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ABSTRACT

Maneuvering prediction tools are important resources for naval and commercial ship designers. They can
enable designers to determine maneuvering characteristics of a design prior to construction or be useful
in redesign if a ship is underperforming. Numerical methods allow for multiple hulls to be compared
digitally, so a certain level of optimization can be achieved through evaluating trade-offs among designs
before construction. In this paper, a novel maneuvering prediction method is presented that seeks to
provide the accuracy available from today state-of-the-art numerical viscous-flow tools but with sig-
nificantly reduced computational cost. The numerical formulation is based on the unsteady Reynolds-
averaged Navier-Stokes (URANS) equations, and the unsteady ship generated waves are represented by
the linear free-surface boundary conditions. The URANS equations are solved on an unstructured finite-
volume discretization of the fluid domain around the hull and its appendages. The linearized free-surface
approximation accounts for first-order wave effects while reducing the necessary extent of the com-
putational domain and level of grid refinement required by fully nonlinear methods that employ an
interface-capturing technique. The resulting formulation provides a marked improvement in computa-
tional efficiency with respect to nonlinear methods and can empower naval architects to obtain accurate

results earlier in the design process.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Maneuvering performance is an important facet of ship design.
A large number of performance quantities are considered
throughout the design process, and many of them are inter-
dependent such that changes in one area propagate and cause
expensive and time consuming re-evaluation of the other perfor-
mance metrics. This is clearly seen in the classical iterative design
spiral, where areas such as hull form, powering, resistance, sea-
keeping, arrangements, and cost are analyzed multiple times as a
design becomes refined and converges to a detailed point design.

Maneuverability is an example of a performance metric that is
connected to the many other areas. While the design spiral is the
classical way to consider design creation, a design network is a
newer alternative that gives additional insight to the complex
interactions of different performance attributes (Gillespie et al.,
2013). This new perspective places maneuvering as a node within
the design network, where the dependencies range from ship ar-
rangements, resistance, prime-mover selection, economics, etc.

Maneuvering attributes have far-reaching consequences
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throughout the design, but even within the specific maneuvering
evaluation there are many interdependent factors. The hydro-
dynamic interaction between the hull, propellers, rudders, and
other control surfaces are fully coupled and challenging to predict
because of issues such as the high-Reynolds number operation of
ships (wide range of length scales) and the delicate interaction
between ship waves and the turbulent flow that can separate
along the hull and strongly influence the propeller and rudder
performance.

The goal of a naval architect is to evaluate the trade offs within
the design space and deliver an optimal solution. Nevertheless,
real-world constraints such as schedules and budgets often lead to
an incomplete exploration of novel hull forms and instead, his-
torical hull forms are often used. The International Maritime Or-
ganization mandates that new designs pass several maneuvering
criteria. In general, this includes the ability to stop or turn within a
certain distance, and the like. Therefore, maneuvering assessment
is viewed as a necessary step in the design process. At times, an
existing hull may fully satisfy the requirements of a new design,
but this approach lacks a motivated effort to evolve the designs of
the largest transportation vehicles in the world. The lack of accu-
rate and efficient design tools hinders the evolution of a ship de-
sign towards an optimal form. On rare occasions, a more original
design may be evaluated with high-fidelity methods such as
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computational fluid dynamics (CFD) or a new set of physical ex-
periments, but the determination of the maneuvering character-
istics with these methods is a difficult task itself. This fact sets
maneuvering prediction apart from the other aspects of ship de-
sign; although it is a crucial node in the design network, it is
unique because it is less frequently analyzed prior to the detailed
design stage due to the resources required for high-fidelity man-
euvering predictions.

Currently, maneuvering prediction capabilities consist of geo-
metrically scaled model tests and a variety of numerical methods.
Model tests provide valuable predictive information about the
performance of a design, but they require expensive facilities,
models, and instruments, and a procedure to account for scaling
effects (Cope, 2012; Ueno et al., 2014). Numerical methods vary
from inviscid potential flow to multiphase CFD codes. Historically,
the velocity potential framework provides solutions to ship-mo-
tions problems, ranging from stability assessment to the over-
taking of one ship by another (Sclavounos and Thomas, 2007;
Newman and Tuck, 1974). Recent examples of real-time maneu-
vering simulation based on potential flow modeling can be found
in Lindberg et al. (2013), Pinkster and Bhawsinka (2013), and Zhou
et al. (2014). However, potential flow codes inherently lack the
ability to capture viscous separation which is especially significant
near the hull appendages that influence maneuverability. CFD and
model tests can be used to obtain viscous predictions on hulls with
appendages (Broglia et al., 2013; Carrica et al., 2012), but such
methods of obtaining corrections are costly and time-consuming.
Most designers do not have the computational resources neces-
sary for CFD simulations of time-dependent maneuvers.

