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Cyclic Guanosine Monophosphate Signaling and
Phosphodiesterase-5 Inhibitors in Cardioprotection

Rakesh C. Kukreja, PHD, Fadi N. Salloum, PHD, Anindita Das, PHD

Richmond, Virginia

Cyclic guanosine monophosphate (cGMP) is an important intracellular second messenger that mediates multiple
tissue and cellular responses. The cGMP pathway is a key element in the pathophysiology of the heart and its
modulation by drugs such as phosphodiesterase (PDE)-5 inhibitors and guanylate cyclase activators may repre-
sent a promising therapeutic approach for acute myocardial infarction, cardiac hypertrophy, heart failure, and
doxorubicin cardiotoxicity in patients. In addition, PDE-5 inhibitors may prove to be innovative therapeutic
agents for enhancing the chemosensitivity of doxorubicin while providing concurrent cardiac benefit.
(J Am Coll Cardiol 2012;59:1921–7) © 2012 by the American College of Cardiology Foundation
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Cyclic guanosine monophosphate (cGMP) is a critical
intracellular second messenger regulating fundamental
physiological processes in the myocardium, from acute
contraction/relaxation to chronic gene expression, cell
growth, and apoptosis. Several studies have shown that
cGMP inhibits hypertrophy, reduces ischemia-reperfusion
(I/R) injury, and regulates contractile function and cardiac
remodeling (1–3). cGMP is generated from the cytosolic
purine nucleotide guanosine triphosphate by guanylyl cy-
lases (GCs) using Mg2� or Mn2� as cofactors. Two
soforms of GCs exist in vertebrate cells and tissues: a nitric
xide (NO)-sensitive cytosolic or soluble guanylyl cyclase
sGC) and natriuretic peptide (NP)-activated plasma mem-
rane bound, particulate guanylyl cyclase (pGC). Once
roduced, the effects of cGMP occur through 3 main groups
f cellular target molecules: cyclic guanosine monophos-
hate–dependent protein kinases (PKGs), cGMP-gated
ation channels, and phosphodiesterases (PDEs). cGMP
ositively regulates PKG but inhibits/activates PDEs,
hich are predominant in the cardiovascular system (4,5).
his paper reviews many of the latest findings on cGMP

elated to the cardioprotection.

egulation of cGMP by PDEs

he cGMP pool in the cell is tightly controlled by PDEs,
hich specifically cleave the 3=,5=-cyclic phosphate moiety
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f cyclic adenosine monophosphate (cAMP) and/or cGMP
o produce the corresponding 5’ nucleotide. Currently, 21
DE genes have been cloned and are classified into 11

amilies according to their sequence of homology, biochem-
cal, and pharmacological properties (6). The PDEs vary in
heir substrate specificity for cAMP and cGMP: PDE-5,
DE-6, and PDE-9 are specific for cGMP; PDE-4,
DE-7, and PDE-8 are specific for cAMP; and PDE-1,
DE-2, PDE-3, PDE-10, and PDE-11 have mixed spec-

ficity for cAMP/cGMP (7). PDE-5 selectively hydrolyzes
GMP, and its inhibition increases cGMP bioavailability.
he abundance of PDE-5 in smooth muscles and its role in

egulating their contractile tone has made PDE-5 an
mportant drug target for the treatment of erectile dysfunc-
ion (6), leading to the development of potent PDE-5
nhibitors, such as sildenafil (Viagra and Revatio, Pfizer,

ew York, New York), vardenafil (Levitra, Bayer Schering
harma AG, Leverkusen, Germany), and tadalafil (Cialis
nd Adcirca, Eli Lilly Canada Inc., Toronto, Ontario,
anada). Revatio and Adcirca have also been approved for

he treatment of pulmonary hypertension. Earlier studies
ound that PDE-5 is not present in normal cardiomyocytes
8,9), although later investigations revealed its expression in
anine (10), mouse cardiomyocytes (1,11,12), and human
eart (13,14). PDE-5 expression is increased in hypertro-
hic human right ventricle, as well as failing left ventricular
issue (13–15). A gene silencing model also confirmed
DE-5 protein expression (16), whereas a recent report still
uestioned its presence in adult mouse cardiac myocytes
17). Because cGMP-hydrolytic activity is also attributable
o PDE-1 and PDE-3, Vandeput et al. (14) suggested that
he effects of sildenafil on cGMP hydrolysis were due to
nhibition of both PDE-5 and PDE-1 in the left ventricles

f normal and failing mouse hearts.
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cGMP in Pre- and
Post-Conditioning

