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Accurate assessment of mitral regurgitation (MR) severity is important for clinical decision making, prognostica-
tion, and decisions regarding timing of surgical intervention. The most common method for noninvasive assess-
ment of MR has been with 2-dimensional transthoracic echocardiography, which is often used as a qualitative
tool. Several newer noninvasive modalities including 3-dimensional echocardiography, cardiac magnetic reso-
nance imaging, and cardiac computed tomography have also become available for this purpose; however, their
role in routine clinical practice is not clearly defined. In this review, we provide an overview of these newer mo-

dalities for quantitative assessment of MR severity.
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Mitral regurgitation (MR) remains one of the most com-
mon valvular heart diseases (1). Patients with moderate to
severe MR have a high likelihood of developing symptoms
of left ventricular (LV) dysfunction, and the 5-year cardio-
vascular disease—related mortality rate in selected, untreated
asymptomatic patients is up to 14% (2,3). Substantial
progress in the surgical treatment of MR has improved life
expectancy (3,4), but prognosis and decisions regarding
timing of surgery depend on the accurate quantification of
MR severity (3,5). Advances in 3-dimensional echocardi-
ography (3DE), cardiac magnetic resonance (CMR) imag-
ing, and cardiac computed tomography (CCT) have pro-
vided new tools for MR quantification (Table 1).

This review of MR quantification methods using newer
imaging modalities focuses on the diagnostic and prognostic
value and reproducibility of each technique by a systematic
review of the existing literature, and the benefits and limita-
tions of the various techniques. When available, the perfor-
mance characteristics of the 2-dimensional echocardiographic
(2DE) techniques are also described. With respect to 3DE, our
review focuses on studies that have used contemporary real-
time imaging rather than reconstructive 3DE techniques.

Literature Review

A MEDLINE (1980 to January 2012) search was per-
formed by 2 of the authors independently, using the search
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terms mitral regurgitation, quantification, 3D-echocardiography,
cardiac magnetic resonance imaging, cardiac computed tomog-
raphy, and their variations as key words on the OVID search
engine. The search was limited to studies in humans and
published in the English language. All citations were
screened for inclusion by using a hierarchical approach of
assessing the title, abstract, and manuscript. Studies that
used reconstructive 3DE, did not provide separate data for
patients with MR, enrolled only pediatric patients, did not
have a reference standard, or were reviews were excluded.
References of all selected articles and relevant reviews were
screened to identify additional studies.

Vena Contracta Area
Validation of VCA measurements by 3DE. Grading of

MR severity using vena contracta is based on estimating the
effective regurgitant orifice area (EROA). With 2DE this is
mainly limited to a vena contracta width (VCW) measure-
ment from a transthoracic parasternal long-axis or a long-
axis transesophageal echocardiographic (TEE) view (6).
Alternatively a vena contracta area (VCA) can be calculated
using a shape assumption (7,8) or by obtaining a short-axis
en face view of the MR jet for planimetry (9). However,
3DE (transthoracic and transesophageal) affords the ability
to measure the VCA using 3D-color Doppler acquisition of
the MR jet followed by multiplanar reformatting to obtain
an en face view of the VCA (Fig. 1). Studies comparing this
technique to various reference standards (Table 2) have
uniformly demonstrated it to be more accurate than 2D
VCW measurement of MR severity. A cutoff of 0.41 cm?
using 3D-VCA to differentiate moderate from severe MR
showed an 82% sensitivity and 97% specificity (10). Because

this technique is relatively new, its test-retest characteristics,
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prognostic value, threshold for severity classifications, and
multicenter studies of accuracy and reproducibility remain
undefined.

Benefits and limitations of 3D VCA measurements. Most
studies assessing MR severity using 3DE are based on VCA
measurements (Table 2). The most important benefit of this
method is that the EROA is measured without any flow or
geometric assumptions. This is especially important in
functional MR (in which MR occurs along the length of the
valve coaptation), and in other cases in which the regurgi-
tant orifice is noncircular (7,8,11). 3D-VCA measurements
appear accurate even in asymmetric regurgitant orifices, unaf-
fected by the etiology or eccentricity of MR (8,10-14),
although 2DE was used as reference standards in all but 4
studies (8,12,15,16). The 3D-VCA technique may reclassify
patients into more accurate MR severity classes when com-
pared to 2D-EROA or VCW (10,12,13).

The 3D-VCA technique has several limitations. The
limited spatial resolution of the reconstructed image poses a
particular problem with small regurgitant orifice area
(10,14) but may not be as important in moderate to severe
MR. A comparison of the apical to parasternal acquisition
where the measurement of the VCA would be made in the
axial plane has not shown significant difference in accuracy
(14). Second, the choice of the systolic frame affects VCA
measurement, depending on MR etiology (17,18), resulting in
interobserver variability (Fig. 1, Panel A2). A third limita-
tion is that 3D-VCA is easily affected by the multiplanar
reformatting process used to obtain the cross-sectional plane
for planimetry. This is particularly challenging when the
regurgitant jet is highly eccentric, as cropping the regurgi-
tant jet in a nonorthogonal manner can overestimate VCA.
Although 1 study suggests that the VCA may be preserved
over a distance of 5 to 10 mm distal to the orifice (19), in our
experience, small variations in this location of the VCA
measurement (Fig. 1, blue plane) can significantly change
the area (Fig. 1, Panel B2). In addition, the measurement
can be affected by color bleeding into the grayscale image,
resulting in overestimation of VCA. Therefore, calibration
of results from various cropping planes with other severity
data is necessary in each laboratory before this technique can
be clinically applicable. Fourth, while this method is less
time-consuming than other techniques, the post-processing
still requires a significant time commitment (up to 2
minutes in experienced hands) and expertise. Whether this
will prove clinically practical in a busy echocardiography
laboratory remains to be determined. Finally, the use of
stitched 3D volumes predisposes to stitching artifact, which
will affect the accuracy of the measurements. Although using
nonstitched 3D acquisitions may help to overcome this prob-
lem, this technique is still often limited by temporal and spatial
resolution.

