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Endocrine Disrupter Compounds (EDCs) are responsible for alterations in the endocrine system functions.
Aquatic organisms are able to accumulate EDCs residues, being the major source of contamination for top
predators and human consumers. This study aimed to develop and validate a method for the determina-
tion of 40 EDCs in fish fillet using modified QUEChERS and Gas Chromatography coupled with Mass
Spectrometry in tandem (GC-MS/MS). A factorial design was used to optimize the extraction procedure.
Method validation presented recoveries from 70.1% to 120.0% with RSD < 20% and method limit of
detection ranged from 0.3 to 7.5 pgkg~!, showing good accuracy and precision. This method was
successfully applied to the analysis of fish fillet from different species and residues of bisphenol A,
chlorpyrifos and bifenthrin were detected. The proposed method proved to be effective for the
determination of EDCs in fish fillet at very low concentration levels.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The group of substances known as endocrine disrupter com-
pounds (EDCs) has been investigated extensively for their effect on
the environment [1,2] and a significant amount of research has
been dedicated to the phenomenon of endocrine disruption (ED)
in wildlife [3-5]. EDCs can interfere with the endocrine system by
mimicking the action of naturally produced hormones, by pre-
venting the action of endogenous hormones, by altering the
synthesis and function of hormone receptors, or modifying the
synthesis, transport, metabolism and excretion of hormones [4,5].
Different types of compounds are classified as endocrine disrup-
tion, such as pesticides, alkylphenols, polychlorinated biphenyls
(PCBs), bisphenol A, endogenous and synthetic hormones, as many
other substances [6-8].

EDCs may reach the natural environment in runoff from non-
point sources such as agricultural areas, from manure or biosolid
applications, or from point sources such as discharges from
municipal sewage treatment plants to surface waters [3]. Aquatic
organisms such as fish and shellfish are a suitable indicator for the
environmental pollution monitoring [7,9]. Data on the presence
and distribution of endocrine disrupters in fish, especially in edible
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species, are therefore important not only from ecological but also
from human health perspective. Fish are able to accumulate EDCs
residue concentrations several times higher than the surrounding
water via diffusion across the gills and skin. In aquaculture farms,
fish feed, contaminated by EDCs is a potential source of direct
introduction into fish. Consequently, fish are a major source of
contamination for both top marine predators and human consu-
mers [9,10].

QUuEChERS which stands for quick, easy, cheap, effective, rugged
and safe is a simple and fast method for the extraction of pesticide
residues in fruits and vegetables and it was firstly introduced by
Anastassiades et al. [11]. This method is characterized by the use of
acetonitrile to extract matrix containing water and salts are used to
obtain phase separation [11,12]. Salts like sodium chlorine (NaCl)
can help in the salting out effect or the use of sodium acetate
anhydrous (NaAc) to enable the formation of the acetate buffer
when using acetonitrile containing acetic acid. The salting out effect
consists the addition of excess salt facilitating, in this way, the
analyte to become less soluble in the aqueous phase [13]. In the
same time of QUEChERS development a new clean-up procedure
called dispersive solid phase extraction (d-SPE) was proposed
which consists of adding the extract into a polypropylene tube
containing sorbents and salts [11]. Shorter sample preparation, the
elimination of evaporation steps and changing the use of traditional
SPE cartridges by d-SPE are some advantages of the QuUEChERS
method. The QUEChERS method has already been applied to the
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determination of polycyclic aromatic hydrocarbons (PAHs) and
polychlorinated biphenyls (PCBs) in fish, acrylamide in food, veter-
inary drugs in animal tissue and hormone esters in muscle tissues,
as many other applications [8,12].

Other techniques can also be used for endocrine disrupters
extraction in food as the pressurized liquid extraction (PLE), which
operates at pressures and temperatures above the boiling points of
conventional organic solvents. The higher temperatures are
responsible for faster desorption of the analyte from the matrix
and the analyte solubility in the solvent is also improved [14]. An
important disadvantage of PLE for fatty matrices, such as fish, is
due to the presence of high quantities of lipids co-extracted,
requiring extensive clean-up procedures [15]. Microwave-assisted
extraction (MAE) can also be used to enhance the efficiency of
solvent extractions in solid and semi-solid samples. This technique
agitates and heats the sample during extraction, thus it is applic-
able to thermally stable analytes [14]. Nevertheless, the extract
usually contains interfering species that require clean-up prior to
chromatographic analysis [16]. Supercritical fluid extraction (SFE)
allows a more selective extraction, and provides faster reaction
kinetics than most liquids, due to the use of carbon dioxide as the
supercritical fluid. Robustness is one of the main problem in SFE
when compared to other extraction techniques. Also the use of SFE
for fatty samples can require an extensive sample preparation
including more clean-up procedures [14]. These techniques
require a higher investment in instrumentation than the QuE-
ChERS method.

