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Many of the experimental studies exploring the effect of reperfusion on the pathology of 

the myocardium were described by the laboratory of Dr. Robert Jennings at Northwestern 

University in the 1960’s and 1970’s (1-3). The Jennings’ laboratory utilized an anesthetized 

canine model of mechanical proximal circumflex coronary artery occlusion followed by 

reperfusion. They observed that coronary artery occlusions of shorter than 20 minutes in duration 

followed by reperfusion were associated with “reversible” damage – that is the myocardial cells 

recovered after reperfusion and did not die (3) No myocardial infarction occurs in the setting of a 

brief episode of 5 to 15 minutes of ischemia, which might be considered the equivalent of an 

episode of angina. However, other studies did show that a brief episode of ischemia and 

reperfusion was associated with mild edema of the cardiomyocytes, stunned myocardium, and 

low reflow (4-9). When the duration of ischemia was prolonged to 20 to 40 minutes and 

reperfusion was then instituted, myocardial cells within the  subendocardium underwent necrosis 

(3). While areas of cell death appeared in the subendocardium, cells in the midmyocardium and 

subepicardium were salvaged when reperfusion was instituted between 20-60 minutes after 

coronary artery occlusion. Reimer and Jennings then showed that as the duration of coronary 

occlusion was extended from 40 minutes to 3 hours and then 6 hours, the extent of necrosis 

marched from subendocardium to subepicardium within the ischemic risk zone, which they 

called the wavefront phenomenon of ischemic cell death (10,11). This observation, confirmed by 

a number of other laboratories (12), helped pave the way for current and established therapy of 

acute ST segment elevation myocardial infarction – early and complete reperfusion of the culprit 

coronary artery. Reperfusion in a timely manner reduces myocardial infarct size compared to not 

reperfusing an occluded coronary artery. 
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The ultrastructural and biochemical features of the myocardium subjected to ischemia 

and reperfusion have been described (1,2). At the end of 40 minutes of ischemia in the 

subendocardium of the anesthetized canine model, the myocytes already demonstrated an 

ultrastructural feature that Jennings considered characteristic of irreversibly injured cells: the 

presence of amorphous dense bodies within the mitochondria (2). Wide I bands suggested 

relaxation of the sarcomeres. In addition, intermyofibrillar edema, mild subsarcolemmal edema, 

loss of glycogen granules, mitochondrial edema, nuclear chromatin clumping and margination 

were common features. Upon reperfusion there was a marked worsening of ultrastructural 

abnormalities in this region of the heart. The myocytes exhibited evidence of extensive swelling. 

The sarcolemmal membrane appeared lifted off of the myofilaments with edema fluid below it – 

so called sarcolemmal blebbing or blistering. The sarcolemmal membrane demonstrated breaks 

or gaps. Large fluid-filled vacuoles appeared within the cytoplasm. Mitochondria showed 

additional swelling and separation of the cristae. Besides the amorphous dense bodies which had 

been present at the end of the period of ischemia, a second type of dense body appeared within 

the mitochondria –a doughnut -shaped dense body with dark black particles, thought to represent 

calcium phosphate precipitates. Within seconds of reperfusion calcium overload contributed to 

the formation of contraction bands with congealing of Z bands and disruption of sarcomere 

structure. Endothelial cells showed loss of pinocytotic vesicles, diffuse and focal swelling, and 

clumping of the nuclear chromatin. These ultrastructural findings were corroborated by studies 

showing that reperfusion was associated with a marked increase in tissue water, and an increase 

in myocardial sodium and calcium (1). These increases in tissue swelling occurred very rapidly – 

within seconds to minutes of release of the epicardial coronary artery clamp. The theory is that at 

the end of the period of ischemia, within the most ischemic subendocardium of the left ventricle, 
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where collateral flow is lowest in the canine model, some cells are irreversibly injured at the end 

of ischemia. These cells already have defects in their sarcolemmal membrane, resulting in 

impaired volume control. When reperfusion occurs these cells are exposed to a sudden influx of 

fluids and electrolytes; the damage to the sarcolemmal membrane during ischemia allows for the 

fluids, sodium and calcium to overwhelm the cells leading to what we termed “explosive cell 

swelling” within seconds to minutes of reperfusion (13). Other features such as opening of the 

mitochondrial permeability transition pore with reperfusion also may contribute to organelle 

damage. Reversibly injured cells  that were located in the midmyocardium and subendocardium 

of this model, may also demonstrate some degree of swelling with ischemia/reperfusion, but the 

degree of cellular edema is considerably less than those cells that die; these cells eventually 

recover structure and function and are salvaged by the act of reperfusion (12). 