Validation, benefits, and pitfalls of VCA measurements
by CMR and CCT. With CMR cine-imaging, high-
velocity flow across the regurgitant orifice causes a flow void

due to dephasing of protons (Fig. 2) that can be potentially
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used for VCW (Figs. 2A and 2B)
or VCA measurements. This
flow void is typically better seen
with fast gradient recalled echo
(GRE) (Fig. 2B) cines with lon-
ger echo times (20) than the
more commonly used steady-
state free precession (Fig. 2A)
cines that have lower sensitivity
to flow due to short repetition
time and echo times. Although
not formally referred to as VC4,
the regurgitant flow area at the
mitral valve has been shown to be
measurable with short-axis GRE
cines using the flow void (21) or
with through-plane phase con-
trast (PC) imaging (Figs. 2C to
2D) (22). In the first study, the
measured area clearly differenti-
ated MR severity categories
when compared to echocardiog-
raphy or ventriculography (21),
whereas in the second study,
good correlation (r = 0.82) was
seen with EROA by echocardi-
ography, with areas of 0.27 and
0.92 cm? differentiating mild
from moderate and moderate
from severe MR, respectively
(22). Despite these data, the
VCA technique is not commonly
used clinically due to limitations
such as through-plane motion of
the slice position and partial vol-
ume effects making the measure-
ment challenging. However,
long-axis cines or short-axis PC
imaging can be useful for the
visual determination of the pres-
ence of MR and semiquantitative
assessment of severity (20,23,24).

Valvular flow assessment is
currently not possible with CCT

imaging.

MR Volume and MR
Fraction Measurements

Abbreviations
and Acronyms

2D = 2-dimensional

2DE = 2-dimensional
echocardiography

3D = 3-dimensional

3DE = 3-dimensional
echocardiography

AROA = anatomic
regurgitant orifice area

CCT = cardiac computed
tomography

CMR = cardiac magnetic
resonance

EROA = effective
regurgitant orifice area

GRE = gradient recalled
echo

ICC = interclass
correlation

Inter = interobserver
variability

Intra = intraobserver
variability

LV = left ventricular

LVOT = left ventricular
outflow tract

MR = mitral regurgitation
PC = phase contrast

PFCR = proximal flow
convergence region

PISA = proximal isovelocity
surface area

RF = regurgitant fraction
RVol = regurgitant volume
SAX = short axis

SEE = standard error
estimate

SSFP = steady state free
precession

SV = stroke volume

TEE = transesophageal
echocardiography

VCA = vena contract area

VCW = vena contract
width

Validation of MR volume and MR Fraction techniques
by 3DE. Quantification of MR volume (RVol) and fraction
(RF) using 3DE can be performed in several ways. The
3D-VCA (discussed earlier) or 3D proximal isovelocity surface
area (PISA) based EROA or anatomic regurgitant orifice area
(AROA; both discussed subsequently) coupled with the MR

velocity time integral from continuous wave Doppler can be
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I CR B New Methods for Quantitative Assessment of MR: Clinical Use, Advantages, and Disadvantages

Modality Clinical Use Advantages Disadvantages
3DE Multiplanar reformatting of volumetric data Greater portability and availability Lower CNR and SNR
to assess: Ability to reformat data as desired Stitching artifact
VCA Multiple methods to assess MR Low temporal resolution with single
EROA using 3D PISA severity heartbeat data
Anatomic regurgitation orifice area Time-consuming reconstructions
Color Doppler based RVol and RF Acoustic window limitations
quantification
CMR Indirect measurement of RVol and RF Excellent CNR and SNR Not widely available
using: Reproducible LV volume Dedicated imaging planes required
LV and RV stroke volumes measurements that can be time-consuming
Phase contrast imaging at the mitral Phase contrast imaging incorporates Significant experience necessary
valve and aorta flow from entire orifice Contraindications in some patients
Combination of above techniques Multiple methods to confirm findings Limited accuracy and reproducibility
Direct measurement of RVol with phase No acoustic window limitations data
contrast imaging
Direct planimetry of AROA
Cardiac CT LV and RV stroke volumes to measure RVol Highest spatial resolution, CNR, SNR Poor temporal resolution

Direct measurement of AROA

No acoustic window limitation

Cannot assess flow
Radiation exposure

3D = 3-dimensional; 3DE = 3-dimensional echocardiography; AROA = anatomic regurgitation orifice area; CMR = cardiac magnetic resonance imaging; CNR = contrast-to-noise ratio; CT = computed
tomography; EROA = effective regurgitant orifice area; LV = left ventricular; MR = mitral regurgitation; PISA = proximal isovelocity surface area; RF = regurgitant fraction; RV = right ventricular; RVol =

regurgitant volume; SNR = signal-to-noise ratio; VCA = vena contracta area.

used to calculate RVol similar to 2DE techniques. This RVol
coupled with 3D LV stroke volume (SV) obtained using
endocardial tracking of a 3D LV volume can be used to
calculate RF. Alternatively, the 3D LV SV can be coupled with
LVOT SV by 2DE to calculate RVol and RF.

A more novel method is to use 3D color Doppler to
measure mitral inflow and LV outflow tract (LVOT) SV
and to use the difference to obtain RVol (25). RF can be
calculated as (RVol/Mitral inflow SV) X 100. This tech-

nique uses the velocity assignment intrinsic to color Doppler
combined with the mitral annular and LVOT area (based
on the space occupied by the color Doppler) to calculate SV
at each orifice (Fig. 3) (25). This can be more accurate and
reproducible than 2D pulsed-wave Doppler-based meth-
ods (25,26). Table 3 summarizes real-time 3DE studies
for SV quantification across the mitral valve and/or
LVOT in adults; additional studies have confirmed the
accuracy of this technique solely in pediatric patients

VCA =0.59cm?

VCA Measurement Using 3D Color Full-Volume Acquisition by TEE

(A and B) Multiplanar reformatting to obtain the best view of the regurgitant jet and the vena contracta. (C) En face view of the vena contracta area (VCA) with planim-
etry (A1). (D) Reformatted 3-dimensional (3D) volume illustrating the regurgitant jet. A2 and B2 illustrate the effect of a change in systolic phase (A2) and the location
of the en face (blue) plane, respectively, on the VCA measurement. TEE = transesophageal echocardiography.