The use of gas chromatography with tandem mass spectro-
metry (GC-MS/MS), in particular operating in selected reaction
monitoring (SRM) mode, is very important for the analysis of
compounds in low concentrations in complex matrices and/or
with many interferences, such as fish [7]. The Directive (2002/657/
EC) [17] describes that instruments GC-MS/MS and liquid chro-
matography with tandem mass spectrometry (LC-MS/MS) must
monitor two transitions, from the same precursor ion; or two
different precursors and one product ion from each precursor. It is
due to reduction in the probability of spectral interferences
allowing the identification by monitoring two transitions (one
for quantification and another for confirmation).

A number of 244 samples of Nile tilapia fillet (Oreochromis
niloticus), common carpe (Cyprinus carpio) and African sharptooth
catfish (Clarias gariepinus) from three different rivers in Ethiopia
were analyzed employing QUEChERS and GC-MS. DDT and its
metabolites were found in the highest levels in the most fat
containing fish species which also contained considerable amount
of endosulfan sulfate (until 65.1 pg kg~—!). Chlorpyrifos, HCB, o,p
'-DDE and PCBs were also detected, but lower than the LOQs [8].
Shao et al. [18] verified the presence of nonylphenol and bisphenol
A in fish fillet from markets from Beijing (China) with concentra-
tion levels of 0.33-55.98 ug kg~ '. These compounds were detected
using PLE followed by solid-phase clean-up, and LC-MS/MS. The
authors attributed the presence of such compounds due to con-
tamination of the aquatic environment in which they live. The
contamination of fish of various species has also been observed by
Liu et al. [19] in China. Combining MAE and GC-MS the authors
observed the presence of 4-tert-octylphenol, 4-cumylphenol,
4-nonylphenol and bisphenol A in fish fillet with maximum
concentrations of 4.6, 4.4, 18.9 and 83.5 ugkg ™', respectively.
The concentration levels were dependent from the locations
where the fish samples were collected, but in most of them
presence of more bisphenol A, at relatively high levels, was
observed. It proves that there is a contamination of the aquatic
environment and this should be a constant concern nowadays in
order to reduce the environmental impacts caused by EDCs.

As the examples shown above from the literature ilustrate,
there is a lack of multiresidue methods for the determination of a

wide variety of endocrine disrupters from different chemical
classes in fish fillet using a single and simple extraction method
combined with a chromatographic detection system. Therefore,
the aim of this work was to develop and validate a multiresidue
method for the determination of 40 endocrine disrupters from
different classes in fish fillet through the use of the modified
QuEChERS method and triple quadrupole GC-MS/MS. The present
method was developed and validated using fish fillet from catfish
(Rhamdia quelen) species and then also evaluated for the fish
species tilapia (Oreochromis niloticus) and striped catfish (Panga-
sius hypophthalmus).

2. Experimental
2.1. Chemicals and apparatus

Analytical standards listed in Table 1 and the internal standards
(IS) quintozene and triphenylphosphate were acquired from
Dr. Ehrenstorfer (Germany) with purity between 94.0% and
99.5%. As surrogate standard (SS) isotopically modified,
trifluralin-d14 (99.1%) purchased from CND Isotopes (Canada)
was used. Acetonitrile (MeCN) HPLC grade, florisil 60-100 mesh
and anhydrous sodium acetate (NaAc) p.a. were from Mallinckrodt
(USA), glacial acetic acid 100%, anhydrous magnesium sulfate
(MgS04) and sodium chloride p.a. (NaCl) were from J.T. Baker
(USA), calcium chloride p.a. (CaCl,) from Spectrum (USA) and
sorbents primary secondary amine (PSA) and octadecylsilane (Cyg),
with 40 um of particle size, were purchased from Agilent (USA).
Nylon filters of 13 mm and 0.2 um of porosity were from Vertical
Chromatography (Thailand). Ultrapurified water was obtained
with a Milli-Q Direct UV3® system (Millipore, USA).

Vortex mixer model QL-901 (Microtécnica, Brazil), precision
analytical balances AUW-220D and UX-420H (Shimadzu, Japan),
refrigerated centrifuge NT 825 (Novatécnica, Brazil), centrifuge
(Centribio, Brazil) and food processor Varimix (Targo, Spain)
were used.

Measurements were carried out on a gas chromatography CP
3800 (Varian, USA) coupled to a triple quadrupole mass spectro-
meter MS 1200. The system was equipped with an autosampler CP
8400; injector 1079 with Programmable Temperature Vaporizing
(PTV) and a data acquisition software MS Workstation 6.4.