NO triggers various physiologi-
cal responses by binding and ac-
tivating sGC to produce cGMP
from guanosine triphosphate
(18). NO-cGMP-PKG signal-
ing pathway is involved in the
cardioprotective action in I/R in-
jury as a survival signal (19,20).
In cardiomyocytes, cGMP re-
duced the effects of myocyte stun-
ning after simulated I/R (21). The
NO donor S-nitroso-N-acetyl-
L,L-penicillamine mimicked the
pre-conditioning–like effect by
inducing cGMP (22). Moreover,
the activation of the NO/cGMP/
PKG pathway inhibited the ele-
vation of intracellular Ca2� con-
centrations by phosphorylating
target proteins responsible for in-
tracellular Ca2� homeostasis during
I/R injury in Chinese hamster
ovary cells (23).

Ischemic pre-conditioning rap-
idly increased cGMP levels via
sGC during ischemia, leading to
delayed protective effect (24 h
later) against myocardial stun-
ning and infarction in conscious
rabbits (24). Bradykinin, one of

he triggers of pre-conditioning, caused receptor-mediated
roduction of NO resulting in cGMP production, activation of
KG, and opening of mitochondrial KATP (mitoKATP) chan-

nel in rabbit heart and cardiomyocytes (25). Opening of
mitoKATP channels causes partial compensation of the mem-
rane potential, which enables additional protons to be
umped out to form a H� electrochemical gradient for both

adenosine triphosphate synthesis and Ca2� transport (26). The
GMP/PKG pathway also confers ischemic post-conditioning
rotection in part by delaying normalization of pH during
eperfusion, probably via PKG-dependent inhibition of Na�/

�-exchanger in rat heart (27).

cGMP Modulatory Drugs for Cardioprotection

cGMP modulatory drugs induce cardioprotective effect
through PKG as outlined in Figure 1. NPs exert biological
effects by binding to membrane-associated pGC. Atrial
natriuretic peptide (ANP), B-type natriuretic peptide
(BNP), and C-type NP are 3 structurally related, but
genetically distinct, signaling molecules that regulate the
cardiovascular, skeletal, nervous, reproductive, and other