Table 2

Real-Time 3DE Studies of the Accuracy and Reproducibility of the

VCA Technique for MR Quantification and the Relevant 2D Methods Compared

First Author,

Year, (Ref. #) 3DE Method 2D Method Compared Reference Method N Agreement Accuracy Reproducibility 2D Method Results
Zeng et al., TTE, apical window PISA EROA*; VCW 2DE-based 83 r = 0.88 with MR AUC 0.96 (to differentiate Inter: 0.03 = 0.11 cm?t; 2D EROA r = 0.86, AUC 0.95, VCW
2011 (10) mild/moderate/severe MR severity grade; moderate vs. severe MR) intra: 0.04 = 0.09 cm21' r = 0.83, AUC 0.94 (to differentiate
0.88 with 2D EROA moderate vs. severe MR); 31.3% of
patients upgraded to more severe MR
with 3D VCA vs. 2D EROA
Marsan et al., TTE, apical window, — 3D, 3-directional velocity 52 r=0.93 Bias —0.7 = 6.5 ml/beatt — —
2011 (16) 3D VCA based encoded cine CMR RVol
RVol
Shanks et al., TEE, 3D VCA based TEE 2D PISA EROA CMR RVol 30 96.6% agreement RVol (ml/beat) 63.2 = 41.3 Mean inter difference: 2D RVol 53.2 = 35.3 ml/beat; MR severity
2010 (12) RVol based RVol; VCW 2D with MR severity (3D) vs. 65.1 = 42.7 (CMR) —0.013 += 0.14 cmZT; misclassified in 33% of patients
from mid-esophageal grade by CMR intra: 0.011 *+ 0.16 cm21' compared to CMR using RVol or VCW;
4CH view 2D EROA underestimated by 26%
compared to 3D VCA
Marsan et al., TTE, apical window, 2D RVol by EROA using 3D, 3-directional velocity 64 RVolr = 0.94 -0.08 £ 7.7 mil/beatt (p = NS) — RVol circular EROA —2.9 * 15.1 ml/beatt;
2009 (8) 3D VCA based VCW measurements encoded cine CMR for direct elliptical EROA —1.6 = 10.3 ml/beatt
RVol and shape measure of RVol (p < 0.05 for both)
assumption
Yosefy et al., TTE, parasternal VCW from PLAX view EROA by 2D volumetric method 45 P = 0.86, SEE 0.02 VCA vs EROA bias 0.04 = 0.06 Inter: r = 0.95, SD of 1 vs. 2D EROA = 0.81; MR severity
2009 (13) window cm? cm?t (p = NS) differences 0.03 cm?; misclassified in 45% of patients with
intra: r = 0.97, SD of eccentric MR; VCW inter = 0.95
differences 0.01 cm? (SD 0.06 cm)
Little et al., TTE, parasternal and 2D VCW PLAX EROA by 2D volumetric 61 r = 0.85 with EROA 3D VCA 0.29 + 0.18 cm? vs. 2D Inter: r = 0.96, mean bias 2D VCW vs. EROA r = 0.67 (all patients),
2008 (14) apical windows§ method* and MR grade as (all patients), MR EROA 0.29 + 0.24 cm?; 0.05 =+ 0.02 cm?; no for MR grades 1-2 r = 0.68,
per ASE grades 1-2 among MR severity intra for grades 3-4 r = 0.18
r = 0.2, MR grades categories there was overlap
3-4r=0.80 in 3 VCA
Kahlert et al., TTE, apical window VCW in apical 4CH, 2CH, 2D PISA EROA with hemispheric 57 r = 0.96 (vs. EROA 3D VCA larger vs. EROA HE = Inter r = 0.97, bias Compared to PISA EROA VCW r ranged
2008 (7) and mean. VCA from (EROA HS) or hemielliptic HE); r = 0.93 (vs. 0.09 £ 0.14 cm21:; vs. EROA 0.04 = 0.09 cmzt; no from 0.63-0.85 (best was mean VCW),
each view assuming (EROA HE) approach (using EROA HS) HS = 0.20 + 0.20 cm?} Intra and VCA r = 0.59-0.90; best VCA
a circle, Biplane MPR of 3D color Doppler) estimate by Biplane vs. EROA HE
elliptical VCA +0.09 *+ 0.20 cm?#; inter VCW 4CH
r = 0.97, bias 0.02 = 0.05 cm, VCW
2CH r = 0.94, bias 0.02 = 0.04 cmt
Iwakura et al., TTE, apical window 2D PISA* EROA Volumetric EROA using LVOT 106 r = 0.91 vs. Mean 3D VCA 0.28 + 0.27 cmz, Intra: 8.6 * 6.6%t; Comparison to volumetric 2D PISA EROA
2006 (11) Doppler, Biplane Simpson’s, volumetric EROA volumetric EROA inter: 9.0 = 6.1%t r = 0.89; PISA EROA smaller than
and MR VTI, and 2D PISA and r = 0.93 vs. 0.22 + 0.22 cmz, PISA EROA volumetric method and 3D VCA
EROA* PISA EROA 0.20 + 0.18 cm?
Khanna et al., TTE, apical and VCW, VCA (circular Cardiac catheterization grading 44 Spearmanr = 0.88 — Inter r? = 0.99; VCW Spearman r = 0.51;
2004 (15) parasternal assumption) 1-3 intra r? = 0.97 VCA Spearman r = 0.55
windows|

*Based on hemispheric assumption. tDifference reported as mean =+ 2 SD. }Difference reported as mean * 1 SD. §Comparison data were presented for the apical window only. |[The better of the apical or parasternal window was used to measure the VCA.
2CH = 2 chamber; 2DE = 2-dimensional echocardiography; 4CH = 4 chamber; ASE = American Society of Echocardiography; AUC = area under the curve; HE = hemielliptic; HS = hemispheric; ICC = interclass correlation; inter = interobserver variability; intra = intraobserver

variability; ns = not significant; PLAX = parasternal long axis; SD =

; SEE = error of the

TEE = t |

Doppler OR Biplane Simpson’s - left ventricular outflow tract [LVOT] flow by area and PW Doppler)/MR velocity time integral [VTI]; other abbreviations as in Table 1.

graphy; VCW = vena contract width; volumetric EROA = (mitral inflow stroke volume [SV] by area and pulsed-wave [PW]
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)
Balanced SSFP_ i 'F‘

m VCW and VCA Measurements by CMR ‘

Cardiac magnetic resonance imaging (CMR) vena contracta width (VCW) measured
on (A) a balanced steady-state free precession (SSFP) and (B) ultrafast gradient
echo (GRE) imaging. The vena contracta is best seen in the ultrafast GRE image.
Magnitude (C) and phase (D) imaging with an en face view of the vena contracta
(arrow) from which the VCA can be measured. Abbreviation as in Figure 1.