2.2. GC-MS/MS conditions

The GC-MS/MS system was operated with a capillary column
VF-5-MS (5% phenyl 95% dimethylpolysiloxane) with 30 m x
0.25 mm of internal diameter and 0.25 pm of film thickness. The
column oven temperature program was 50 °C for 1 min, raised at
10 °Cmin~"! to 65 °C, then at 25 °Cmin~! to 180 °C and then at
5°Cmin~! to 280 °C, resulting in a runtime of 35 min. The injector
program was 100 °C held for 0.1 min and then at 200 °C min~! to
280 °C. The quadrupole mass spectrometer was operated in
selected reaction monitoring (SRM) mode using two transitions,
one for quantification and another for confirmation as shown in
Table 1. Transfer line temperature was set at 250 °C, ion
source was electron ionization (EI) at 70 eV and temperature at
210 °C. Helium was used as carrier gas at 1 mL min~' and argon
as collision gas (2 mTorr). Injection volume was 2 puL in the
splitless mode with a carbofrit inserted in the liner. Full scan
analysis in m/z range from 50 Da to 500 Da was used for
identification of possible interferences in the extract which could
affect the analysis and result in frequent maintenance of the
instrument.
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Table 1

Mass spectrometry parameters for the GC-MS/MS determination of selected endocrine disrupters, retention time (tg), the method limits of detection (LODm) and of
quantification (LOQm), water solubility and the partition coefficient octanol/water (Kow).

Compound tg (min) 1st Transition CE® (eV) 2nd Transition CE? (eV) LODm" LOQm® Water solubility log Kow
quantification confirmation (ngkg™")  (ugkeg™')  (mgL~'at20°C)
Triclorfon 6.5 185 93 15 185 109 20 0.3 1.0 120000 0.43
4-Terc-octylphenol 8.9 135 77 31 135 107 31 15 5.0 19.0 412
Trifluralin 9.3 306 264 10 306 206 15 0.3 1.0 0.221 4.8
Trifluralin-d14 (SS) 93 315 267 8 315 209 10 0.3 1.0 - N
Alpha-HCH 10.0 219 183 10 219 147 20 0.3 1.0 10.0 3.8
Hexachlorobenzene 10.1 284 214 35 284 249 30 0.3 1.0 0.0047 3.93
Dimethoate 10.2 125 79 10 125 125 10 7.5 25 25.0 0.56
Simazine 10.3 201 138 15 201 173 15 1.5 5.0 6.2 21
Atrazine 10.4 215 200 10 215 173 10 15 5.0 33.0 2.75
4-n-Octyphenol 10.5 107 77 30 206 107 30 15 5.0 31 5.5
Beta-HCH 10.5 219 183 10 219 147 20 1.5 5.0 5.0 3.78
Quintozene (IS) 10.6 295 237 10 295 265 10 - - 0.44 4.46
Lindane 10.6 219 183 10 219 147 20 15 5.0 8.52 3.80
Diazinon 10.7 304 179 10 304 162 10 0.3 1.0 60.0 3.30
Delta-HCH 1.3 219 183 10 219 147 20 0.3 1.0 10.0 414
4-n-Nonylphenol 11.7 220 107 20 107 77 30 0.3 1.0 7.0 5.76
Chlorpyrifos methyl 11.9 286 208 10 286 241 25 0.3 1.0 2.6 4.24
Vinclozolin 12.0 212 145 20 212 172 15 0.3 1.0 3.44 3.10
Parathion methyl 121 263 109 25 263 136 10 0.3 1.0 11.0 3.83
Alachlor 121 188 160 10 188 130 40 0.3 1.0 170.31 3.09
Heptachlor 123 274 239 20 274 237 20 0.3 1.0 0.056 5.44
Malathion 12.9 173 99 15 173 127 10 0.3 1.0 145.0¢ 2.6
Chlorpyrifos 131 314 258 15 314 286 15 0.3 1.0 1.4¢ 4.70
Aldrin 13.3 263 193 30 263 191 30 15 5.0 0.027¢ 6.5
Parathion ethyl 133 291 81 25 291 109 20 15 5.0 11.0 3.83
Dicofol 13.6 139 11 10 139 75 25 0.3 1.0 0.8¢ 4.30
Heptachlor-epoxide exo 14.4 353 263 15 353 282 15 15 5.0 0.35 5.40
Hepachloro-epoxide endo 14.5 272 237 18 272 141 30 1.5 5.0 0.35 5.40
2,4-DDE 15.2 246 176 25 318 246 25 0.3 1.0 0.065 6.5
Alpha-endosulfan 15.5 241 170 15 241 172 15 3.0 10 0.53 4.74
Bisphenol A 16.1 213 119 15 213 91 15 0.3 1.0 120.0 33
4,4-DDE 16.1 246 176 25 318 246 25 0.3 1.0 0.12 5.76
Dieldrin 16.3 277 206 15 277 241 10 15 5.0 0.14¢ 4.32
2,4-DDD 16.4 235 165 20 235 199 20 0.3 1.0 0.1 6.91
Endrin 17.0 263 193 30 263 191 30 15 5.0 0.24 4.56
Beta-endosulfan 17.4 241 170 15 241 172 15 3.0 10 0.28 4.79
DDT I 17.6 235 165 20 235 199 20 0.3 1.0 0.006 5.9
Endosulfan sulfate 18.6 272 237 15 272 235 10 0.3 1.0 0.22 3.66
DDT II 18.7 235 165 20 235 199 20 0.3 1.0 0.006 5.9
Triphenylphosphate (IS) 19.3 325 169 18 325 226 18 - - 0.2 4.6
Bifenthrin 203 181 165 20 181 166 10 0.3 1.0 0.001 6.6
Mirex 22.2 272 237 10 272 143 40 0.3 1.0 0.085 5.28
Fenarimol 22.5 251 139 20 251 m 35 0.3 1.0 13.7¢ 3.69
Permethrin cis/trans 23.8 165 91 10 165 127 5 3.0 10 0.2 6.1