Another powerful approach to maneuvering simulation is the
systems-based methods. Equation-of-motion coefficients are ob-
tained from physical experiments or CFD to predict maneuvering
capabilities (Toxopeus, 2009). The main advantage of these
methods is that after the coefficients are determined, the man-
euvering equations can be solved in a very efficient manner.

The main drawbacks of existing maneuvering prediction tech-
niques make them limited for use in early-stage conceptual design.
They are used in the final stages, where changes to the ship are so
expensive that they are avoided if at all possible. As a result, while
many other aspects of a design are improved at each iteration,
optimization of the maneuvering characteristics is rarely pursued.
Therefore, it is an important endeavor to provide efficient and
accurate tools that allow for a broad exploration of the design
space and the ability to develop optimized designs within realistic
time and monetary constraints.

2. Computational method
2.1. Governing equations

The linearized free-surface conditions for maneuvering in deep
and calm water have been studied comprehensively for a poten-
tial-flow framework, but much less so for viscous flows. In this
section, the governing equations are presented, and the linearized
free-surface conditions are derived for a viscous and turbulent
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flow starting from the nonlinear free-surface conditions.

The governing equations and boundary conditions are pre-
sented in two reference frames. The first is an Earth-fixed re-
ference frame (Fig. 1), where x, y, and z are the three Cartesian
coordinates and the origin is fixed to the Earth in the calm-water

plane. The fluid velocity vector, U = ui + vf + WI/<\, contains com-
ponents which act along the three spatial axes. The free-surface
elevation # is a function of x, y, and time, t. The unit vector 1 is
normal to the free-surface and points out of the water. The second
reference frame is fixed to the ship, and is denoted with a prime as
X, ¥y, and Z. In the ship-fixed frame the fluid velocity is

' A A A . . .
U =ui +vj +wk. The ship does not move vertically, so the ship
. .= A A
velocity vector is Uship = Ushipl + VnipJ -
The equations governing conservation of momentum are the
incompressible URANS equations,

%fvpﬂ)dv+ -/Spﬂﬂ)-ﬁds
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where the effective viscosity is the sum of the molecular and
turbulent viscosities u; = p + .. Control volumes and control
surfaces are denoted with V and S, respectively.

The kinematic condition states that the free-surface is a ma-
terial surface, the location of which can be defined with a func-
tion:

F(x‘yylt):Z—’?(xyyvt):O (3)

The value of Eq. (3) is always zero on the surface. Hence, the
total derivative of the function is also zero on the surface:
DF oF =
D o TUVE=0 4)
This condition is first expressed in the frame moving with the
ship, as ship-generated waves are steady from this perspective for
simple problems such as forward-speed resistance. This can be
done by using the relations between the ship-frame and Earth-
frame and evaluating the total derivative of the free-surface
function (Eq. (4)) in terms of #. The position and velocity relations
between the two frames are:

- > t— d
X=X + /0 Uship (t) dt )

+ Uship (6)

The total derivative of the free-surface function with respect to
the moving ship-frame is expressed in the following equation:
DF

— =1 + (=Uship + Wy + (=Venip + V), = w  Ship - fixed

Dt 7

The stationary, Earth-fixed representation of the total derivative of

Fig. 1. Nonlinear free-surface example.
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the free-surface function is obtained by having the ship velocity go
to zero, l_J;hip -0:

DF_ ne + Uy + vy, = w  Earth - fixed

Dt €]

Egs. (7) and (8) are the unsteady nonlinear kinematic boundary
conditions with respect to the two frames. The linearization of
each condition stems from small value assumptions. For maneu-
vering flows, it is assumed that U is small, and the ship-generated
waves have small slopes and small heights. The linearized kine-
matic conditions are:

W =1, — Ushipny — Vshipﬂy’ Ship—fixed 9)

w =y, Earth—fixed (10)

Eqgs. (9) and (10) are satisfied on the static z=0 calm-water plane.
This simplifying assumption gives rise to computational savings by
avoiding the need for mesh deformation required by nonlinear
surface tracking methods. Lastly, for cases in which the flow is
steady in the ship-fixed coordinate, the steady kinematic condition
can be used as:

W= = Ushipny — Vehipny Steady ship—fixed an

The dynamic free-surface boundary condition is derived by
invoking a zero total stress condition on the free-surface. It is as-
sumed that surface tension is insignificant for ship waves from the
maneuvering point-of-view such that it can be neglected, and the
total stress tensor is written as,

5= -p-pgpl +7 12)

where p is the hydrodynamic pressure, [ is the identity tensor, and
—pgn is the hydrostatic pressure. The incompressible viscous stress
tensor is expressed as:

- - —\T
T—,u(Vu +(Vu)) a3
The superscript T indicates the tensor transpose operation. The

zero total stress boundary condition implies - = 0. This condi-
tion can be expressed in several ways. First, the zero-stress con-
dition is written explicitly in terms of the free-surface elevation 7.
One can non-dimensionalize the dynamic conditions using the
ship length and forward speed as the length and velocity scales to
characterize the problem. Collecting appropriate terms for the
Froude and Reynolds numbers (based on the ship length) results in
the following description:

® - Fr2ipig — 2 Re~Vilyify — Re~1(dly + V)if; + Re~!(l; + Wy) = 0

® - Fr*zﬁ)ﬁ)7 — Re~1(Wy + Uy)7jy — 2 Re”! Vyily + Re~'(¥; + Wy) = 0

— (P — Fr=%j) — Re"1(Wy + U,)iiz — Re~1(Wy + V)i + 2 Re W, =0 (14)

This dimensionless form allows for a quantitative examination
of the importance of each term in the zero total stress condition. In
addition to being nonlinear, these equations are coupled by the
variables u, v, w, p, and 7. It is assumed that the ship-generated
waves caused by maneuvering predominantly have small slopes
and small heights, where 7, 7,<1and n<Lsnip. Additionally, even at
model scale, ships operate at Reynolds numbers exceeding O(10°)
whereas the Froude number is often O(10-1). Therefore, each
viscous term in the dynamic conditions is neglected and the re-
sulting condition is a single, linearized, zero total pressure
equation (shown again in dimensional form):

p-pgn=0 (15)

Eq. (15) is used as the pressure boundary condition with the lin-
earized URANS method and is satisfied on the z=0 plane.

The body boundary condition for the fully nonlinear problem
states that the velocity of the fluid is equal to the velocity of the
body:

U = Ubody (16)

One of the important benefits of following a linearized approach is
the reduction of computational cells that are required to resolve
the free-surface solution. In the current implementation, the
computational domain does not extend beyond the z=0 calm-
water plane. As such, the ship and grid move together in the
horizontal plane, and the body boundary condition can be satisfied
exactly for the surge, sway, and yaw degrees of freedom.

2.1.1. ALE form of equations

The governing equations have been presented, and are solved,
in an inertial, Earth-fixed reference frame. The moving grid ne-
cessitates an arbitrary Lagrangian-Eulerian (ALE) description of
the governing equations for numerical solution. Equations are
solved for each computational cell that has volume V and is
bounded by the surface S with outward normal 1. S, is the portion
of the boundary of a computational cell that is adjacent to the
plane z=0, and [ is the contour of this area. The development of
the ALE form of the kinematic free-surface boundary condition
begins with the Leibniz integral rule applied over a surface to the
time-derivative of # on the right-hand side of Eq. (10),

ox, h(t) A
9 nis= [ @d5+f ,,L().ndz
ot Jso(t) So(t) ot 1) ot a7
where
aYmesh(t)

- A AoA
ot = Unesh = Umeshi + Vimeshj + Ok 18)

The mesh motion gives rise to a convective term in the ALE for-
mulation of the kinematic free-surface boundary condition. This is
consistent with the convective term in the ship-fixed condition in

Eq. (9) because L_fmesh takes the place of L_J)Ship. The form of the
condition that is suitable for numerical solution on a moving grid
is:

7] - A
9 ds - Unesn-A dl = ds
ot Jso(e)"! f:m"' mest 1 [somw 19)

Similarly, the ALE form of the momentum and continuity
equations is,

% Lo ave [ piiiahds

~ - T, A
= - fVVpdV+ fsyeff(Vu + Vu )ndS 20

/S UeAdS=0

21
where
a)rel = a) - Umesh (22)

2.2. Numerical aspects

The linearized URANS formulation is solved using a custom
finite volume CFD algorithm based within the OpenFOAM C+ +
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library. It consists of solutions to the URANS equations and linear
free-surface conditions. All flow variables are collocated at cell
centers of the polyhedral finite-volume mesh. At the free-surface,
values for the wave elevation, 7, are solved at face centers of the
polygonal boundary mesh.