(27,28). To date, however, most studies (25-27,29-31)
have examined SV only at the mitral annulus or LVOT
separately, with only 1 study having assessed simultane-
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ous measurement of mitral and LVOT SV from a single
3D volume (25).

Benefits and limitations of RVol and RF quantification
techniques by 3DE. There are several merits to the novel
3D color Doppler technique for the quantification of SV. In
contrast to pulsed-wave Doppler sampling of velocities over
a sample volume of 2 to 5 mm in diameter, this method
integrates flow velocities across the entire mitral or aortic
orifice to calculate SV (25,26). Furthermore, no assump-
tions are made about the LVOT or mitral annular geome-
try. An automated angle correction technique or a hemi-
spheric sampling plane is used to overcome the angle
dependence of color Doppler flow and a manual or auto-
mated de-aliasing algorithm to overcome color Doppler
aliasing.

Although ideally suited to measure MR RVol and RF
(Figs. 3D to 3F), there is only preliminary work in this area
(32). The major limitation is that it is only valid in the
absence of other concomitant valvular disease or intracardiac
shunting. The accuracy of the described de-aliasing algo-
rithms is yet to be tested in the context of increased
velocities across the mitral or aortic valves. With the
exception of 1 study in which SV for the mitral and aortic
valve for multiple heartbeats was obtained in <60 s (25), a
significant time commitment is required to quantify SV for
each valve for a single cardiac cycle. Also the frame rate of
3D color Doppler acquisitions is still limited and data

value (mL)

m 3D Color Doppler Based Stroke Volume Quantification

73.7ml  73.6 ml

A
A\ A

B MV Inflow

LYOT Qutflovs

frame

104.1ml 108.4ml 112.4 ml

'67.3m1"58.4
10 20 30
frame

(A to C) A patient without mitral regurgitation (MR) in whom the mean mitral inflow and aortic outflow stroke volumes were similar.
(D to F) A patient with MR in whom the mean mitral regurgitant volume was 45 ml (mean mitral inflow, 108 ml; mean aortic outflow, 63 ml).
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of the Mitral and LVOT SV Quantification and the Relevant 2D Methods Compared

Real-Time 3DE Studies of the Accuracy and Reproducibility

Table 3

First Author,

2D Method Results
SVMVr = 0.66, LVOT

Reproducibility
MV and LVOT inter 4.1 and

Accuracy

Mitral inflow r = 0.91; Bias mitral SV = 1.1 = 18.9 ml*f;

Agreement

2D Method Compared Reference Method

3DE Method
Thavendiranathan et al., SV across mitral 2DE PW based SV

Year (Ref. #)

44

CMR

r = 0.62, bias SV MV
10.6 + 36.0 mlt; LVOT
10.6 + 40.3 mlf; inter

4.5%t; intra 2.4 and 2.0%t

LVOT SV = 0.7 = 17.8 mlt

LVOT r = 0.93

across mitral and

aortic valve

and aortic
valve in a

2012 (25)

single 3D

MV inflow 14.1%1t; LVOT

9.6%t

volume, TTE

=0.97,

Inter r?

Underestimation of SV by

12 (65 measures) r*> = 0.83

CMR

SV across LVOT,

Pemberton et al.,

+ 7.9 ml*

bias 0.27
Aortic valve inter 13.7%t;

5.7 = 8.8 ml*
Aortic valve SV -1.8 + 16.8 ml;

TTE

SV across mitral 2DE PW based SV

2008 (30)
Lodato et al.,

Aortic valve r = 0.78, mitral

Aortic valve r = 0.94,

47

Cardiac

valve r = 0.75, aortic
valve SV -8.6 + 36.2
ml%; mitral valve SV
+10.0 = 26 ml,}

intra 5.2%%

mitral valve SV -0.2 + 15.6 mlt

mitral valve
r=0.93

across LVOT and catheterization

mitral valve

and aortic

2007 (26)

valves using

separate 3D

volumes, TTE

aortic valve inter

11.5%,

intra 5.3%t

0.91, mean difference

2 —

LVOT SV -1.8 = 7.9 ml* Inter r

? = 0.90;

50

2DE pulsed Doppler

SV across LVOT

Pemberton et al.,

-1.6 £ 5.8 ml*

based SV SEE 6.98 ml

only, TTE

2005 (31)§

*Difference reported as mean = 1 SD. tExpressed as summed quotient of the difference and the means of individual values. tDifference reported as mean = 2 SD. §Had adult and pediatric patients (23 adult, 27 pediatric).

MV = mitral valve; other abbreviations as in Tables 1 and 2.
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accuracy is potentially reduced at higher heart rates. Finally,
the accuracy of this technique can be affected by lateral
resolution, tissue priority settings, and incomplete color
Doppler acquisitions at the mitral valve or LVOT. There-
fore, further studies are necessary before this technique can
be used clinically for MR quantification.

Validation of RVol and RF quantification techniques by
CMR. Mitral RVol and RF measurements using CMR can
be obtained using direct or indirect methods. The direct
method utilizes PC imaging to measure RVol using SAX
through-plane images at the mitral valve (Fig. 4A) (33).
The RF is then calculated as RVol divided by the LV-SV
calculated from planimetry of SAX slices. The indirect
methods use: 1) the difference in LV-SV by planimetry of
SAX cines and aortic SV by PC imaging (Fig. 5B) (34-36);
2) the difference in LV- and RV-SV by planimetry of SAX
cines of the LV and RV (33,37-39); 3) the difference in mitral
inflow SV across the mitral valve (Fig. 4B) and aortic forward
SV with PC imaging (Fig. 4C) (40); or 4) other less commonly
utilized combinations of PC and volumetric analyses.