@ CE: Collision energy.

> LODm: Method Limit of Detection.

€ LOQm: Method Limit of Quantification.
4 At 25 °C.

2.3. Optimization of sample preparation and validation conditions

The use of factorial design is of interest since it is possible to
minimize the period for optimization of the procedure, permitting
to evaluate simultaneously several variables [20]. The best condi-
tions of extraction were obtained using the factorial design with
star configuration, also called Central Composite Design (CCD),
according to Neto et al. [21] with two factors (NaCl and water
quantity). Factorial design was evaluated using recovery values.
Therefore, the sample preparation described below is the one
that presented the greatest number of compounds with recovery
between 70% and 120%.

Firstly, aliquots of 500 g of each fish fillet was processed and
homogenized in a food processor and the sample preparation was
carried in a polypropylene tube of 50 mL. 10.0 g of fish fillet was
weighted and 100 pL of the surrogate standard (10 mgL~') was
added which was extracted with 10 mL of acetonitrile acidified
with 1% (v/v) of acetic acid. Manual shaking was performed for
1 min followed by addition of 2.0 g of NaCl with new manual

shaking for 1 min. After that, 0.3 g of anhydrous MgSO4 and 1.7 g
of anhydrous sodium acetate were added followed for manual
shaking for 1 min. The tube was centrifuged for 8 min at 3400 rpm
in order to obtain good separation of the organic phase. After
that an aliquot of 3 mL of the supernatant (organic phase) was
transferred to a polypropylene tube of 15 mL, containing 450 mg of
MgSQ,4, 75 mg of PSA and 375 mg of C;g sorbents for the clean-up
step by d-SPE. After centrifuging for 8 min at 3400 rpm, 1 mL of
the extract was transferred to a vial and 10 uL of the internal
standards mixture (10 mg L~ ') was added. The final extract was
filtered and analyzed by GC-MS/MS. In Fig. 1 the steps of the
proposed sample preparation procedure are represented.

In order to minimize the source of errors during samples
preparation, a surrogate standard (trifluralin-d14) was added in all
samples at a concentration of 100 ug kg~ ! before the extraction to
detect possible errors during this step. To monitor the GC-MS/MS
performance, to each extract standard solution was injected and the
internal standards quintozene and triphenylphosphate were added.
Furthermore, the traceability of standards and solutions prepared
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Fig. 1. Representation of the modified QUEChERS method established in this study.

in the laboratory collaborate to improve the quality control of the
results. In this way it is possible to guarantee the quality of the
analysis realized and the performance of the developed method.

A combination of different sorbents was tested to assure the
removal of interferences without loss of efficiency in the extrac-
tion. Tests were performed using CaCl,, PSA, Cig, Florisil and
freezing (—20 °C) always in the presence of MgSO,.

Development and validation of the method was performed
using fish fillet blank samples, obtained from a controlled fish
production, which were used as sample control. Fish fillets from
different species were studied due to their importance in Brazil
and all around the world. Catfish is a very important species in fish
farm in Brazil because it is a fish easy to handle, fast growing and
adapts well to diets and environmental variations, and with good
acceptance by consumers and good commercial value [22]. Tilapia
is a species that adapts very well to the climatic conditions more
frequently in Brazil and is also the second species of interest in fish
farming [23,24]. Striped catfish is one of the major fish species in
the Mekong River fishery, one of the largest and most important
inland fisheries in the world. Vietnam is by far the world's largest
producer of this fish and exports to over 80 countries [25].

