the scour depth in long
contractions

In experimental or field studies of the scour depth in long
contractions, the main parameters affecting the process are the
characteristics of bed sediments, approaching flow conditions,
geometry of contracted and un-contracted cross sections (Straub,
1934; Komura, 1966; Gill, 1981; Webby, 1984; Lim, 1993; Lim and
Cheng, 1998; Li, 2002; Raikar, 2004; Dey and Raikar, 2005). In this
way, the functional relationship between the scour depth and
effective parameters can be expressed as follows:

ds ¼ f ðd50;U1;Uc;ν; g;σg ;h1;b1; b2;ρw;ρsÞ ð7Þ
where ν is the kinematic viscosity of water. Studies have found
that artificial intelligence approaches based on non-dimensional
parameters produced better prediction than those obtained using
dimensional parameters (e.g., Bateni and Jeng, 2007; Bateni et al.,
2007a, 2007b; Azmathulla et al., 2009; Kazeminezhad et al., 2010;
Pal et al., 2012; Hong et al., 2012; Pal et al., 2014). Therefore,
dimensional analysis is carried out for Eq. (7) using the Bucking-
ham π theorem. The scour depth,ds, is normalized with b1 and the
following function is obtained:

ds=b1 ¼ f ðd50=b1;h1=b1; b2=b1;σg ;U1=Uc; Fr0Þ ð8Þ
The non-dimensional parameters in Eq. (8) were used as input

and output parameters in modeling of the ANFIS and SVM models
in this study. We used 204 data sets for developments of scour
modeling, and these data were collected from the Komura (1966),
Gill (1981), Webby (1984), Lim (1993), Dey and Raikar (2005), and
Lim (2013) (unpublished data sets). The data sets obtained are for
the long contractions scour tests in rectangular channels under
clear-water conditions ðU1=Ucr1Þ. Out of the 204 data set, about
67% and 33% were selected randomly to perform training and
testing stages, respectively. The ranges of parameters used for the
scour depth modeling are presented in Table 1. The schematic
sketch of a rectangular channel contraction is shown in Fig. 1a and
b. For evaluating the scour depth in long contractions, four tradi-
tional equations proposed by Laursen (1963), Komura (1966), Gill
(1981), and Lim (1993) were also used for comparison.
4. Model descriptions

4.1. Fuzzy inference system

Fuzzy logic initiates with the fuzzy set theory. Principle of fuzzy
set was developed for definition of physical behavior for high-
order complex systems in uncertain and imprecise environments.



Fig. 1. Schematic of a long rectangular channel contraction at equilibrium scour condition: (a) top view; and (b) side view.
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A fuzzy set is an extension of a classical set whose elements may
partially belong to that set. Suppose X is the universe of discourse
(input space) and its elements are defined by X, then a fuzzy set A
in X is expressed as a set of ordered pairs in form of:

A¼ x;μAðxÞ jxAX
on

ð9Þ

where μAðxÞ is the membership function (MF) of X in A. MF is a
function that expresseshow each element x in the input space is
mapped to a membership value (or degree ofmembership) between
0 and 1.

Through the context of fuzzy set theory to deal with nonlinear,
but ill-defined, mapping of input variables to some output ones,
one of the most useful features is known as Fuzzy Inference Sys-
tem (FIS). From the framework of FIS, the behavior of a given
system can be simulated as IF-THEN rules through knowledge
extraction of experts or past available data of the systems with
high-order complexity. Also, this process indicated that fuzzy logic
can be applied to map a set of given input variables to an output
variable using. A fuzzy inference system is included of five func-
tional blocks as follows:

1. A rule base containing a number of fuzzy IF–THEN rules.
2. A database which defines the membership functions of the

fuzzy sets used in the fuzzy rules.
3. A decision making unit which performs the inference opera-

tions on the rules.
4. A fuzzification inference which transforms the crisp inputs into

the degree of match with linguistic values.
5. A defuzzification interface which transforms the fuzzy results of

the inference into a crisp output.