The use of the difference in SVs by LV short-axis

planimetry and aortic PC imaging is more practical and
reproducible than the other methods (38). Furthermore,
aortic PC technique can potentially account for any aortic
regurgitation present. Currently the only work that provides
RF categories to grade MR severity using CMR is based on
this technique (41). However, these categories were ob-
tained using nonquantitative echocardiographic parameters
(41) as the reference standard and require further validation.
To date, no studies have addressed the prognostic significance
of MR quantification using CMR, test-retest variability, or its
accuracy and reproducibility in a multicenter study.
Benefits and limitations of RVol and RF quantification
techniques by CMR. CMR is considered the reference
standard for the assessment of ventricular volumes and EF,
as the endocardial contours can be drawn with confidence
and the volumes and EF calculated without geometric
assumptions. Employing PC imaging, aortic SVs are calcu-
lated using velocities from the entire orifice (without need-
ing to assume constant transorifice flow profile as in echo-
cardiography with pulsed-wave Doppler). Furthermore, the
RVol and RF are calculated without any hemodynamic or
shape assumptions and are not affected by the direction of
the MR jet (except for the direct method) or the orifice
geometry. Finally, the comparable spatial resolution, but
superior signal- and contrast-noise resolution, of CMR
make these measurements reproducible and amenable to
serial assessments.

Despite the enthusiasm for using CMR for MR quanti-
fication, there are limited data on accuracy; several of the
CMR studies shown in Table 4 were not specifically
performed for the validation of that technique, nor did they
have an independent reference standard (33,34,36,38). Fur-
thermore, the described techniques have some limitations.
First, the indirect quantification methods can be challenging
and less accurate if multiple valvular lesions or intracardiac
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CMR Phase Contrast Acquisitions

cle; RA/LA = right atrium/left atrium; TV/MV = tricuspid/mitral valve.

(A) Phase contrast through plane imaging at the mitral valve, with a magnitude (left) and 3 phase images with contours of the mitral regurgitant jet (black) to directly
quantify the regurgitant volume (MR curve, panel B, right). (B) Mitral inflow magnitude and 2 phase images with planimetry of the mitral valve (red), and mitral inflow
and mitral regurgitation flow curves. (C) Aortic magnitude and 2 phase images with planimetry of the aorta and aortic flow curve. Ao = aorta; LV/RV = left ventricle/right ventri-
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shunting is present. Second, the manual planimetry of both
the LV and RV, or the mitral valve in each systolic or
diastolic frame (Figs. 4A and 4B), can introduce inter- and
intraobserver variability. Direct measurement of RVol from
PC imaging (Fig. 4A) is attractive as it minimizes the
cumulative error that can occur from using 2 separate
measurements. However, further validation of this tech-
nique is necessary before clinical use. Third, MR-RVol may
be overestimated if there is inconsistency in LV endocardial
contouring; namely, if the trabecular and papillary muscles
are treated asymmetrically such that they are included in the
blood volume at end-diastole, but excluded at end-systole,
resulting in overestimation of the LV SV. Fourth, PC
sequences are subject to phase offset errors due to inhomo-
geneity in the magnetic field (42) and can cause errors in SV
computations. Various methods to overcome these errors
have been suggested but can be impractical or inaccurate
(43). Fifth, the PC sequence most commonly used is a
1-dimensional, 1-directional technique and hence SVs can

be underestimated if the flow is not at least nearly orthog-
onal to the slice position. In addition, these sequences do
not account for through-plane motion of the valve plane,
which can lead to underestimation of RVol. These concerns
have resulted in an interest in the use of 3D, 3-directional
PC imaging sequences (8) and retrospective valve tracking,
although experience with these techniques is limited and
imaging is time intensive. Finally, it is also unclear if the
RVol and RF cut-offs suggested in the echocardiographic
guidelines can be applied to the CMR measurements to
classify MR severity, and our experience suggests that lower
value cutoffs for CMR may be more appropriate. Further
studies are therefore needed.

Validation, benefits, and limitations of RVol and RF
quantification by CCT. Current CCT technology does
not allow flow measurements across the valves. However,
RVol and RF can be measured using LV and RV contour-
ing (37) similar to CMR. The only published study (37)
showed good agreement in RVol and RF with CMR and
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A D3 - 0.82em

D1 - 1.46cm
D2 -0.91cm

m 3D PISA Quantification

Proximal isovelocity surface area (PISA) quantification using (A to D) linear 2-dimensional (2D) measurements and (E) automated 3D surface detection. (A) Radius, (C)
length (D1), and width (D2) measured from 3D TEE using multiplanar reformatting of full-volume color Doppler acquisition (D) after decreasing the aliasing velocity. Auto-
mated 3D PISA detection and quantification using 3D transthoracic echocardiography (E; green model represents the 3D PISA).

PEAK PISA EROA
0.52cm?
1

I
I
I
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echocardiography (Table 5). This technique requires a
retrospectively gated acquisition with modification to con-
trast administration to ensure simultaneous opacification of
the LV and RV. Using post-processing, software LV and
RV volumes can be semiautomatically calculated or short-
axis views can be generated identical to CMR for manual
planimetry. Despite the feasibility of this technique, and
excellent spatial resolution, CCT 1is still limited by a
maximum temporal resolution of 75 ms (at best), and the
need for retrospectively gated acquisition resulting in higher
radiation exposure. Also, this technique will be inaccurate in
the presence of multivalvular disease, hence necessitating an
alternate modality to first rule out concomitant valvular
lesions. Therefore, CCT would be the last resort for MR
severity quantification in patients with poor echocardiogra-
phy windows and/or a contraindication for CMR.