Validation parameters for residues determination in food
samples were studied. Accuracy, evaluated though recovery essays
at three different concentrations levels (10, 25 and 50 ug kg~ 1),
and precision, under repeatability and intermediate precision
conditions, were evaluated. Six replicates of each concentration
level were injected once in the chromatographic system. Selectiv-
ity, analytical curve (1.0, 5.0, 10.0, 25.0, 50.0, 75.0, 100.0, 150.0 and

200.0 pg L), linearity (coefficient of determination, %), matrix
effect (comparing the slope of curves prepared in acetonitrile and
matrix matched) and limits of detection (concentration corre-
sponding to a signal/noise ratio of 3) and quantification (signal/
noise ratio of 10) also were determined.

3. Results and discussion
3.1. Chromatographic determination by GC-MS/MS

With the GC conditions optimized, a single run in GC-MS/MS
permitted the multiresidue analysis of 40 EDCs in 30 min, and it
offered good sensitivity and selectivity. Fig. 3D displays a GC-MS/
MS TIC chromatogram obtained with the conditions presented in
Table 1, from a matrix matched analytical solution containing the
EDCs at 50 pg L~ . All EDCs showed determination coefficient (r2)
> 0.996 and linear range from LOQ to 200 ug L.

3.2. Optimization of the extraction step

Accurate analyses of fish fillet samples contaminated by endocrine
disrupters require an efficient method of extraction and clean-up,
especially due to the high fat content that makes the sample
preparation step difficult. As described above the optimization of the
extraction procedure was performed using factorial design evaluating
different quantities of NaCl and water. In a preliminary evaluation
higher values were chosen: 10 and 20 mL of water and 3.0 and 6.0 g of
NaCl. In a second assessment these quantities were reduced to achieve
the greatest number of compounds recovered between 70% and 120%,
since it was observed, initially, that lower quantities resulted in a
greater number of compounds with appropriate recovery. Therefore,
values of 1 and 5 mL of water and 1.0 and 3.0 g of NaCl were employed
in the factorial design to find the best extraction procedure for EDCs in
fish fillet. Through a factorial design it was possible to optimize the
best conditions of extraction with a small number of experiments. The
responses obtained through this study can be observed using multi-
variate statistic techniques like response surface methodology (RSM).
RSM is a collection of mathematical and statistical techniques, which
describe the behavior of a data set with the objective of making
statistical previsions. It can be well applied when a response of interest
is influenced by several variables [20]. The objective is to simulta-
neously optimize the levels of these variables to attain the best system
performance. Fig. 2 shows the response surface methodology gener-
ated for water and NaCl quantities.

It was verified that the addition of water was not essential for
extraction efficiency and thus water was not used. On the other
hand, the use of an intermediate quantity of NaCl (2 g) was found
to be important. The salting-out effect, resulting from the addition
of NaCl, usually leads to increased recoveries of polar compounds
[11]. The addition of the proper amounts and combination of salts
can be used to control the percentage of water in the organic
phase and vice versa for organic solvent in the water phase, thus
enabling a certain degree of adjustment in the polarity of the
phases. The quantity of salt to be used must be optimized since
a high amount of salt can result in an excessive extraction of polar
co-extractives, decreasing the recovery of the analytes. Interest-
ingly, the amount of NaCl used during the partitioning also had
a great influence on the peak shapes and areas of several
pesticides. This effect is related to the amount and nature of the
co-extracted matrix components [11].

3.3. Clean-up step optimization

The optimization of the clean-up step was performed using
different sorbents. Fig. 3A-C presents chromatograms obtained in
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Fig. 3. Chromatograms in the full scan mode for the clean-up tests: (A) with PSA,
(B) with Cyg (C) with Cyg and PSA, (D) GC-MS/MS TIC chromatogram from a matrix
matched standard at 50 pg L~ 1.

full scan mode from blank samples after extraction and different
clean-up procedures. A very intense peak was observed at
29.7 min, which by comparison with the mass spectral library
corresponds to cholesterol. In fish, cholesterol is found in quan-
tities between 31 and 270 mg/100 g of fish fillet [26]. This high-
light shows the need of proper removal of this compound as the
continuous injection in the system may demand higher main-
tenance of the instrument. Combinations of sorbents without Cqg

are responsible for this chromatogram. Thus, it is possible to affirm
that the use of Cyg in the clean-up step is necessary. The choice of
Cys as sorbent for the dispersive solid phase extraction was made
in order to obtain good method performance, maintaining recov-
ery of the analytes adequate for trace analysis. Sorbent Cig
removes apolar substances, like lipids [12]. Lehotay et al. [27] also
used Cyg for cholesterol removal in egg extracts during clean-
up step.