Abbreviations
and Acronyms

ANP � atrial natriuretic
peptide

BNP � B-type natriuretic
peptide

cAMP � cyclic adenosine
monophosphate

cGMP � cyclic guanosine
monophosphate

DOX � doxorubicin

DMD � Duchenne muscular
dystrophy

GC � guanylyl cyclase

I/R � ischemia-reperfusion

mdx � dystrophin-deficient

MI � myocardial infarction

mitoKATP � mitochondrial
KATP

NO � nitric oxide

NOS � nitric oxide
synthase

NP � natriuretic peptide

PDE � phosphodiesterase

pGC � particulate guanylyl
cyclase

PKG � cyclic guanosine
monophosphate–dependent
protein kinases

sGC � soluble guanylyl
cyclase
systems by activating pGC and elevating intracellular cGMP
concentrations. ANP is primarily stored in atrial granules and
secreted in response to atrial stretch. BNP is also in atrial
granules but is found in the highest level in ventricles of
stressed hearts (28). C-type NP is found at lower concentration
in vascular endothelium and is present in higher concentration
in chondrocytes where it stimulates long bone growth (29). In
the cardiovascular system, NPs exhibit growth suppressive,
antiproliferative, and antihypertrophic actions on vascular
smooth muscle cells, cardiomyocytes, and fibroblasts (30).
ANP/BNP exert myocardial protective effects against I/R
injury through a cGMP-PKG– dependent modulation
of mitoKATP channels (31). ANP also protects against
reoxygenation-induced hypercontracture in cardiomyo-
cytes by stimulating cGMP synthesis (32). Administra-
tion of ANP at reperfusion protected against I/R injury
(33,34) and exerted antiapoptotic effects in rat cardiomy-
ocytes through cGMP-PKG and by inducing phospha-
tidylinositol 3-kinase-protein kinase B (PI3K/AKT) sig-
naling (35). cGMP analogue, 8-Br-cGMP, or elevation
of intracellular cGMP concentration via the sGC activator
NO or BNP exerted cardioprotective effects through PKG
activation (36).

Cinaciguat (BAY 58-2667) activates sGC independent of
NO (37). This drug preferentially activates sGC when the

Figure 1 Myocardial Protection by Up-Regulation of cGMP

Cardioprotective modalities including pre-conditioning, post-conditioning, atrial
natriuretic peptide (ANP)/B-type natriuretic peptide (BNP), nitric oxide (NO)
donors, and Cinaciguat generate cyclic guanosine monophosphate (cGMP)
through activation of soluble guanylyl cyclase (sGC)/particulate guanylyl cyclase
(pGC). cGMP exerts cardioprotective effects against ischemia/reperfusion injury
through activation of cyclic guanosine monophosphate–dependent protein
kinase (PKG).
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heme iron is oxidized (Fe3�) or the heme moiety is missing,
hich makes this enzyme insensitive to both its endogenous

igand NO and exogenous nitrovasodilators. These unique
ttributes make Cinaciguat an attractive molecule for pro-
ection against reperfusion injury. Indeed, Cinaciguat in-
uces an effect similar to pre-conditioning or post-
onditioning against I/R in rabbit, rat (38), mouse (39), and
og (40) heart by activating PKG and opening of the
itoKATP channels (39). Intriguingly, this drug caused

PKG-dependent generation of hydrogen sulfide in mouse
cardiomyocytes and protected against simulated ischemia/
reoxygenation injury, similar to tadalafil in the heart (3).
Hydrogen sulfide causes cardioprotection through opening
of sarcolemmal KATP channels in rat heart and cardiomyo-
cytes (41).

PDE-5 inhibitors are promising drugs for cardiovascular
protection. Our laboratory first demonstrated the cardiopro-
tective effect of sildenafil against I/R injury (42). Rabbits
treated with sildenafil before ischemia showed significant
reduction in infarct size, which was mediated by opening of
mitoKATP channels. Sildenafil also reduced cell death due to
necrosis and apoptosis in isolated cardiomyocytes, suggest-
ing that the cytoprotective effect of this drug was indepen-
dent of its vascular/hypotensive effect (11). Vardenafil is
20-fold more potent than sildenafil for inhibiting purified
PDE-5 (43), and it also displayed a similar protective effect
against I/R injury in rabbits (44). Moreover, both drugs
reduced infarct size when infused at reperfusion through
opening of mitoKATP channels (45). Tadalafil is a long-
cting PDE-5A inhibitor that has a half-life of 17.5 h (46)
nd is effective for up to 36 h for improving erectile
unction. Tadalafil also reduced infarct size and improved
ardiac function after I/R in mice (3).

Mechanistically, the cardioprotective effect of sildenafil
as dependent on enhanced NO generation through endo-

helial nitric oxide synthase/inducible nitric oxide synthase
47), activation of protein kinase C (48), and opening of
itoKATP channels (42). Sildenafil also increased cGMP

accumulation and PKG activation in mouse cardiomyocytes
and heart (11,47). The PKG-dependent cytoprotective
mechanism of sildenafil involves phosphorylation of ERK
and GSK3�, induction of Bcl-2, and opening of mitoKATP
channels (49) (Fig. 2). Interestingly, sildenafil increased
Bcl-2 expression, which was absent in inducible NOS–
deficient cardiomyocytes, thereby suggesting a link of NO
signaling with the expression of antiapoptotic protein (49).
Overexpression of PKG1� was also reduced in adult rat
ardiomyocyte injury after ischemia, which involved inhibi-
ion of active caspase-3, phosphorylation of Akt, ERK, and
NK, and increased expression of NOS and Bcl-2 as well as
ecreased Bax expression (50).