Occasionally, the rule base and the database are compromis-
ingly referred to as the knowledge base (Lee, 1990). Fundamen-
tally, a fuzzy IF-THEN rule includes main two parts. The first is IF
part and the second is THEN part which are known premise and
consequent, respectively. The general form of a fuzzy IF-THEN rule
can be expressed as follows:

Rule 1: If X is A1 and Y is B1 then f 1 ¼ p1xþq1yþr1
Rule 2: If X is A2 and Y is B2 then f 2 ¼ p2xþq2yþr2

where pi,qi, and ri are the consequent parameters of ith rule. Ai

and Bi are the linguistic labels which are represented by fuzzy sets
(Sugeno, 1985).
The so called firing strength or degree of fulfillment of a pair
ðx; yÞ to rule i, which measures the degree to which that pair
belongs to rule i, can be defined as follows:

wi ¼ μAiðxÞ4μBiðxÞ; i¼ 1;2 ð10Þ

where μAiðxÞ and μBiðxÞ are membership functions of x and y in fuzzy
sets Ai and Bi. ‘4 ’ denotes a fuzzy T-norm operator which is a
function that describes a superset of fuzzy intersection (AND)
operators, including minimum or algebraic product. In this study
algebraic product was used as a T-norm operator. The final output
of the system is the weighted-average of all rules outputs as fol-
lows:

Ultimate Output ¼
Pn

i ¼ 1
wif iPn

i ¼ 1
wi

ð11Þ

There is no systematic way to know what type and shape of
membership functions of premise variables have the best perfor-
mance in a defined FIS. An efficient way for performing this pro-
cess is that, using an artificial neural networks (ANNs) model
trained by input-output database (Kazeminezhad et al., 2005).
5. Combining neural nets and FIS

An Adaptive-Network-Based Fuzzy Inference System (ANFIS) (Jang,
1993) is a Sugeno type FIS in which the problem of fine-tuning
membership functions of premise variables is carried out by a feed-
forward neural network. ANFIS combines the advantages of both
neural networks (e.g. learning capabilities, optimization capabilities,
and connectionist structures) and fuzzy inference systems (e.g. human
like ‘IF-THEN’ rule thinking and ease of incorporating expert knowl-
edge). The basic idea behind these neuro-adaptive learning techniques
is very simple. They provide a methodology for the fuzzy modeling
procedure to learn information about a data set, in order to compute
the membership function parameters that best allow the associated
FIS to track the given input-output data. ANFIS is based on the premise
of mapping a FIS into a neural network structure so that the mem-
bership functions and consequent part parameters are optimized
using a hybrid learning algorithm. In this algorithm, parameters of the
membership functions are determined by a neural network back-
propagation learning algorithm while the consequent parameters by
the least square method. Fig. 2 shows the structure of ANFIS including
two inputs x (wind speed), y (fetch length), and one output f (sig-
nificant wave height or peak spectral period) and two rules which



Fig. 2. General architecture for ANFIS model (Jang, 1993).

Table 2
IF-THEN rules for ANFIS model.

Rules ANFIS

1 If (d50/b1 is d50/b1 mf1) and (h1/b1 is h1/b1 mf1) and (Fr0 is Fr0 mf1) and (b2/b1
is b2/b1 mf1) and (U1/Uc is U1/Uc mf1) and (σg is σg mf1) Then (ds/b1 is ds/b1
mf1)

2 If (d50/b1 is d50/b1 mf2) and (h1/b1 is h1/b1 mf2) and (Fr0 is Fr0 mf2) and (b2/b1
is b2/b1 mf2) and (U1/Uc is U1/Uc mf2) and (σg is σg mf2) Then (ds/b1 is ds/b1
mf2)
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were described in previous part. The first step is the fuzzifying layer in
which Ai and Bi are the linguistic labels. The output of this layer is the
membership functions of these linguistic labels. In other words, in this
step, the premise parameters are calculated. The second step calcu-
lates the firing strength for each rule. The output of this step is the
algebraic product of the input signals as can be seen in Eq. (12). The
third step is the normalized layer. Every node in this layer calculates
the ratio of the ith rule’s firing strength to the sum of all rules’ firing
strength as:

wi ¼
wi

w1þw2
; i¼ 1;2 ð12Þ

The output of every node in fourth layer is

wif i ¼wiðpixþqiyþriÞ ð13Þ
The fifth layer computes the overall output as the summation

of all incoming signals, which represents the results of significant
wave height or peak spectral period as can be seen in Eq. (13).