Other interferences also could be identified and PSA demon-
strated good capacity to remove hexadecanoic and oleic acids, due
to its ability to selectively remove several organic acids, polar
pigments, carbohydrates, sugars and fatty acids with hydrogen
bonding properties. This occurs because PSA forms hydrogen
bonds with compounds containing hydroxy or carboxy groups
[11]. The combination of freezing, CaCl, and Florisil does not
improve the clean-up, resulting just in one more step in the
procedure. In this way the combination of PSA and C;g sorbents
plus the anhydrous MgSO, proved to be an efficient way to reduce
interferences without loss in recovery of the EDCs and with lower
maintenance of the chromatographic system.

3.4. Method validation

Validation parameters were evaluated and the selectivity
was confirmed since no interferences were observed in the blank
extract compared with a spiked sample of fish fillet. Analytical
curves were constructed and good linearity was observed with r?
higher than 0.996 for all the studied EDCs.

Any international legislation or harmonization values about
maximum residues limits (MRL) for these evaluated endocrine
disrupter compounds were not found, but the Brazilian Ministry of
Agriculture, Livestock and Food Supply (MAPA) established MRL
values for some of the evaluated compounds [28]. Aldrin, «, p and
5-HCH, mirex, endrin and heptachlor have MRL of 50 pg kg~! for
fish. Their uses are forbidden but they still can be found widely
distributed over large regions, including those where they have
never been used [9]. This extensive contamination of environ-
mental media and living organisms includes many foodstuffs and
has resulted in the sustained exposure of many species, including
humans, for periods of time that span generations, resulting in
both acute and chronic toxic effects [9].

Method detection and quantification limits were from 0.3 to
7.5 ng kg~ ! and from 1.0 to 25 pg kg~ !, respectively (Table 1). These
limits obtained for the proposed method were satisfactory since they
are lower than the established by the national legislation.

The results of accuracy, evaluated through recovery tests, and
of precision are shown in Table 2. Recovery values in the three
concentration levels ranged between 70.1% and 120.0%, except for
trichlorfon (34.3-43.2%), hexachlorobenzene (50.1-54.5%), dicofol
(56.4-62.5%) and mirex (45.0-51.2%). Good precision was observed
for all the substances with relative standard deviation in repeat-
ability terms (RSD;) between 2.1% and 20.0%.

The organophosphate dimethoate could not be quantified in
the spiked concentration level of 10 pg kg, since its method LOQ
is 25 ug kg~ ! being evaluated only in the concentration levels 25
and 50 pg kg~ ..

The use of trifluralin-d14 as surrogate standard (SS) allows to
evaluate the extraction procedure and judge whether the results
were satisfactory in all spiked levels. Using the same concentra-
tion of SS it was possible to compare the results obtained in all
concentration levels. The average recovery of the SS remained
practically constant, so it is possible to conclude that no significant
alterations during the extraction procedure were observed. The
same can be said by the use of internal standards which were used
to evaluate the response of the instrument during all the analyses.
It is important to emphasize the use of surrogate standard as well
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Table 2
Average recovery and precision (n= 6) from repeatability study and matrix effect.

Compounds 10pgkg™! 25pugkg™' 50ugkg™! Matrix
effect (%)
Rec® RSD” Rec® RSD” Rec® RSD®
(&) @& & ) (B (%)
Trichlorfon 432 18.2 408 8.7 343 101 —-5.6
4-Terc-octylphenol 97.0 10.1 984 12.0 96.8 44 79.8
Trifluralin-d14 (SS) 100.1 11.0 1009 838 97.0 33 31.7
Trifluralin 988 134 98.2 10.7 923 34 24.5
Alpha-HCH 916 131 974 123 95.0 5.0 40.3
Hexachlorobenzene 54.5 15.1 50.5 14.7 501 6.7 274
Dimethoate - - 106.5 4.0 1103 7.0 474.3
Simazine 101.4 10.2 924 158 925 6.6 47.3
Atrazine 109.0 120 1000 93 911 69 291
4-n-Octylphenol 1051 9.7 105.5 11.3 988 5.6 13.1
Beta-HCH 80.0 13.0 824 10.6 80.0 3.2 175.7
Lindane 99,5 129 101.0 12.0 943 8.6 34.7
Diazinon 979 136 971 10.2 932 6.0 344
Delta-HCH 107.8 123 103.0 11.2 925 88 2194
4-n-Nonylphenol 78.7 138 80.1 11.1 724 7.8 185.0
Chlorpyrifos 1054 104 959 42 925 6.6 1433
methyl
Vinclozolin 1200 134 1132 95 1055 83 40.6
Alachlor 113.2 147 1059 10.2 952 54 323
Parathion methyl 114.7 181 98.3 10.6 90.0 5.9 231.8
Heptachlor 889 149 82.0 124 773 6.8 28.8
Malathion 113.5 10.7 1123 113 1073 45 281.5
Chlorpyrifos 119.8 4.8 1109 6.6 929 91 85.8
Aldrin 76.7 20.0 701 121 70.7 8.0 29.3
Parathion ethyl 1174 12.7 107.7 125 1019 6.3 2141
Dicofol 625 13.2 60.7 13.3 56.4 4.1 71.2
Heptachlor epoxide 97.7 13.0 91.3 11.6 864 7.2 41.3
exo
Heptachlor epoxide 95.8 13.0 92.0 10.6 85.6 7.3 26.1
endo
2,4-DDE 80.8 13.2 781 10.1 73.6 6.5 31.9
Alpha-endosulfan 1071 19.0 883 11.7 822 9.2 35.6
Bisphenol A 1182 139 1045 127 90.5 21 3476.0
4,4-DDE 742 110 704 89 704 53 215
Dieldrin 899 13.2 859 12.6 91.0 738 14.8
2,4-DDD 90.8 135 87.7 125 819 55 320
Endrin 94.7 145 869 133 815 45 433
Beta-endosulfan 102.7 16.3 85.7 10.9 839 6.1 83.8
Endosulfan sulfate 120.0 123 1084 114 1159 164 145.9
DDT 96.1 149 80.5 14.0 76.6 84 156.7
Bifenthrin 989 78 826 9.5 759 3.8 35.9
Mirex 51.2 141 45.0 14.8 406 48 16.0
Fenarimol 106.0 10.1 979 119 90.0 438 58.9
Permethrin 81.2 191 743 119 73.6 12.0 22.5
cis/trans