GMP Signaling in Hypertrophy and Heart Failure

ildenafil exerts antihypertrophic effects in mice with pres-

ure overload in the absence of vascular unloading (1). The T
ntihypertrophic effects coexisted with PKG activation, and
ts targets included regulator of G protein– coupled
ignaling-2 (51), as well as calcineurin-NFAT-TRPC6
52). In the hypertrophied right ventricular myocardium,
DE-5 is up-regulated, PKG activity is inhibited, and
GMP is preferentially shifted to inhibition of PDE-3 (15).

Figure 2 Mechanism of Cardioprotection
by the PDE-5 Inhibitor Sildenafil

Sildenafil treatment triggers signaling cascade resulting in increased expres-
sion of endothelial nitric oxide synthase/inducible nitric oxide synthase
(eNOS/iNOS) and activation of cGMP-dependent PKG. PKG subsequently
causes phosphorylation of ERK1/2 and pGSK3� in conjunction with an
increase in the Bcl-2, which inhibits apoptosis through attenuation in cyto-
chrome C release and inhibition of the mitochondrial permeability transition
pore (MPTP). PKG also opens mitochondrial KATP (mitoKATP) channels, which
limits against ischemia/reperfusion injury through preservation of adenosine
triphosphate (ATP) and decrease in Ca2� influx in the mitochondria.
his leads to an increase in cAMP, protein kinase A
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activation, increased intracellular calcium, and increased
contractility. The increased PDE-5 expression predisposed
mice to adverse left ventricular remodeling after myocardial
infarction (MI). Left ventricular systolic and diastolic dys-
function were more marked in PDE-5-TG (transgenic mice
with cardiomyocyte-specific overexpression of PDE-5) than
in wild-type mice, associated with enhanced hypertrophy
and reduced contractile function in isolated cardiomyocytes
from remote myocardium (13). Chronic treatment with
sildenafil immediately after MI or beginning 3 days
post-MI attenuated ischemic cardiomyopathy (53), suggest-
ing that PDE-5 inhibition may be a promising therapeutic
tool for patients with advanced heart failure. Interestingly,
PKG activation with sildenafil was associated with the
inhibition of Rho kinase (54), which is known to suppress
left ventricular remodeling post-MI in mice (55).

Cardiac Dysfunction in
Duchenne Muscular Dystrophy

Duchenne muscular dystrophy (DMD) is a progressive and
fatal genetic disorder of muscle degeneration. Patients with
DMD lack dystrophin as a result of mutations in the

Pharmacological Agents That Target the cGMP Signaling PathwaysTable 1 Pharmacological Agents That Target the cGMP Signal

Drug/Agent Target Model/Species

Atrial natriuretic peptide pGC Rabbit and rat heart, adult rat
ventricular myocytes

Bradykinin B2 receptor Rabbit heart and cardiomyocytes

B-type natriuretic peptide pGC Rat heart

8-Br-cGMP cGMP analogue Neonatal rat ventricular myocytes

Cinaciguat (BAY 58-2667) sGC Rabbit, rat, mouse, and dog hear

Sildenafil PDE-5 Rabbit and mice heart, and adult
mouse cardiomyocytes

Mice, adult mouse cardiomyocyte

mdx mice

Mice prostate cancer xenograft

S-nitroso-N-acetyl-L,
L-penicillamine

NO donor Neonatal rat ventricular myocytes

Vardenafil PDE-5 Rabbit heart

Brain tumor–bearing rat

Tadalafil PDE-5 Mice heart

cGMP � cyclic guanosine monophosphate; DOX � doxorubicin; eNOS/iNOS � endothelial nitric o

