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The Time Has Come to Aggressively Address

Residual Inflammatory Risk*

Paul M Ridker, MD, MPH

ith the publication of CANTOS (the Cana-

kinumab Anti-inflammatory Thrombosis

Outcomes Study) in 2017, the cardiovas-
cular community received proof of principle that ther-
apeutic targeting of interleukin-1 and interleukin-6 to
the C-reactive protein (CRP) pathway of innate im-
munity can significantly reduce major adverse car-
diovascular event rates (1). Although the benefits
of interleukin-1f8 inhibition in CANTOS were
observed in the absence of any effects on low-
density lipoprotein cholesterol (LDLC), the cardiovas-
cular protection from canakinumab was identical in
magnitude to that observed in major trials of PCSK9
inhibition. Furthermore, on-treatment levels of the
inflammatory biomarkers interleukin-6 and high-
sensitivity CRP (hsCRP) were powerful predictors of
efficacy after inflammation-lowering therapy in a
manner fully parallel to that of on-treatment levels
of LDLC following lipid-lowering therapy (2,3).
CANTOS thus provided the first hard evidence in 40
years of an effective therapy for atherosclerosis not
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directly related to cholesterol reduction, blood pres-
sure, or coagulation.

Although CANTOS was a secondary prevention
trial, there is considerable interest in addressing re-
sidual inflammatory risk in the setting of acute coro-
nary ischemia. From a biomarker perspective, both
interleukin-6 and hsCRP have repeatedly proven
effective for risk prediction, not only in primary
prevention and stable coronary disease, but also in
acute coronary syndromes (4). By contrast, compar-
atively little is known about plasma levels of inter-
leukin-1p itself, in part because its measurement is
more complex and less well suited for epidemiologic
investigation. Nonetheless, information about circu-
lating interleukin-1p could provide important insights
into the pathophysiology of acute plaque rupture
and, by extension, atherosclerotic progression. In one
recent example, interleukin-1p levels were associated
with increased mortality in the setting of heart failure
(5), an endpoint also reduced by interleukin-1p inhi-
bition in CANTOS (6).

SEE PAGE 1763

In this issue of the Journal, Silvain et al. (7) present
intriguing data regarding interleukin-1p as a
biomarker of risk in the prospective ePARIS registry of
1,398 patients with recent ST-segment elevation
myocardial infarction treated with primary percuta-
neous coronary intervention (PCI) (7). In brief, inter-
leukin-1p concentration measured at the time of PCI
was associated with all-cause mortality at 90 days
(adjusted hazard ratio [HR]: 1.47 per 1-SD increase;
95% confidence interval [CI]: 1.16 to 1.87) in a
nonlinear manner, such that the highest baseline
tertile of interleukin-18 was associated with the
highest mortality rates at 90 days (adjusted HR: 2.78;
95% CI: 1.61 to 4.79) and 1 year (adjusted HR: 1.93;
95% CI: 1.21 to 3.06). Importantly, the effects
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remained significant after adjustment for LDLC and
troponin. Moreover, the risks of short- and long-term
cardiovascular mortality increased nearly 8-fold
among those with levels of both interleukin-1f and
hsCRP in the top tertile of each distribution at base-
line (HR: 7.9; 95% CI: 3.2 to 20.0).

One interpretation of the ePARIS data is that the
magnitude and intensity of the acute phase response
during coronary hypoxia correlates with larger infarct
size and worse clinical outcomes. If so, it is perhaps
not surprising that a combination of 2 markers that
increase with the acute-phase response provide
greater utility than either alone. However, it has been
known for more than 20 years that elevations of
hsCRP precede acute ischemia (8) and, thus, that
inflammation begets plaque rupture and is a cause as
well as a result of coronary hypoperfusion. Subse-
quent studies simultaneously evaluating coronary
and systemic blood for inflammatory biomarker
changes after acute plaque rupture support this
biology (9). In the current data, the impact of inter-
leukin-1p levels was independent of troponin, indi-
cating that infarct size alone is not a simple
explanation of these important observations.

Measurement of interleukin-1f is unlikely to
become commonplace in clinical settings. No stan-
dardized clinical assays for interleukin-1f exist;
research assays differ considerably, with wide varia-
tion; and many individuals have interleukin-1f levels
that cannot be ascertained at all. In the ePARIS study,
interleukin-1f levels were below the limit of assay
detection in more than a third of the individuals
enrolled. Furthermore, evenin these provocative data,
the difference between interleukin-1 levels between
those alive and dead at 90 days was small and of
borderline significance (5.2 vs. 4.4 pg/ml; p = 0.048).
By contrast, and consistent with a wide body of prior
evidence, differences between those alive and dead at
90 days for hsCRP were large and highly significant
(27.3 vs. 5.4 mg/l; p < 0.00001). It is unfortunate that
data on interleukin-6 are not available because this
biomarker may well be superior in the setting of acute
coronary syndromes, both for prognosis and for the
selection of interventional versus conservative ther-
apy (10). However, what these data do provide is
further insight into the processes driving acute plaque
rupture that go beyond lipids alone. Most important,
the current data reaffirm that the time has come for
direct targeting of the interleukin-1-to-interleukin-6
pathway in acute coronary ischemia.

For the clinical and research communities, the
crucial question at hand is to discern which of several
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targets in the canonical pathway of NLRP3 to
interleukin-1 to interleukin-6 to CRP can be altered to
maximize cardiovascular benefit and minimize in-
fectious risk. Several oral NLRP3 inhibitors are in
development that, in addition to inhibiting the acti-
vation of interleukin-1p, can also be anticipated to
inhibit the activation of interleukin-18, an effect we
have recently shown likely to be advantageous rather
than harmful (3). At the same time, multiple agents
that target interleukin-1o. and interleukin-1p exist,
and novel ones are in development; of particular in-
terest, these agents have efficacy in the treatment of
lung cancers, where inflammation in the tumor
microenvironment is a prominent feature (11). An
abundance of genetic and biologic data point directly
to interleukin-6 as a highly attractive target (12,13),
and of current interleukin-6 inhibitors, at least 1,
ziltikevimab, is being developed solely for athero-
sclerosis, an exciting and important development.
Enticing endpoint reduction data have also been
presented for colchicine, an agent the inhibits
microtubule polymerization and may indirectly affect
NLRP3 function (14). If confirmed in the ongoing
LoDoCo2 (Low Dose Colchicine-2) and other endpoint
trials, colchicine could become an inexpensive anti-
inflammatory for cardiovascular disease prevention.
Clinicians will need to be cautious with colchicine
among those with renal dysfunction, for whom use
can be contraindicated.

Finally, and perhaps of greatest importance, the
ePARIS registry data published in this issue of the
Journal further support the hypothesis that all pa-
tients with atherosclerosis may soon be treated with
combination lipid-lowering and inflammation-
inhibiting agents (15). Rapid progress is taking the
cardiovascular community in this exciting direction,
either with highly targeted bispecific monoclonal
antibodies or with simple combination oral agents,
such as colchicine and statin therapy. In the cardiac
catheterization laboratory where the current data
from Silvain et al. (7) derive, invasive cardiologists
may soon find themselves injecting powerful sys-
temic anti-inflammatory agents at the time of primary
PCI (13,15). The time has clearly come to aggressively
address residual inflammatory risk.
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