PISA (EROA, RVol, RF) and
Anatomic Regurgitant Orifice Area

Validation of 3DE PISA and anatomic regurgitant orifice
area. The anatomic severity of MR can be assessed by 3D
color Doppler using the PISA technique or by direct
planimetry of the AROA. The theoretical benefit of the 3D
PISA technique is the ability to measure the 3D surface of
the proximal flow convergence region (PFCR) without
shape assumptions (44) or to obtain the largest radius of the
PFCR using 3D navigation, possibly increasing the accuracy
of the EROA calculation (Fig. 5) (44,45). Furthermore,
3DE (Table 6) has provided a better appreciation of the
variability in the PFCR seen with different pathologies and

geometric orifices and has illustrated the complexity of the

PISA technique for MR quantification. Many of the studies
in Table 6 have used 2DE techniques as the reference
standard and hence are subject to the intrinsic limitation of
these methods.

The direct planimetry technique requires reconstruction
of the 3DE (B-mode) to obtain an en face view of the
AROA. This method was first described with reconstructed
3D TEE (46,47) and more recently with real time 3D TEE
(Table 6, Fig. 6). No studies to date have assessed the use of
3D TTE to measure the AROA. It is also important to
remember that the AROA is theoretically larger than the
EROA (19,48).

Benefits and limitations of PISA and AROA techniques
by 3DE. Although 3D data can be used to measure the
“true” radius (D3), length (D1), and width (D2) of the
PFCR (Fig. 5) and to apply hemispheric or other-shaped
assumptions, and although the use of 3D data may improve
the accuracy of the EROA calculation, it still requires
assumptions about the shape of the PFCR (44,49,50). Two
studies have attempted to obtain a 3D surface area, one
using measurement of multiple radial planes of the PFCR in
an in vitro model to subsequently reconstruct the total
surface area (51), and the second using multiple linear
measurements to reconstruct the 3D surface area (52). Both
methods are laborious and not practical in a busy clinical
setting. There has been some recent work on automated 3D
quantification of the PFCR (Fig. 5E) (32,53); however,
further clinical validation is pending. Nonetheless, even
with the 3D-surface area the issue of Doppler angle depen-
dency (54) and the challenges of accounting for dynamic
variations in EROA for RVol calculations will still exist
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IELCR: I CMR Studies Using Direct and Indirect Methods of Quantifying MR

First Author, Year (Ref. #) Reference Method N Agreement Accuracy Reproducibility
Direct method using PC imaging
Myerson et al., 2010 (33) CMR RVol as difference of 55 RVol r = 0.87 RVol bias 8.5 * 44.1 ml*t; —
LV volumes by planimetry and RF bias -5.5 = 29.8%*t
aortic PC imaging
Indirect method—pl try of
LV and PC imaging of aorta
Buchner et al., 2008 (34) RVol and RF by catheterization, 28 RF r = 0.89; — —
(LV planimetry + thermodilution) RVol r = 0.84

Kizilbash et al., 1998 (36)%
stroke volumes by PW Doppler
Hundley et al., 1995 (35)
Fick + LV volume by area length

method)
Indirect method—pl try of
LV and RV

Myerson et al., 2010 (33) CMR RVol as difference of LV 55
volumes by planimetry and aortic
PC imaging

Guo et al., 2009 (37) MR severity categories by TTE color 49
Doppler area (not per ASE
guidelines)

Kon et al., 2004 (38) RF obtained from LV stroke 28

volumes by planimetry and PC
imaging of aortic flow

Glogar et al., 1989 (39)# RF from cardiac catheterization 20

(LV planimetry + thermodilution)

Indirect method—PC imaging of
mitral inflow and aortic
outflow

Fujita et al., 1994 (40) TTE MR severity grade based on: 19
color jet area, CW Doppler

density, “increased” E velocity

RVol and RF by TTE mitral and LVOT 22 (18 with MR) RVol r = 0.92;

Catheterization (thermodilution and 23 (17 with MR) RVol index r = 0.97;

RVol -3 * 13ml§; —
RF r = 0.82 RF -7 + 11%§

RVol index bias Inter RF 10 = 9%*
~-0.1 * 0.7* I/min/m?,

RF ~2 * 12%*

RFr = 0.96

— RVol Bias -3.1 = 30.8ml*|; —
RF Bias -1.9 * 20.6%*||

CMR RF vs TTE MR grade Agreement kappa for MR
Spearman r = 0.94, no severity categorization
RVol data by CMR vs echo = 0.91

Inter RVolq 6.7 * 3.3%,
RF 8.1 * 4.4%§;
intra RVolq 7.3 * 4.7%,
RF 9.1 + 4.2%§

Intra RF -2.0 * 6.7%8§
inter 0.4 + 8.8%8§
Reproducibility of
reference
method: Intra RF
0.6 + 4.8%8§,
inter 2.0 = 7.7%8§

— RF bias -1.6 + 10.1%§,
no RVol data

RF MRI vs catheterization, k = 0.62 (agreement with LV SV inter mean
r = 0.67 (all patients); catheterization for 7.0 ml (range 2-15 ml)
r = 0.84 (13 patients categorization into 3 RF RV SV inter mean 7.3
with the best classes, >50%, ml (range 6-8 ml)
MRI images) 20%-50%, and
0%-20%)

r = 0.87 for RF, —
and 0.74 for RVol with
echo severity grade

Inter RVol r = 0.99,
SEE = 238ml/min,
RFr = 0.98,

SEE 4.1%

*Difference reported as mean * 2 SD. tComparison with RVol and RF with LV and RV planimetry method also available but not shown here. £The primary intention of this study was to assess the accuracy

of the Doppler technique using MRI. §Difference reported as mean = 1 SD. ||Data also available for comparison with direct RVol method but not shown here. JCalculated as

ge of the difference between

measures divided by the mean. #A 0.5-T magnet was used, and LV and RV were contoured using 4CH stacks.
CCT = cardiac CT; CW = continuous wave; HR = heart rate; k= kappa; other abbreviations as in Tables 1 to 3.

(17,18,55). Also to date there is limited experience with this
technique using TEE. Finally, 3D color Doppler imaging
remains limited by acquisition volume rate, which can affect
identification of the largest PFCR during systole.