mitoKATP � mitochondrial KATP channel; MnSOD � manganese superoxide dismutase; NO � nitric oxide; N
protein kinase C; PKG � cyclic guanosine monophosphate–dependent protein kinases; sGC � soluble gu
X-linked dystrophin gene. The loss of dystrophin leads to
severe skeletal muscle pathologies and cardiomyopathy, a
delayed symptom of the disease that usually develops by the
second decade of life, with �90% of patients presenting
clinical symptoms by 18 years of age (56). Reduced NO-
cGMP signaling is a key contributor to DMD cardiac
pathogenesis. Dystrophin-deficient (mdx) mice exhibit car-
diac dysfunction with a decrease in diastolic function fol-
lowed by systolic dysfunction later in life. Loss of dystrophin
prevents normal neuronal nitric oxide synthase (nNOS)
expression and/or signaling in all (skeletal, smooth, and
cardiac) muscle systems (57). The stimulation of cGMP
synthesis by overexpression of cardiac-specific nNOS re-
duced impulse-conduction defects in mdx mice (58,59).
Similarly, increased pGC activity in young mdx mice
decreased susceptibility to cardiac damage during sympa-
thetic stress (60). Chronic treatment with sildenafil reduced
functional deficits in cardiac performance of aged mdx mice
without any effect on normal cardiac function in wild-type
controls (57). When sildenafil treatment was started after
cardiomyopathy had developed, the established symptoms
were rapidly reversed within a few days. These results suggest

athways

Results Ref. #

rotects against I/R injury and RO-induced hypercontracture
by cGMP-dependent nuclear accumulation of zyxin
and Akt

32–35

imics ischemic preconditioning by NO-cGMP-PKG
dependent opening of mitoKATP channels

25

rotects against I/R injury through cGMP-PKG dependent
modulation of mitoKATP channels

31

rotects against SI-RO via PKG 36

nduces pre- or post-conditioning-like effect against I/R
by PKG mediated opening of mitoKATP channels

38–40

rotects against I/R and SI-RO injury through eNOS/iNOS,
activation of PKC, increased accumulation of cGMP,
activation of PKG, phosphorylation of ERK, and opening
of mitoKATP channels

2,11,42,47–49,53

nhibits DOX-induced cardiomyocytes apoptosis, preserved
mitochondrial membrane potential (��m), and
myofibrillar integrity and prevents DOX-induced left
ventricular dysfunction

57,63

educed functional deficits in the cardiac performance
of aged mdx mice

57

ensitizes DOX-induced tumor reduction and provides
concurrent cardioprotective benefits.

67

imics preconditioning effect against SI-RO, which is cGMP
dependent but independent of PKC or mitoKATP channels

22

rotects against I/R injury via opening of mitoKATP channels 3,45

mproved survival and reduced DOX-induced tumor size 66

imits I/R injury by hydrogen sulfide signaling in a
PKG-dependent fashion

3

revents DOX-induced cardiomyopathy and improved left
ventricular function through up-regulation of cGMP,
PKG activity, and MnSOD level without interfering with
chemotherapeutic benefits of DOX

57,64

nthase/inducible nitric oxide synthase; I/R � ischemia/reperfusion; mdx � dystrophin-deficient;
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OS � nitric oxide synthase; PDE � phosphodiesterase; pGC � particulate guanylyl cyclase; PKC �

anylyl cyclase; SI-RO � simulated ischemia-reoxygenation.
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that PDE-5 inhibitors may be useful in the treatment of
cardiomyopathy in patients with DMD.