Results discussed in this paper are obtained on unstructured
grids. A PISO-like algorithm is used to solve for pressure and ve-
locity. Time discretization is performed with a first-order Euler
implicit scheme. A second-order linear upwind scheme is used for
convective terms. The Spalart-Allmaras turbulence model is used
with an adaptive wall-function based on the Spalding universal
law-of-the-wall.

The entire computational domain is moved with rigid body
motion in the horizontal plane. The ship motion is described in an
inertial, Earth-fixed reference frame. This approach allows for a
natural description of the acceleration of the body from rest and
avoids issues related to an impulsive start which is discussed in
Section 3.1. Furthermore, it closely resembles the actual motions in
a physical setting (which in this validation is a towing tank). While
the entire grid undergoes rigid body motion, propellers and rud-
ders can rotate relative to the body with a sliding mesh approach.
A cylinder enclosing a propeller or a rudder rotates independently
from the remainder of the mesh.

Fig. 2 describes the steps of the algorithm. The starting point
for the custom solver developed in this work is the pimple-
DyMFoam solver, and the unique steps that add the linear un-
steady free-surface capability are outlined in red. The solution of
the momentum equations provides the vertical velocity which is
used in the kinematic boundary condition. In a typical segregated
manner, the pressure equation is then solved and used to correct
the velocities at cell centers to achieve a discretely divergence-free
velocity vector. Upon updating the boundary conditions over the
computational domain, the pressure condition on the free-surface
uses the wave elevation from the kinematic condition to apply the
pressure boundary condition. Steady problems can be modeled by
using time steps to dictate the number of iterations with no inner
correctors, outer correctors, or time derivatives. For unsteady
problems, time steps can dynamically adjust to a user-defined
Courant restriction. Inner correctors can be used to solve the
momentum equations multiple times within a single time step.
Lastly, under-relaxation may be employed in combination with

Set
—> | boundary
conditions
Solve Compute Solve for
> | momentum | —> flux on —>
equations cell faces "
y
2
é Correct Correct flux Solve
g U < on cell faces| = IDIREESIITE
= equation
[}
[=]
8 Y
Update Apply Outer correctors
—— | boundary | —> |p = pgn on
conditions f-s
Solve for Time steps
End Iy L

Fig. 2. Steps of the linearized URANS algorithm. (For interpretation of the refer-
ences to color in this figure, the reader is referred to the web version of this paper.)

outer correctors for time-accurate solutions employing large time
steps.

3. Validation with Wigley Hull

The governing equations previously described in this document
are derived for the simulation of ship maneuvering and directly
applicable to simulate planar motion mechanism (PMM) man-
euvers. The equations are unsteady and written in an ALE fashion
for an Earth-fixed description of the maneuvering problem.
However, the general linearized free-surface approach is also well-
suited for other hydrodynamics applications such as submerged
hydrofoils, surface-piercing cylinders, submarines near or piercing
the free-surface, submerged energy-capturing devices, and
moonpool resonance (Woolliscroft and Maki, 2015).

Different applications may benefit from different reference
frames to be selected for the solution algorithm. For instance, ship
resistance and static drift problems can be solved in a ship-fixed
reference frame with steady forms of the governing equations.
Dynamic maneuvers such as pure sway and pure yaw benefit from
an inertial, Earth-fixed reference frame with ALE descriptions of
the governing equations. Three variations of the linearized URANS
free-surface solver are tested in this section:

® The first numerical variation is a steady ship-fixed formulation,
where time derivatives ou /ot and dp/ot are assumed zero and
absent from the discretized equations. The convective term in
the kinematic condition (Eq. (11)) arises from the coordinate-
system shift instead of the ALE procedure.

® The second variation is unsteady and employs the ship-fixed
frame of reference where ou /ot and on/ot are solved using a
first-order Euler implicit scheme. This form of the solver is only
used for cases when the body is not accelerating so that the
source terms due to the acceleration of the coordinate system
are zero. This requires an impulsive start.

e Lastly, an inertial Earth-fixed approach is used, where the ALE
form of the governing equations is solved. Naturally, this ap-
proach is unsteady and requires inclusion of time-derivatives of
flow variables. The ALE form of the Earth-fixed kinematic con-
dition (Eq. (19)) is solved in this variation.