The use of 3DE in planimetry of the AROA is attractive
as unlike 2DE the 3D dataset can be reconstructed to obtain

an en face view of the regurgitant orifice (Fig. 6). Planimetry
can be used for multiple regurgitant orifices and added
together, with no hemodynamic or shape assumptions
necessary. However, given the contrast and spatial resolu-
tion limitations of 3DE, measurement of the AROA—
especially of smaller orifices—is challenging (56). This is

IV CR-M Cardiac CT Study for MR Quantification by LV and RV Planimetry

Study Reference Method N Agreement

Accuracy Reproducibility

Guo et al., 2009 (37) 1. CMR RVol and RF and 49
2. TTE based MR
severity

categorization*

Vs. CMR RVol r = 0.89,
RFr = 0.91; vs. TTE
MR severity grading
r=0.95

Agreement kappa with TTE MR severity
categorization = 0.90; bias vs CMR
RVol -1.0 *+ 24.3ml; CMR RF
0.2 = 15.4%t

Inter: RVol 4.8 = 2.1%, RF 6.5 + 3.4%%;
intra: RVol 6.9 *+ 4.1%,
RF 7.8 = 3.6%%

*Echocardiography severity grading cutoffs used were not as per ASE guidelines. tMean * 2 SD. $Mean * 1 SD.

Abbreviations as in Tables 1 to 4.



IE:LICY:I 3DE Studies for 3D PISA and Anatomic Regurgitant Orifice Area (Last Row Only) Techniques

First Author,

Year (Ref. #) 3D Method 2D Method Tested Reference Method N

Agreement

Accuracy Reproducibility

2D Method Results

Matsumura et al.,
2008 (50)

EROA using maximum —
radius of the 3D PISA
TTE

EROA by 2D quantitative 54
Doppler

Matsumura et al., 3D PISA EROA and RVol — EROA by 2D quantitative 30

2008 (52) using hemispheric or Doppler
hemiellipsoid
assumption, TTE
Plicht et al., 3D PISA based RVol — CMR RVOL 23
2008 (45) using hemispheric or
hemiellipsoid
assumption, TTE and
TEE
Yosefy et al., 3D PISA EROA using 2DE PISA based  EROA by 2D quantitative 40
2007 (44) linear measures and EROA Doppler
hemiellipsoid shape
assumption, TTE
Sitges et al., 3D PISA EROA and — RVol volume as a 22
2003 (49) RVOL using largest difference of 3D LV
radius and SV and LVOT SV
hemispheric
assumption, TTE
Altiok et al., Direct planimetry of — 2D PISAS, and 2D VCA| 72
2011 (56) AROA using 3D

zoom, TEE

Functional MR
r = 0.67,
MVP r = 0.88

Hemispheric PISA
EROAr = 0.69,
hemiellipsoid PISA
EROA r = 0.75, no
RVol data

Hemispheric PISA
RVol r = 0.81,
hemiellipsoid PISA
RVol
r=0.89

3D vs. 2D EROA
r? = 0.87

RVol r = 0.93; EROA
r=0.90

With PISA r = 0.96,
SEE 0.058 cm?;
with VCA r = 0.89,
SEE 0.105 cm?

In functional MR bias
0.18 + 0.08 cm?*;
MVP -0.03 = 0.09 cm?*

3D PISA radius inter r = 0.83,
intra r = 0.89, mean bias for
PISA radius inter 0.05 cm;
intra 0.06 cm

Mean EROA and RVol
underestimation for
hemispheric PISA 0.18 cm?
and 26.4 ml, hemiellipsoid
0.10 cm? and 14.5 ml and 0.97, bias 0.06 and
(all, p < 0.001) 0.04 cm?

Bias vs MRI - Hemispheric PISA —

RVol -17.4 = 9.4ml (p <
0.05), Hemiellipsoid PISA
-11.7 = 7.4 ml (p < 0.05)*

EROA hemisphere inter and
intrar = 0.90 and 0.94,
mean bias 0.07 and 0.03
cm?, hemiellipsoid r = 0.90

EROA 0.52 = 0.17 cm? (3D) vs.
0.48 =+ 0.25 cm? (reference)
(p = ns). 3D EROA had 97%
agreement with reference in
classifying moderate to
severe MR

RVol bias -4.8 = 7.6 mlt
(p < 0.01) and ROA bias
3.2 = 5.2 mm?f (p < 0.01)

EROA inter -5.3%7t

Inter for largest radius r = 0.90,
mean difference 0.4 = 7.2%.
Intra r = 0.96, mean
difference 0.3 * 5.6%.

With PISA 0.01 + 0.12%,
with VCA 0.03 *+ 0.24%

Inter 0.02 * 0.12f%,

r=0.95

r = 0.96; intra 0.01 = 0.10%,

2D EROA 0.34 + 0.24 cm? (p < 0.001),
r? = 0.59, 45% of patients with
= moderate to severe MR
underestimated by 2D (inter 4.1%t;
reference standard inter 7.3%t

*Mean = 1 SD. tVariability was defined as the SD of the difference between the observers and expressed as percentage of the means. tMean = 2 SD. §Using hemispheric assumption; |VCA calculated using 2 2 with average of 2 orthogonal vena contracta measurements.

ROA = regurgitant orifice area; TTE = transthoracic echocardiography; other abbreviations as in Tables 1 to 5.
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Anatomic Regurgitant Orifice Area by 3DE

Direct planimetry of anatomic regurgitant orifice area (A3, bottom left panel)
using multiplanar reformatting of a 3D zoom acquisition using TEE. 3DE = 3D
echocardiography; AROA = anatomic regurgitant orifice area.
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turther confounded by the fact that the measurement is
made in the plane with the lowest spatial resolution (lateral
resolution) unless a transgastric view in TEE or a paraster-
nal long or short axis view with TTE is used (56). Also
limitations described for the VCA measurement, such as
choice of systolic frame, obtaining the best en face plane,
and stitching artifacts, also apply (17,18). Finally, although
a 3D volume is used to identify the AROA, the measure-
ment is still made using a 2D plane. A recent study
illustrated that the measurement of the AROA in 3D space
using 3D modeling of the mitral valve may be a better
alternative to quantify MR severity (48).