cGMP and Doxorubicin-Induced Cardiotoxicity

Doxorubicin (DOX) is one of the most powerful and widely
used anticancer drugs in clinics. Specifically , the cumulative
doses �550 mg/m2 increase the risk of developing cardiac
dverse effects, including congestive heart failure and dilated
ardiomyopathy (61). DOX cardiotoxicity involves in-
reased oxidative stress, inhibition of nucleic acid and
rotein synthesis, release of vasoactive amines, alteration of
itochondrial energetics, and altered adrenergic function.
eduction in fractional shortening and abnormalities in the
onspecific T-wave and ST-segment of electrocardiography
re typically observed in DOX-induced ventricular dysfunc-
ion (62). Treatment with sildenafil before DOX adminis-
ration inhibited cardiomyocyte apoptosis, preserved mito-
hondrial membrane potential (��m), and myofibrillar
ntegrity and prevented left ventricular dysfunction as well
s ST segment prolongation (63). Similarly, tadalafil also
mproved left ventricular function and prevented cardiomy-
cyte apoptosis in DOX-induced cardiomyopathy through
echanisms involving up-regulation of cGMP, PKG activ-

ty, and manganese superoxide dismutase levels without
nterfering with the chemotherapeutic benefits of DOX
64). Thus, prophylactic treatment with PDE-5 inhibitors
ight become a promising therapeutic intervention for
anaging the clinical concern of DOX-induced cardiotoxi-

ity in patients.

GMP in Cancer Chemotherapy

ildenafil and vardenafil induce caspase-dependent apopto-
is and antiproliferation effects in B-cell chronic lymphatic
eukemia (65). The combination of vardenafil and DOX
ignificantly improved survival and reduced the tumor size
n brain tumor–bearing rats (66). Oral administration of
ardenafil and sildenafil increased the rate of transport of
ompounds across the blood-tumor-brain and improved the
fficacy of DOX in treatment of brain tumors. We recently
eported that sildenafil is both a powerful sensitizer of
OX-induced killing of prostate cancer and a provider of

oncurrent cardioprotective benefit (67). Co-treatment with
ildenafil and DOX enhanced apoptosis in PC-3 and
U145 prostate cancer cells through enhancing reactive

xygen species generation compared with normal prostate
ells in which such combination attenuated DOX-induced
eactive oxygen species generation. The basic difference in
itochondrial respiration between normal and cancer cells

which produce large amount of lactate regardless of the
vailability of oxygen) seems to make cancer cells more
ensitive to oxidative stress (68). DOX-induced apoptosis is
ainly initiated by oxidative DNA damage, although this

poptosis may involve topoisomerase II inhibition as well.
he increased apoptosis by sildenafil and DOX was associ-
ted with enhanced expression of proapoptotic proteins Bad
nd Bax and suppression of antiapoptotic protein, Bcl-2,
nd Bcl-xL. Moreover, treatment with sildenafil and DOX
n mice bearing prostate tumor xenografts resulted in
ignificant inhibition of tumor growth.

onclusions

t is clear from the studies summarized here that the
O-cGMP-PKG pathway plays a key role in protection

gainst MI, pre- and post-conditioning, hypertrophy, heart
ailure, and DOX-induced cardiotoxicity (summarized in
able 1). A number of clinically relevant therapeutic
odalities including GC activators and PDE-5 inhibi-

ors are promising agents in modulating the cGMP
athway in these disease states. Research over the past 9
ears on the cardiac uses of PDE-5 inhibitors have helped
nitiate human trials, including the National Institutes

ealth multicenter trial (RELAX: Evaluating the Effec-
iveness of Sildenafil at Improving Health Outcomes and
xercise Ability in People With Diastolic Heart Failure

NCT00763867]) in patients with heart failure and a
linical trial of sildenafil (Revatio) (REVERSE-DMD
NCT01168908]) to treat DMD and Becker muscular
ystrophy patients with cardiac disease, which is currently
ecruiting patients at the Johns Hopkins medical institu-
ions (Baltimore, Maryland). The role of sildenafil in
nhancing the chemotherapeutic efficacy of DOX in pros-
ate and other cancer cell lines, while alleviating the cardio-
oxic effects of DOX, suggests that a new paradigm may be
merging for a safer use of this agent in the treatment of
arious types of cancer.

Reprint requests and correspondence: Prof. Rakesh C. Kukreja,
Pauley Heart Center, Division of Cardiology, Box 980204, Vir-
ginia Commonwealth University, 1101 East Marshall Street,
Room 7-020D, Richmond, Virginia 23298. E-mail: rakesh@
vcu.edu.
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