The purpose of this study is to evaluate and compare the three
variations of the linearized URANS problem for the purpose of ship
maneuvering. The accuracy and computational expense is dis-
cussed for each variation.

3.1. Resistance tests

Resistance tests of a Wigley hull with length L=4 m are per-
formed at several Froude numbers with three variations of the
linearized free-surface tool. The hull has a length-to-beam ratio of
L/B =10 and a beam-to-draft ratio of B/D = 1.6. An equation for
the hull form is shown in Eq. (23). The accuracy of the numerical
predictions is determined by comparison with experimental
measurements from the Ship Research Institute in Tokyo, Japan
(Tanaka, 1983):

2 2
o (B ()
L L D 23)
Although resistance is used to evaluate the method and its
variations, consistency with maneuvering notation is maintained
with the use of X as the total resistance and X' as the di-

mensionless coefficient of total resistance. This and the lateral
sway force, Y’, and yaw moment, N, are calculated as:



158 M.O. Woolliscroft, KJ. Maki / Ocean Engineering 117 (2016) 154-162

0.007 r : : : : : r
0.006 } ® -
0.005 e . o & wbe Tl 00 . i
< 0004 B .....‘....lt.l.....‘. -
> 0.003 F Unsteady, ship-fixed o ]
Unsteady, Earth-fixed
0.002 } Steady, ship-fixed = 1
0.001 L Experiment o |
0.000 . ' ' . . . L
0.06 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Fr

Fig. 3. Resistance coefficients of experiments and three variations of the linearized
free-surface method.

X, Y, N/L

X, ¥, N =2 X
0.5pUsipAo 24)

The ship length is L, and the lateral underwater area A, = LD
where D is the draft.

A single structured grid consisting of approximately 120,000
cells is used for all simulations. The Spalart-Allmaras turbulence
model is used with a universal wall-function. The lowest y* values
which correspond to Fr=01 are yr =21, yr. =48, and
Vi x = 86. A grid refinement study is performed in the section on
maneuvering forces (Section 4).

The predicted resistance coefficients from each variation of the
linearized free-surface solver and the physical experiments are
shown in Fig. 3. All three variations of the linearized (U)RANS
method predict similar values of the resistance coefficient at each
respective Froude number. Although the numerical results differ
by up to 15% compared to the experiments, the difference is al-
ways positive and reasonably consistent. There are several possible
causes for the difference between the numerical predictions and
the experimental measurements: grid refinement, turbulence
modeling, and use of a wall-function can all play a role in the
comparison error. The main focus here is to demonstrate the
ability to consistently model steady, unsteady, non-inertial, and
inertial problems in a RANS framework using a linearized free-
surface.

The convergence of the resistance using the steady ship-fixed
variation is presented in Fig. 4. 12,000 iterations are performed for
each simulation. The resistance values corresponding to the

25 | ]
Fr =041

20 1
s Fr =10.35 ]
= 15
b Fr=0.32

10 1

Fr=0.27

Fr=0.1

0 2000 4000 6000 8000 10000

Iterations

12000

Fig. 4. Steady simulations in ship-fixed reference frame.

20 f ]

Fig. 5. Dashed lines — unsteady ship-fixed without velocity ramp-up and solid lines
- unsteady Earth-fixed with velocity ramp-up.

highest and lowest Froude numbers need far fewer iterations to
converge, but not all resistance values have converged for the
midrange Froude numbers, especially Fr=0.32 and Fr=0.35. The
oscillations associated with the midrange Froude numbers can be
attributed to the impulsive start used in the simulations. The in-
itial state from this impulsive start provides inexact values for the
steady solution and leads to an oscillating wave. An iterative al-
gorithm is used for the steady equations, but the iterative process
acts as pseudo-time. Therefore, the error oscillates and decreases
with additional iteration, akin to an unsteady algorithm conver-
ging over time.