2 Rec: Recovery.
b RSD: Relative Standard Deviation.

as internal standards in all samples to assure the quality of the
analysis during the stages of sample preparation and of analysis by
GC-MS/MS. This control quality realized is extremely necessary
since there is no Certified Reference Material for this number of
compounds studied in fish fillet.

Mirex, dicofol and hexachlorobenzene are considered very
stable pesticides and are persistent in soil and sediment with a
partition coefficient octanol/water (K,.) of 5.28, 4.30 and 3.93,
respectively; and its low solubility in water can explain the low
recovery due to their accumulation in the adipose tissue [29]. The
low recovery of trichlorfon cannot be attributed to this condition
of accumulation in fish adipocytes, as seen its K, of 0.43 is too
low and does not confer this characteristic [30].

Intermediate precision was performed with the concentration level
of 25 ug kg~ 1. Recovery has remained with values between 70.1% and
119.5% with RSD in the range of 3.9-20.0%. These results are in
accordance to international regulations for the analysis of pesticides at
low concentration level by chromatographic analysis [31].

In the study of matrix effect (ME) in fish fillet the results were
calculated as follows: ME%=[(slope of matrix-matched calibration — -
slope of analyte in solvent calibration)/slope of analyte in solvent
calibration] x 100 [32]. Several approaches have been proposed to
reduce matrix effects and the most obvious strategy is the reduction
of the amount of matrix components entering the gas chromato-
graphic system, due to the application of extensive sample extract
clean-up steps. The use of different injection techniques, such as
programmed temperature vaporizer (PTV) and carbofrit inserted in
the glass liner, can reduce matrix effect but not eliminate it [33]. All
these strategies were employed trying to minimize the matrix effect
from fish fillet, nevertheless a considerable effect (Table 2) was
observed for the EDCs studied. Co-extractives, as lipids (triglycerides
and phospholipids) and other high molecular weight components
can remain solubilized in the extracts, even after sample extract
clean-up [34]. To compensate this effect, matrix matched analytical
solutions were used to obtain the analytical curves to avoid quanti-
fication problems.

Positive matrix effect was observed for almost all the com-
pounds, besides trichlorfon that showed negative effect. Specially
bisphenol A, malathion and dimethoate showed a percentage of
ME rather greater than values reported in literature and must be
evaluated in order to confirm this effect, since values of matrix
effect above 50% should be considered as sources of a very
important quantitative error [35]. Pinho et al. [34] also noted very
high matrix effect when they used mass spectrometry coupled to
gas chromatography for sulfur pesticides in string bean. Fig. 4
shows a comparison between the analytical curves obtained in
solvent and in matrix matched standards, as well as, the chroma-
togram of bisphenol A at 50 ug L~ ! where the difference between
the signals in solvent and in the blank matrix can be observed.