From development of ANFIS model for the scour problems in
long contractions, six inputs and one output parameters are con-
sidered. In addition, corresponding fuzzy IF-THEN rules for
improving the structure of ANFIS model are given in Table 2.
Table 3
Statistical parameters of the training and testing data set for difference models.

Technique R RMSE MAPE BIAS SI

Training stage
SVM 0.92 0.023 29.72 0.00 0.236
ANFIS 0.9 0.0263 42.76 0.00 0.263

Testing stage
SVM 0.88 0.028 36.35 0.0039 0.279
ANFIS 0.89 0.0281 27.54 �0.0035 0.279
6. Development of SVM model

The Support vector machines, similar to artificial neural networks,
are a kind of data-mining approach. SVM has been successfully
applied to a number of applications in water resources (Bateni and
Jeng, 2007; Bateni et al., 2007a, 2007b; Kazeminezhad et al., 2010; Pal
et al., 2012; Hong et al., 2012; Pal et al., 2014). The classification pro-
blem is used to investigate the basic concepts behind SVM and to
examine their strengths and weaknesses from a data-mining per-
spective (Campbell, 2000).

In support vector regression, the objective is to find a function
f ðxÞ which has at most ε deviation from the actually obtained
targets yi for all the training data ðx1; y1Þ; :::; ðxi; yiÞ

� �
and at the

same time is as flat as possible. In other words, errors are negli-
gible as long as they are less than ε and any deviation larger than
this is not accepted. f ðxÞ can be expressed as (Smola and Scholkopf,
2004):

f ðxÞ ¼ ðω; xÞþb; ωAX ; bAR ð14Þ

where ω is a weight vector ðωARnÞ; b is additive noise ðbARÞ and
ðω; xÞ denote dot points in X. Flatness of the regression function
f ðxÞ can be achieved by smaller values of ω. One way to ensure this
is to minimize the Euclidean norm as defined by ‖ω‖2 ¼ ðω;ωÞ
(Vapnik, 1995; Smola and Scholkopf, 2004). Nonlinear support
vector regressions can be used in complex and nonlinear problems
by introducing kernel functions (Vapnik, 1995). Solving nonlinear
problems can be achieved by mapping the data into a higher-
dimensional feature space with the help of kernel functions. To
develop SVM for each process, two main parameters of SVM
namely regularization parameter ðCÞ and the type of kernel
(Polynomial or Gaussian Radial Basis Function) should be deter-
mined. In this study, the radial basis function kernel was used to
minimize training error for scour data sets. The regularization
parameter, C, and the size of error in sensitive zone parameters
control the complexity of prediction. Also, RBF kernel has two
variables of γ and σ that were determined through the simplex
optimization method. The values of γ and σ parameters were fixed
14.109 and 3.59, respectively. The other details of SVM algorithm
are presented in literatures (Vapnik, 1995; Smola and Scholkopf,
2004).
7. Implementations and results

The results of ANFIS and SVM models were presented in this
section. correlation coefficient (R), root mean square error (RMSE),
mean absolute percentage of error (MAPE), scatter index (SI), and
BIAS, and were used to evaluate the performances of models. The
formulations of these statistical parameters have been given in lit-
erature (Ayoubloo et al., 2010; Najafzadeh and Barani, 2011).

The statistical results of proposed ANFIS and SVM models for
training and testing stages are presented in Table 3. Error measures of
the training phase indicated that SVM model predicted the scour
depth better than ANFIS model. The statistical error parameter
obtained from training stage indicated that SVM model produced
relatively lower error (RMSE¼0.023 and MAPE¼29.72) and higher
correlation coefficient (R¼0.92) than those provided using the ANFIS
model (RMSE¼0.0263, MAPE¼42.76, and R¼0.9). In addition, SI
parameters for ANFIS and SVM were yielded 0.236 and 0.263,
respectively.