The two variations of the unsteady description of the linearized
URANS method - ship-fixed and Earth-fixed reference frames — are
compared in Fig. 5. The difference that is highlighted here is the
use of an impulsive start compared to a slow increase or ramp-up
in velocity. The simulations corresponding to the ship-fixed re-
ference frame use an impulsive start for the fluid velocity, where
Uship = Upinal for ¢ > 0. The Earth-fixed simulations use a half-cosine
velocity ramp to describe speed of the ship:

1 nt .
—Ufinal| 1 = cos , ift <t
Uship . ) fmal[ (tramp)] ramp

if t > tramp 25)

Utinal,

The Earth-fixed simulations, which all employ a velocity ramp
of 9, are shown to converge more quickly than the ship-fixed
simulations that use an impulsive start. The impulsive start creates
waves from reflection at the boundaries leading to oscillatory
forces. The period of the oscillation is described by linear wave
potential theory T = 8zU/g (Wehausen and Laitone, 1960, p. 617),
and the amplitude of the oscillation is proportional to the accel-
eration, being maximum for the impulsive start. The oscillations
require long periods of time to dampen via the means of physical
viscosity and numerical error. In fact, the ramp assists in speeding
up convergence so well that an unsteady approach may require
less CPU time to reach convergence than a steady approach. Nor-
mally, the steady resistance problem is an excellent candidate for
the steady solver. The steady solution is appealing due to com-
putational effort (all time derivatives neglected) and a stationary
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Table 1
CPU time to convergence.

Description Iterations/time Converged? CPU hours
Steady 12,000 iterations No 343
Unsteady 15s Yes 2.66

mesh. On the other hand, the unsteady version may seem un-
necessarily complex as it requires solutions to time derivatives,
time-step size restrictions, and the cost of translating the com-
putational mesh. It is possible to use relaxation techniques to
improve the convergence of the steady solver, but the natural
formulation of the unsteady problem allows for a Courant-num-
ber-based time-step-size restriction to control the convergence in
an efficient manner. A summary comparing the computing time
for this case appears in Table 1.

The general free-surface linearization in a RANS framework is
shown to provide consistent results with a steady, unsteady ship-
fixed, and unsteady Earth-fixed version. But the overall goal at
hand is for unsteady maneuvering simulations in the horizontal
plane. Another advantage to an Earth-fixed frame of reference
arises with additional motions of sway and yaw. With an Earth-
fixed reference frame, a user may input the ship motions as they
would be input on a towing tank carriage (forward speed, sway/
yaw amplitude and frequency) while avoiding prescribing any
time-dependent changes in the boundary conditions. For this
reason, as well as those discussed previously, the maneuvering
simulations presented in the following section are performed in an
unsteady, Earth-fixed manner with a velocity ramp for the surge,
sway, and yaw motions.

4. Maneuvering results
4.1. Overview of test case

PMM captive model tests are used to determine the accuracy of
the linearized URANS method in the prediction of forces and

moments. A version of the David Taylor Model Basin (DTMB) 5415
hull form is used. The model has length L=3.048 m and is fitted

x
A

@ U X, u

Y, v

O : midship and waterline
>y

Fig. 6. The maneuvering coordinate system.

SN

S e
— e
ﬁ,g‘

Fig. 7. Top-to-bottom - static drift, pure sway, and pure yaw tests.

\

with bilge keels but is otherwise unappended. The Froude number
is 0.28, and the length-based Reynolds number is 4.46 million. The
tests performed are pure sway, pure yaw, and static drift. Ex-
amples of the trajectory and orientation of the model are provided
for each test in Fig. 7. The time-dependent tests have PMM periods
of Tymm = 7.48 s, a pure sway amplitude of /L = 0.104, and a pure
yaw amplitude of ywp=10.2°. All results correspond to the co-
ordinate system shown in Fig. 6. These simulations replicate the
experiments performed at the lowa Institute of Hydraulic Research
(IIHR) (Longo et al., 2006). The model was fixed in sinkage and
trim during the experiments. This section presents the results of
the linearized URANS method compared to the experimental data
as well as the computational expense of the simulations.

4.2. Forces and moments

The forces and moments presented in this section are the ship-
fixed and non-dimensional axial surge force, lateral sway force,
and yaw moment about midships (X', Y’, and N’ from Eq. (24)).
Time histories are plotted over a single PMM period. Each plot
contains two sets of data — experimental and linearized URANS
simulations. Three grids are used to estimate the discretization
error. The cell count and near-wall-layer metrics are summarized
in Table 2.

4.3. Static drift with grid study

The steady nature of the static drift test presents an opportu-
nity to perform a grid study with the linearized URANS approach
because it is straightforward to compute the time-averaged value
of the steady force on the ship. The procedure presented in Eca
and Hoekstra (2014) is employed in this work for a three-grid set
of solutions. The first step is to identify the convergence condition
using the solution on the coarse, medium, and fine grids. The so-
lution on each grid is represented as ¢;, ¢,, and ¢,, respectively:
R by —

¢3— &, (26)

0 < R < 1 = Monotonic convergence
-1 < R < 0 = Oscillatory convergence
R > 1 = Monotonic divergence

R < — 1 = Oscillatory divergence

Here, R is the discriminating ratio of the solution on the three-
grid set. In the simulations for the 5415 in static drift, the surge

Table 2
Grid characteristics.