Robustness was studied with different fish fillet species (catfish,
tilapia and striped catfish). Blank samples spiked at an intermedi-
ate concentration level (25 pg kg™!) were used to compare the
results among the three species. Tilapia showed similar behavior to
catfish due to unsatisfactory results for trichlorfon, hexachloroben-
zene and mirex, with the exception of dicofol that presented
adequate recovery (78.1%). The compounds delta-HCH, 4-n-non-
ylphenol, endosulfan sulfate and aldrin showed recoveries below
70%. In this way, it is possible to conclude that 33 EDCs can be
analyzed using the proposed method in tilapia fillet. Striped catfish
robustness tests presented recoveries below 70% for trichlorfon,
hexachlorobenzene, mirex, dicofol, delta-HCH, endosulfan sulfate
and aldrin, being possible to apply the proposed method for 33
EDCs. This difference among the results can be attributed to the
percentage of fat in each fish species. This percentage is quite
different mainly by the influence of the diet due to the presence of
fatty acids. The increase of this sort of fat (omega 3) could help to
value the product [36]. In catfishes this quantity can vary from 2.5%
to 5.7%, but in tilapia, that is low fat, this amount is about 1% [8].
These results demonstrated the importance in evaluate the beha-
vior of the extracts obtained with the different species of fish fillet
because these ones may not always be extrapolated.

3.5. Real samples

In order to evaluate the proposed method, five real samples of
fish fillet were analyzed by the proposed method: two of striped
catfish, two of catfish and one sample of tilapia. These samples
were bought from supermarkets in Santa Maria, Rio Grande do Sul
State, Brazil. Samples of catfish presented residues of bisphenol A
(6.2 and 14.5 pg kg~ 1), chlorpyrifos (34.7 ug kg~ ') and bifenthrin
(2.1 pg kg~ 1). In tilapia, only residue of bisphenol A (2.7 ugkg~1!)
was found and no residues of EDCs were found in the two samples
of striped catfish analyzed. Fig. 5 shows the chromatograms of the
positive samples compared to a control sample.
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Fig. 5. Chromatograms of the positive samples compared to a control sample.

A few studies have investigated the occurrence of EDCs in fish.
Bisphenol A an octanol-water partition coefficient (K,) of 3.3, which
means that this substance can be mainly retained on organic matter.
However, its transport in the aquatic environment is its major route
of distribution [4]. In studies developed by Shao et al. [18] and Liu
et al. [2] the presence of bisphenol A was observed in fish fillet at
concentrations of 56 and 83.5 pg kg™ !, respectively. The presence of
chlorpyrifos can be justified as a possible contamination of this
organophosphate pesticide in products used in the fish feed, as
reported by Sun and Chen [37]. The insecticide bifenthrin is highly
toxic to fish with 96-h LD50 values of 0.0 and 0.18 pgL~! for
rainbow trout (Onchorynchus mykiss) and bluegill sunfish (Lepomis
macrochirus), respectively [38].

As well, the positive results for some EDCs show the need of
monitoring residues of these compounds in fish and other aquatic
species. Because of the large environmental and human impacts
these substances generate, greater awareness surrounding their
use should be encouraged.

4. Conclusions

The main advantages of the proposed method lie in the fact
that it is simple and quick to perform, demands a small amount of
solvent and permits the analysis of multiclass pesticides at trace
levels in fish fillet samples with good accuracy and precision.

The QuEChERS approach is so flexible and rugged that most
organic compounds give excellent results when the conditions for
extraction and clean-up are selected properly. Tandem GC-MS/MS
was selected as the detection technique and the simultaneous
measurement of two transitions for each analyte confirms a
positive result without the need to re-inject the sample. Thanks
to the simplicity and quickness of the modified QUEChERS method,
coupled with the selectivity and sensitivity of triple quadrupole
MS the proposed method is capable of analyzing a large number of
samples daily. The suitability of the developed method was
demonstrated by the complete validation of the sample prepara-
tion and instrumental analysis.
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The optimized modified QUEChERS method using GC-MS/MS
in SRM mode for the determination of EDCs in catfish fillet proved
to be effective for 36 of 40 endocrine disrupters evaluated.
Recovery values ranged from 70.1% to 120.0% with RSD below
20% demonstrating good accuracy and precision. Linearity values
were adequate with values of r? higher than 0.996, as well as limits
of quantification from 1.0 to 25.0 ug kg ', which are lower than
the described in the Brazilian legislation for residues in fish.
Robustness studied with different fish fillet species (catfish, tilapia
and striped catfish) demonstrated that small differences in the
recovery values may occur and can be attributed to the difference
in fat content of each fish species.

The application of the method in real samples showed excellent
performance and no interferences from co-extractives were
observed. The results proved that the method is adequate for
utilization in routine analysis for the determination of EDC
residues in fish fillet. In order to complement the study, bioassays
could be realized in the future to investigate correlations between
the active principle present in water and the quantity of this
substance accumulated in the fish fillet. It is also very important to
evaluate possible toxic effects of these compounds in different fish
species [39,40].
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