Validation of AROA by CMR and CCT. Although
PISA is not feasible with CMR or CCT, the AROA can be
measured directly by both (Fig. 7) although not commonly
used clinically. Utilizing CMR, 3 studies have assessed the
use of short-axis steady-state free precession and/or fast
GRE cine images for planimetry of the AROA (Figs. 7A to 7C,
Table 7) (22,34,57); 1 of these studies reported the repro-
ducibility of this technique (34). Three small CCT studies,
using 16 to 64 slice scanners, have examined direct planim-
etry of the AROA using an en face view of the regurgitant
orifice from reconstructed 3D datasets (58-60) (Figs. 7D to
7F). The latter 3 studies showed moderate to good agree-
ment with various reference standards (Table 7); however,

Direct Planimetry of the Anatomic Regurgitant Orifice Using CMR and CCT

(A to C) CMR SSFP short-axis cine (A, mid diastole; B, peak systole; and C, zoom of B with red contour denoting anatomic regurgitant orifice area [AROA]). (D to F) Cardiac
computed tomography (multiplanar reformatting) with the use of long-axis view (D) to obtain an en face view of the AROA (E) for planimetry (F).
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CMR and CCT Studies Using Direct Planimetry To Measure Anatomic Regurgitant Orifice Area

Table 7

Reproducibility

Accuracy

Agreement

Reference Method(s)

CMR or CT method

First Author, Year (Ref. #)

Cardiac MRI studies

With RF r = 0.80, RVol r = 0.80

74

CMR RVol and RF by planimetry of LV

SSFP cine images at the valve

Buchner et al., 2011 (57)

and aortic PC imaging

TTE EROA (by PISA)

plane
True FISP and FLASH short-

With EROA True FISP r = 0.599, FLASH 0.715

21

Ozdogan et al., 2009 (22)

axis cines

Inter 8 = 7%t;

Compared to TTE EROA,

35 (N-28 for RVol and  With catheterization MR severity grade r = 0.84,

Catheterization (comparison with

SSFP cine images at the valve

Buchner et al., 2008 (34)

intra 7 = 6%t

CMR AROA higher by

RF r = 0.86, RVol r = 0.83; with TTE PISA

EROA r = 0.81; with CMR RF r = 0.91,
RVol r = 0.90, MR severity r = 0.95

RF comparison)

RVol and RF), echo PISA ERO,

CMR RVol and RF*

plane

16%, (range: -0.30 to

0.65 cm?)

Cardiac CT studies

Comparison with TTE EROA

Compared to TTE MR severity category r = 0.89,

23

TTE (length of regurgitant jet, VCW,

64-Slice CT

Arnous et al., 2011 (59)

-0.02 *+ 0.54 cm?t

to echo EROA r = 0.50, with VC r = 0.48, no

PISA, RVol, and EROA)

sig correlation with RVol by echo (from PISA)

Compared to EROA r = 0.89

Bias = 1.3 + 14.5 mm?

26

TTE PISA EROA

16-Slice CT

Vural et al., 2010 (60)

(p = NS)

MR severity grading by TEE vs AROA Spearman

19

TEE (color jet area and extent, VCWS§,

16-Slice CT

Alkadhi et al., 2006 (58)

0.807, by ventriculography vs. AROA

0.922

r
r

CW density), and cardiac

catheterization (visual criteria)

*CMR RVol and RF by planimetry of LV and aortic phase contrast imaging. tPercentage variability (absolute value of the difference between 2 measurements divided by the mean of the 2 measurements). Mean * 2 SD. §Not consistent with ASE guidelines.

steady-state free precession; VCW = vena contract width; other abbreviations as in Tables 1 to 6.

magnetic resonance imaging; PC = phase contrast; SSFP =

with steady state precession; FLASH = fast low angle shot; MRI

= fast i

cardiac computed tomography; FISP

CCT =
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all had small sample sizes and none reported reproducibility
data.
Benefits and limitations of AROA by CMR and CCT.
CCT can provide measurement of the AROA at the highest
spatial resolution, while the spatial resolution of CMR is
comparable to that with TTE. For the CMR acquisition,
after recognition of the presence of MR, additional imaging,
orthogonal to the jet direction (34), is required. The choice
of this orthogonal plane can introduce interobserver vari-
ability in the measurement. Unless flow-sensitive cine GRE
sequences or PC imaging is used, the presence of MR may
be missed by the commonly used steady-state free preces-
sion cine sequences. Through-plane motion of the mitral
annulus during systole makes it challenging to image the
AROA. Finally, identification of the AROA can be difficult
due to partial volume effects unless the orifice is very large.
With CCT, retrospective acquisition is necessary; this
option is not attractive in the current era of prospectively
triggered scanning with reduced radiation exposure. Even
with retrospective acquisition, this measurement can be
affected by limited temporal resolution. Although 2 of the 3
small studies (Table 7) show promising data, CCT should
not be the primary method for AROA assessment. Finally,
for both CMR and CCT, the cardiac phase in which the
AROA should be measured for the various MR etiologies is
unknown, as is the validity of these 2 techniques in patients

with multiple MR jets.

Conclusions

The development of less invasive means of valve repair and
replacement is likely to further augment the importance of
MR quantitation in clinical practice. Although standard
techniques for MR evaluation have been of value, their
reproducibility and accuracy are limited in some patient
groups. Although some of the new modalities may not be
ready for adoption in all clinical imaging laboratories, this
review documents their current validation. Recent techno-
logical advances in 3DE are likely to be the most suitable
developments for widespread adoption, although CMR in
appropriate settings may also play an important role. The
role of CCT is still limited due to radiation exposure, lower
temporal resolution, and the inability to assess flow. More
work is needed to define the optimal strategy.

Reprint requests and correspondence: Dr. Thomas H. Marwick,
Cleveland Clinic Foundation, Cardiovascular Imaging J1-5, Heart
and Vascular Institute, 9500 Euclid Avenue, Cleveland, Ohio
44195. E-mail: marwict@ccf.org.
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