Grid Cells Yrhean
Coarse 202,000 60.1
Medium 398,000 50.0
Fine 918,000 41.7
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Fig. 8. Grid study for static drift. (For interpretation of the references to color in
this figure, the reader is referred to the web version of this paper.)

force displays monotonic divergence. This means that the error is
not in the asymptotic range, and Richardson extrapolation is not
used to estimate the error. It is believed that the divergence is
related to the application of the wall-function on grids with
varying near wall-layer thickness. It is not possible to system-
atically refine the grid and keep the first grid point off the wall in
the same location, and this has important consequences for the
wall shear stress prediction from the wall-function. The paper (Eca
et al.,, 2015) has a clear presentation of the consequences of ap-
plying a wall-function to a turbulent flat plate with varying near
wall-layer cell thickness.

However, the sway force and yaw moment show monotonic
convergence. The observed order-of-accuracy is related to the
discriminating ratio. If the solutions show convergence, and the
observed order-of-accuracy is close to the theoretical, then Ri-
chardson's extrapolation may be used. For both the sway and yaw
quantities, the observed order was much larger than the theore-
tical order. In this case, most steps in the algorithm are second-
order, but there are first-order approximations in the gradient
limiter and the gradient-boundary conditions.

To visualize the convergence of the solution, Fig. 8 shows the
numerical data together with two curves. The curves correspond
to a polynomial error model, where a least squares approach is
used to solve for ¢, and « in Eq. (27). The blue-dashed curve re-
presents the fit to Eq. (27) using the theoretical order-of-accuracy
Pw = 2, and the red-solid curve represents the fit using the ob-
served order-of-accuracy p that is calculated from the dis-
criminating ratio (Eca and Hoekstra, 2014, Eq. (3)):

h Y
hi=dot a(h_l) @7)

In Eq. (27), ¢h, represents the extrapolated value (an estimated
value corresponding to cell size h;=0), and « is a constant coef-
ficient. A representative cell size for each grid is denoted with h;,
where h; corresponds to the finest grid. The representative grid
size is the cube root of the ratio of the volume of the flow domain
and the number of cells.

The convergence behavior of each force and moment can be

0.06

0.04 } |
0.02 |—X—H—‘ |
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Fig. 9. Force and moment uncertainties for static drift.

seen in Fig. 8. Monotonic grid convergence can be seen for the
sway force and yaw moment. Also, the extrapolated values of each
quantity can be seen by inspection of the vertical axis as h;/h; — 0.

Due to the monotonic divergence and the super-convergence
displayed, an uncertainty assessment based on Richardson extra-
polation is not reliable. In other words, the error is apparently not
in the asymptotic range which is a fundamental assumption in the
derivation of Richardson's extrapolation. Instead, a factor of safety
is used as presented in the following equation:

U¢ = FSAM
Ay = max(lg; — (/’jD (28)

The uncertainty is represented with U,. The factor of safety is F,
and Ay is the maximum difference in the solution among the
grids. For the monotonic divergence of the surge force, it is sug-
gested that F;=3. The sway force and yaw moment show mono-
tonic convergence and employ a lower factor of safety value,
Fs=1.25. These findings are summarized in Fig. 9, where the fine
grid results are plotted with the uncertainties.

Ship maneuvers often occur at low forward speed, and if the
speed is low enough, the influence of the ship waves can be ne-
glected. For example, if the length-based Froude number is less
than approximately 0.1, the free-surface is often assumed to be flat
and to act as a symmetry plane using the so-called zero-Froude-
number approximation. To highlight the benefits of the linearized
URANS method, the static drift simulation is repeated using the
zero-Froude-number or double-body approximation. The coarse
grid containing just over 200,000 cells is used with both ap-
proaches for the comparison.

Fig. 10 shows the major differences in the pressure solution at
the z=0 calm-water plane. This can also be interpreted as the
solution to the free-surface elevation since pressure and elevation
are directly related to first-order as p = pgy. Both show a high
pressure zone corresponding to the bow wave on the windward
side, but the linearized URANS method exhibits gravity waves that
are generated on the leeward side.