In the testing phase, it can be said that the ANFIS and SVM
models predicted the scour depth with nearly the same accuracy in



Table 4
Statistical parameters of the testing data set for difference models.

Technique Source R RMSE MAPE BIAS SI

SVM Developed by Data Sets 0.88 0.028 36.35 0.0039 0.279
ANFIS Developed by Data Sets 0.89 0.0281 27.54 �0.0035 0.279
Eq. (1) Laursen (1963) 0.68 0.0543 60.24 �0.0107 0.534
Eq. (2) Komura (1966) 0.75 0.083 101.01 0.0455 0.699
Eq. (4) Gill (1981) 0.69 0.69 258.55 0.155 1.27
Eq. (5) Lim (1993) 0.72 0.112 161.58 0.096 0.942

Fig. 5. Scatter plot of observed and predicted scour depth for the ANFIS, SVM, and
traditional equations.
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term of RMSE and MAPE values. In addition, the correlation coef-
ficients of ANFIS (0.88) and SVM (0.89) model were approximately
the same. From the SI value for ANFIS model, it was found that
ANFIS model produced predictions better than those of the SVM
model. Scatter plots between predicted and observed scour depth
values for both training and testing phases by the ANFIS and SVM
models were illustrated in Figs. 3 and 4, respectively.

Empirical equations were also applied to predict the local scour
depth at long contractions in rectangular channels. In fact, empirical
equations were evaluated using the testing datasets.

Statistical results of empirical equations were given in Table 4.
From the Table 4, it can be said that Eq. (1) given by Laursen (1963)
provided relatively lower errors (RMSE¼0.0543 and MAPE¼60.24)
for the scour depth prediction than the other traditional equations.
Eq. (4) developed by the Gill (1981) observations was found to yield
the worse results. RMSE and MAPE values from Eq. (4) were 0.201
and 258.55, respectively. Also, Komura equation predicted the scour
depth relatively accurate (RMSE¼0.083 and MAPE¼101.01) in
comparison with Lim’s equation. From the experimental procedures,
the lack of validation for traditional methods was related to the
limitation of effective parameters range, which commonly can not
present the accurate feature for physical behavior of scour process
(e.g., Guven and Gunal, 2008; Azamathulla et al., 2010; Najafzadeh et
al., 2011). Scatter plots between predicted and observed scour depth
values for evaluating the models given by ANFIS, SVM, and tradi-
tional equations were given in Fig. 5.
Fig. 3. Scatter plot of observed and predicted scour depth for training stages of
ANFIS and SVM models.

Fig. 4. Scatter plot of observed and predicted scour depth for testing stages of
ANFIS and SVM models.
8. Sensitivity analysis

Through the data analysis, process of sensitivity analysis was to
quantify how much model output values were affected by varia-
tions in the input values. To determine the importance of each
input variable on the scour depth, the ANFIS was applied to per-
form a sensitivity analysis. The analysis was conducted such that,
one parameter of Eq. (8) was eliminated each time to evaluate the
effect of that particular input on output. Results of the analysis
indicated that U=UC (R¼0.91, RMSE¼0.0244, MAPE¼27.1, and
SI¼0.224) was the most effective parameter on the scour depth
whereas the b2=b1 (R¼0.6, RMSE¼0.0488, MAPE¼59.21, and
SI¼0.493) has the least influence on scour depth for the ANFIS
model, respectively. The other effective parameters on the ds=b1
were d50=b1,Fr0,h1=b1, and σg ranked from higher to lower values,
respectively. Statistical error parameters yielded from the sensi-
tivity analysis were given in Table 5. In this study, influences of
d50=b1, h1=b1 and Fr0 parameters on the ds=b1 values were
investigated. Fig. 6 illustrated variations of ds=b1 variable versus
h1=b1 for b2=b1 ¼ 0:4�0:7. From Fig. 6, it can be seen that the
scour depth increased linearly with an increase of h1=b1 for b2=b1
parameter equals to 0.4, 0.5, and 0.66–0.7 because shear stress
induced by the boundary layer within the contraction changes
with approaching flow depth. Also, for b2=b1 ¼ 0:6, the scour depth
in long contraction generally decreased with an increase of h1=b1
values. This finding has opposite trend in Fig. 6 due to the com-
putational errors of the ANFIS models.