Following this acute phase of cell edema, there is likely resorption of fluid from dead 

cells that degenerate and extrusion of fluid from those cells that have survived the ischemic 

insult.  Inflammatory cells including neutrophils and macrophages enter the debris area of 

necrotic cells and begin to “clean up the mess.” This inflammatory phenomenon begins within 

days of the insult and then continues for several weeks as fibroblasts and collagen begin to build 

a scar to replace the fragile necrotic tissue (14-16). 

In the accompanying paper entitled “Myocardial edema after ischemia/reperfusion is not 

stable and follows a bimodal pattern: Advanced imaging and histologic tissue characterization 

study,” Fernández-Jiménez et al (17) perform an in-depth study of the time course of edema 

using cardiac magnetic resonance imaging as well as a direct measure of water content in a 

porcine model of 40 minutes of coronary artery occlusion followed by reperfusion. They make 

the important and original observation that there was a rapid and marked increase in tissue water 
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at 2 hours of reperfusion; at 24 hours the edema is largely resolved; but then there is an increase 

in water content at day 4 and a further increase at day 7 after reperfusion. Hence myocardial 

edema followed a bimodal pattern. It is very likely that the first wave of edema observed in the 

early hours of reperfusion represents in part the explosive cell swelling phenomenon described 

above. However, examination of the magnetic resonance images in their figures and their 

transmurality assessment suggests that there is a degree of transmural edema of the left ventricle. 

This may be due to the fact that the pig model has nearly no collateral flow compared to the dog 

model, so that irreversible injury may occur across the wall of the heart with a shorter duration of 

ischemia in the pig model; whereas in the canine model, 40 minutes of ischemia followed by  

reperfusion causes a subendocardial infarction. It is also possible that transient edema of 

salvaged tissue is also represented in these images. The second wave of edema that occurs 

starting day 4 may be due to the expected post-necrotic inflammatory reaction in which 

neutrophils, mononuclear cells such as macrophages and fibroblasts enter the necrotic area to 

break down and phagocytize debris and begin repair. 

The authors are to be congratulated on defining the time course of myocardial edema 

over 7 days of reperfusion and  making the important observation that the presence of edema is 

not static, but fluctuates – with an early and dramatic increase in the first few hours, resolution at 

24 hours, and then a second wave of edema at 4-7 days. One important and practical aspect of 

this study is that it suggests that researchers should be careful about assuming that the zone of 

edema observed on cardiac magnetic resonance imaging can capture a reliable area at risk or 

ischemic risk zone (18) that was present prior to the infarction, when carrying out studies aimed 

at testing adjunctive therapies to reduce myocardial infarction size. The zone of edema fluctuates 

over time and may be influenced by therapy. Any therapy that reduces ischemic necrosis may 
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reduce the zone of edema in the early hours of reperfusion, thus falsely reducing the size of the 

ischemic risk zone. Measurement of the zone of edema at 24 hours, a time when the early edema 

has resolved, will also falsely lower the risk zone. Anti-inflammatory agents have the potential to 

reduce the zone of edema that occurs at 4-7 days. 

Several questions remain to be determined. How long after reperfusion is needed for the 

edema to resolve? Presumably once the scar is fully formed, the edema should fully and 

permanently dissipate. The authors studied one duration of ischemia (40 minutes); would these 

time courses be similar if reperfusion occurred earlier or later than this time period? It would be 

useful to sample tissue in various regions of the risk zone.  What happens to edema within the 

infarct, within the zone of microvascular occlusion (no-reflow), within salvaged tissue in the risk 

zone; in the non-infarcted border zone beyond the risk zone; and in the non-infarcted remote 

zone? 

Summary 

The fine paper by Fernández-Jiménez (17) adds to our knowledge of the pathophysiology 

of reperfusion phenomenon in the setting of ST segment elevation myocardial infarction and 

shows that a noninvasive imaging technique can allow for real time assessment of water content.  

These investigators have made the important observation that real time imaging detects a true 

bimodal pattern of tissue edema over the first seven days of reperfusion. 
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