For a more quantitative comparison, the forces obtained using
both techniques are shown in Fig. 11. Both methods perform well
in predicting the surge force obtained with the physical experi-
ments. However, the zero-Froude-number approach shows a dif-
ference of over 20% for both the sway force and yaw moment. On
the other hand, the linearized URANS method still compares well
to the experiments being less than 5% different.

The computational expense of each method is also important to
compare. The linearized URANS method requires 10% more com-
putational time than the double-body simulation. Specifically,
9.29 h vs. 8.43 h are needed on 12 processors for 60 s of simulated
time. For a slightly greater expense, the improved accuracy of
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Fig. 10. Coarse grid pressure comparison of linearized URANS (top) and double-
body (bottom) for static drift g = 10°.
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Fig. 11. Static drift for linearized URANS and double-body.

accounting for first-order wave effects is significant and still pos-
sible to obtain with computation on hardware that is available in a
desktop workstation.

4.4. Pure sway

Fig. 12 presents the time series over one PMM period for the
pure sway tests. The numerically predicted surge force shows a
smaller amplitude than the experimental data. However, the time-
averaged values are in good agreement. An important observation
to make is the consistency between the three grids. It is un-
common for fully nonlinear methods to correspond so well with
experiments using as few as 200,000 cells, as is being displayed
here with the linearized URANS method (Bhushan et al., 2014). The
sway force and the yaw moment are predicted well with the lin-
earized approach. Other than a slight phase shift from the ex-
periments, all grids provide accurate predictions. This phase shift
may be present due to turbulence modeling, the wall-function, or
the boundaries of the mesh. It may also be partly attributed to
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Fig. 12. Forces and moments during pure sway.
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Fig. 13. Forces and moments during pure yaw.
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Table 3
CPU hours per PMM period.

Maneuver Coarse Medium Fine
Pure sway 115 56.3 2219
Pure yaw 104 35.8 196.0

experimental error.
4.5. Pure yaw

Fig. 13 shows the forces and moment over one PMM period
during the pure yaw test. Similar to pure sway, the surge force
from the simulations differs from the experiments, but it should be
noted that the solution exhibits convergence and the difference in
the solution between the three grids is relatively small. The
medium and fine grids are in very close agreement. The sway force
and yaw moment agree well with the experiments, other than a
small phase shift.

4.6. Computational time

Computational efficiency is a primary goal of the linearized
URANS methodology. The CPU expense is calculated by multi-
plying the walltime with the number of processors used to com-
pute the solution over a single PMM period. This expense is re-
ported in CPU hours for the dynamic maneuvers on each grid in
Table 3.

The low computational expense required by the linearized
URANS method makes it suitable for use on a multi-core work-
station. The ability to use machines already present in the work-
place shows promise that RANS-based maneuvering simulations
can be brought into engineering practice more immediately. It
should also be noted that these CPU hours correspond to con-
servative simulations with no under-relaxation and maximum
allowable Courant number of Cpax = 2.

5. Discussion and conclusions

An unsteady linearized free-surface framework for a viscous,
turbulent fluid is studied. Application of the technology focuses on
ship maneuvering prediction, however, the general problem for-
mulation is valid for a variety of ocean engineering problems. Two
frames of reference are used to highlight the robustness of the
method. The first is an inertial, body-fixed reference frame where
governing equations are solved in either a steady or unsteady
manner. The second variation is an inertial, Earth-fixed reference
frame which solves the ALE form of the governing equations. Each
variation produces similar results for a resistance test on a Wigley
hull.

Within the overall linearized free-surface framework, a unique
method for maneuvering prediction has been developed. This is an
initial application and validation of the technology, but the results
herein show the linearized URANS method to be a viable option
when compared to model tests and fully nonlinear CFD. Although
limited to the maneuvering assessment of a naval combatant in this
paper, application of the method can be extended to full ship forms
with higher block coefficients and additional maneuvers such as
turning circles and zig-zags. Utilizing a linear free-surface approx-
imation and solving the URANS equations in the water phase shows

promise in terms of both accuracy and efficiency. The reduced
complexity in solving a first-order wave field compared to fully
nonlinear approaches offers lower computational expense as seen
with several PMM simulations on a DTMB 5415 model. Time-de-
pendent maneuvers can be performed in less than 12 CPU hours.
Even with coarse grids, forces and moments compare closely with
experiments because the surface effects associated with maneu-
vering are accurately represented in a linearized framework.
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