Fig. 7 indicated variations of the scour depth versus d50=b1
values. For b2=b1 between 0.4 and 0.5, the scour depth decreased
with an increase of d50=b1 parameter. Meantime, ds=b1 values had
an increasing trend with variations of d50=b1 variable for b2=b1
between 0.6 and 0.77. Different trends of the non-dimensional
scour depth for b2=b1 values between 0.4 and 0.77 is due to the
transitional properties of the Shields diagram, where the bed shear
stress required for the motion of sand particles is relatively less
than that critical shear stress. For gravels, the fundamental
increase of U1 to fix the status of U1=Uc increases the bed shear
stress within the contracted zone to a great extent, boost the scour



Table 5
Sensitivity analysis for independent parameters of the testing data set by the ANFIS model.

Input parameters R RMSE MAPE BIAS SI

ds=b1 ¼ f ðh1=b1 ; b2=b1; σg ; Fr0 ;U1=UcÞ 0.84 0.0336 34.56 0.0034 0.307
ds=b1 ¼ f ðd50=b1 ; b2=b1 ; σg ; Fr0;U1=UcÞ 0.6 0.0488 59.21 0.0017 0.493
ds=b1 ¼ f ðd50=b1 ; h1=b1 ; σg ; Fr0 ;U1=UcÞ 0.84 0.0375 32.77 �0.0093 0.357
ds=b1 ¼ f ðd50=b1 ; h1=b1 ;b2=b1 ; Fr0 ;U1=UcÞ 0.85 0.0298 55.6 �0.0012 0.308
ds=b1 ¼ f ðd50=b1 ; h1=b1 ;b2=b1 ; σg ;U1=UcÞ 0.85 0.0299 28.84 �0.0053 0.27
ds=b1 ¼ f ðd50=b1 ; h1=b1 ;b2=b1 ; σg ; Fr0Þ 0.91 0.0244 27.1 0.0026 0.224

Fig. 6. Variations of ds=b1 variable versus h1=b1 for different ratio of b2=b1.

Fig. 7. Variations of ds=b1 variable versus d50=b1 for different ratios of b2=b1.

Fig. 8. Variations of ds=b1 variable versus Fr0 for different ratios of b2=b1.

Fig. 9. Variation of DR with log(b2/b1) for ANFIS model.
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process potential which yields in increase of ds=b1 ratio at a
constant rate.

Fig. 8 indicated variations of the scour depth versus densimetric
Froude number. For b2=b1 ¼ 0:6, scour depth values decreased with
increase of Fr0 because the mobility of the sediment particles
decreases with an increase in sediment sizes of sands and gravels. In
addition, for other opening ratios, this pattern is opposite because of
contraction severity.
9. Parametric study

As aforesaid in the sensitivity analysis section, dimensionless
parameter of b2=b1 was known as the most effective input variable on
the scour depth prediction in long contraction. Effects of models
output on the variations of b2=b1 parameter were investigated in this
research. In this way, the discrepancy ratio (DR), known as the ratio of
predicted and observed values, was utilized to quantify the sensitivity
of the proposed models to b2=b1 parameter. A DR value of 1 shows a
promisingly perfect agreement, while values greater (or smaller) than
1 indicate over (or under) prediction of the scour depth. Variations of
DR values were plotted versus the logarithm of b2=b1.

The result of the ANFIS model was illustrated in Fig. 9. The mini-
mum, mean, and maximum DR values for the ANFIS model were
obtained �3.14, 0.987, and 3.81, respectively. For 0.316ob2=b1o0.63,
DR values decreased to around 1. Also, it indicated that ANFIS model
provided well agreement with observed scour depth. Fig. 9 illustrated
that the ANFIS model had over predicted the scour depth for
DR¼0.381. Furthermore, for b2=b1¼0.657, the ANFIS model had
relatively under predicted the scour depth.

The results of SVM model were shown in Fig. 10. The DR values
were yielded between �1.25 and 3.79. In addition, mean value of DR
was 1.04. For 0.324ob2=b1o0.7, values of several points including
b2=b1¼0.324 and 0.657 indicated that over (or under) predictions of
the scour depth were met. For 1.875ob2=b1o4.05, the SVM model
produced more accurate scour depth prediction because the scour
depth values were trend to 1.



Fig. 10. Variation of DR with log(b2/b1) for SVM model.

Fig. 11. Variation of DR with log(b2/b1) for Eq. (3).

Fig. 12. Variation of DR with log(b2/b1) for Eq. (4).

Fig. 13. Variation of DR with log(b2/b1) for Eq. (5).

Fig. 14. Variation of DR with log(b2/b1) for Eq. (6).
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Fig. 11 illustrated the results from the Eq. (1) proposed by Laur-
sen (1963). The minimum, mean, and maximum DR values of this
model were obtained �4.55, 0.75, and 1.83, respectively. For the
b2=b1 values between 0.324 and 0.7, Eq. (1) produced relatively
good agreement with observed scour depth. With increase in b2=b1
values from 1.875 to 4.06, Eq. (1) produces high under predictions of
scour depth. Also, Fig. 12 showed the results from the Eq. (2) given
by Komura (1966). The DR values of this model were between
�1.28 and 7.62. Also, mean value of DR was 1.67. With an increase
in b2=b1 values between 0.324 and 0.7, at first scour depth
decreased thereafter increases. For this range of b2=b1, Eq. (2)
provided the scour depth with very much over predictions.

With increase in b2=b1 values from 1.875 to 4.06, Eq. (2) produced
high under predictions of scour depth. Results of the Eq. (4) were
illustrated in Fig. 13. The minimum, mean, and maximum DR values of
this model were obtained �1.25, 3.3, and 12.3, respectively. For the
b2=b1 values between 0.324 and 0.7, Eq. (4) produced remarkable over
prediction of scour depth. Also, b2=b1 values from 1.875 to 4.06, Eq. (4)
produced high under predictions of scour depth. In addition, Fig. 14
shows the results from the Eq. (5) presented by Lim (1993). The DR
values of this model were yielded between �1.27 and 10.34. Also,
mean value of DR was 3.3. With an increase in b2=b1 values from
0.324 to 0.7, scour depth predicted by Eq. (5) increased. For this range
of b2=b1, Eq. (5) provided significantly high over predictions. Also, b2
=b1 values from 1.875 to 4.06, Eq. (5) produced high under predictions
of scour depth. b2=b1 values from 1.875 to 4.06, Eq. (5) significantly
predicted the scour depth.

From empirical equations, it was found that Eq. (4) had more
over prediction of scour depth in long contractions compared to
the other empirical equations. Eq. (1) given by Laursen (1963)
provided very much under prediction of scour depth.
10. Summary and conclusions

In this paper, adaptive neuro-fuzzy inference system and sup-
port vector machines were developed to predict the scour depth in
long contractions at rectangular channel bed. Furthermore, tradi-
tional equations given by Laursen (1963), Komura (1966), Gill
(1981), and Lim (1993) were used for comparisons. Data sets for
performing the training and testing stages were collected from
literatures. Six inputs and one output parameter were defined
through the dimensional analysis for scour depth modeling. Per-
forming the proposed models for training stage indicated that
SVM model produced relatively lower error (RMSE¼0.023 and
MAPE¼29.72) and higher correlation coefficient (R¼0.92) com-
pared to those obtained using the ANFIS model. Through the
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testing stage, ANFIS model yielded better results with relatively
lower error (SI¼0.28) rather than that obtained using performing
the SVM.

Between the traditional equations, Eq. (1) proposed by Laursen
(1963) had a relatively lower error (RMSE¼0.0543 and MAPE¼60.24)
for the scour depth prediction, compared to other ones. Results of
sensitivity analysis indicated that b2=b1 is the most important para-
meter in modeling of scour depth by the ANFIS model. In addition,
parametric study indicated that shear stress due to motion of bed
sediments at contracted zone played an important factor to illustrate
effects of input parameters on the scour depth in long contractions.

Application of ANFIS and SVM approaches proven which these
methods were used successfully as soft computing tools for prediction
of the scour depth in long contraction at rectangular channels.
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