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A B S T R A C T

Raman microspectroscopy is gaining popularity for the analysis of time-dependent biological processes such as
drug uptake and cellular response. It is a label-free technique which acquires signals from a large variety of
components, including cell biomolecules and exogenous compounds such as drugs and nanoparticles, and is
commonly employed for in vitro analysis of cells and cell populations with no labelling or staining required. By
monitoring the changes to the Raman spectra of the cell as a result of a perturbing agent (e.g. exposure to a drug
or toxic agent), one can study the associated changes in cell biochemistry involved in both, the disruption and
the subsequent cellular response. The main challenge is that the Raman spectra should be data mined in order to
extract the information corresponding to the different actors involved on the process. Here, we study the ap-
plication of multivariate curve resolution-alternating least squares (MCR-ALS) for extracting kinetic and bio-
chemical information of time-dependent cellular processes. The technique allows the elucidation of the con-
centration profiles as well as the pure spectra of the components involved. Initially, we used Ordinary
Differential Equations (ODE) to simulate drug uptake and 2 responses, which were employed to simulate per-
turbations to experimental control spectra, creating a dataset containing 36 simulated Raman spectra. Four
different scenarios governing the drug exposure-response were evaluated: an undetectable disruption (e.g. ra-
diation), a detectable disruption (e.g. a drug) and disruption with a signal significantly larger than the biological
changes induced (e.g. a resonant drug), as well as simultaneous and asynchronous responses. Subsequently, data
acquired from the exposure of a pulmonary adenocarcinoma cell line (A549) to Doxorubicin was analysed. The
results indicate that MCR-ALS can independently identify and isolate both the spectra of the drug and the cell
responses under the different scenarios. The predicted concentrations map out the drug uptake and cellular
response curves. The technique shows great potential to investigate non-linear kinetics and modes of action.
Advantages and limitations of the technique are discussed, providing guidelines for future analysis strategies.

1. Introduction

The EU and US (EU Directive-2010/63/EU and US Public Law
106–545, 2010, 106th Congress) have put in place legislation for the
protection of animals used for scientific research and fostered research
on the development of alternative methods for toxicity and safety
testing to address legislative requirements. In this context, Raman mi-
crospectroscopy is a promising technique for the in vitro investigation of
cellular drug uptake and modes of action [1]. The lateral resolution of
confocal Raman microspectroscopy, typically in the hundreds of na-
nometre to micrometre range, allows spatial characterisation of orga-
nelles in cells [2]. Besides, as water is a weak Raman scatterer, the

method is ideal for use in the living environment of cells [3]. By
monitoring the spectra of the different cellular regions (e.g. cytoplasm,
nucleus and nucleolus) after drug exposure, a large amount of mole-
cular information of the cell can be obtained, including the presence of
the drug as well as metabolic changes induced [4,5]. Raman spectro-
scopy has been shown to be very efficient in monitoring the effect of the
drug over time, which is essential to understand the drug mode (i.e.
molecular targets of the drug) and mechanism of action (i.e. phenotypic
changes induced by the drug) [6]. By investigating the evolution of the
Raman bands of the drug, the drug metabolites and the rest of the
components, one can establish the composition ratio of the drug and the
molecules which are affected by the drug [7–10].
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Different biomolecules (i.e. proteins, carbohydrates, nucleic acids
and lipids), as well as drugs, can present highly overlapped Raman
signatures and thus, the spectra can be used for extracting information
about the drug uptake and the phenotypic responses induced by the
drug. However, Raman data sets are complex and should be data mined
using multivariate methods to extract biologically meaningful in-
formation [11].

Although in most of the cases the cell functional responses as well as
drug metabolism and uptake are changing in a non-linear fashion with
time, linear algorithms, such as Partial Least Squares Regression (PLSR)
[12], are commonly used to model these effects [13–15]. This implies
building a model in which the predicted Y is the time value, and then
studying the contribution of the different variables (either negative or
positive) to the linear model, as manifest in the regression vector. As an
alternative, orthogonal partial least squares regression (OPLSR) is an
extension of PLS which applies an orthogonal correction filter to extract
spectral variations important to the prediction from the variations or-
thogonal to the time [16]. Although the performance of OPLSR models
is generally largely equivalent to that provided by PLSR, OPLSR models
gain in terms of interpretability of the variables, all the variance asso-
ciated with Y being represented in the first latent variable (LV). Other
methods to investigate these systems include two-dimensional [17]
correlation analysis and Principal Component Analysis [18].

Two main problems are anticipated when using PLSR based tech-
niques for the investigation of the temporal evolution of responses as-
sociated with drug modes and mechanisms of action. Firstly, while the
Raman signal is linear with the concentration of Raman active bio-
chemical compounds, both drug uptake and cellular responses follow
diverse non-linear kinetic patterns [19]. Secondly, the regression vector
cannot decompose the spectral variations which occur at different rates,
being unable to differentiate spectral changes associated with the drug
from variations associated with the subsequent cellular response. This
restricts the use of PLSR to different time ranges in order to capture
different linear regions of the drug uptake and response [20].

Multivariate Curve Resolution - Alternating Least Squares (MCR-
ALS) is used for resolving multiple component responses of unresolved
mixtures, resolving the bilinear model by an alternative least squares
iterative optimisation [21]. The bilinear model is defined as:

= +D CS ET (1)

In which D (i× j) is the matrix of spectral data of i samples and j
variables, and C (i× n) is the concentration matrix containing the
concentrations of the N components of the system for each spectrum. ST

(n× j) is the transpose of the spectra of the pure components and E (i x
j) is the residual matrix. When a temporal evolution is considered,
MCR-ALS extracts: i) the concentration C matrix of the components
over i time points and ii) the pure spectrum of each component on the
matrix S. The former matrix is useful for studying the kinetics of the
process and the latter to assign the bimolecular aetiology of each
component. This technique is extremely useful in monitoring changes in
complex and potentially non-linear temporal evolutions of multi-
component systems such as biological ones. It is also based on a bilinear
model of Raman intensities and concentration of components in a
sample. However, MCR-ALS decomposes the spectral data matrix for a
selected number of pure component spectra and concentration vectors.
The concentration profiles can follow non-linear dependences with
time, as defined by multiple kinetic equations.

In this work, using simulated and real data, we evaluate the use of
MCR-ALS to decompose the Raman spectra of cells upon inoculation of
a drug, to establish a kinetic model of the drug uptake, and cellular
responses. First, we used Ordinary differential Equations (ODE) to si-
mulate drug uptake and 2 subsequent response curves, which were
added as time dependent perturbations to control cellular spectra,
creating a dataset containing 36 simulated Raman spectra. Different
scenarios were considered: The first represented the inclusion of an
external perturbation which does not have a detectable Raman signal,

simulating for example the effect of radiation or a drug or toxic with
concentration below the limit of detection. The second scenario was
simulated considering a drug or toxic with a specific Raman signature,
with an intensity comparable to the cell component bands. The last
scenario simulated the exposure to a resonant drug with a Raman signal
which is significantly stronger than the cell Raman signatures, poten-
tially resonantly enhanced. Regarding the phenotypic changes induced
by the presence of the drug, both simultaneous and asynchronous re-
sponses were analysed. MCR-ALS was applied considering different
constraints, including non-negativity in the concentrations and spectra,
and the results obtained were compared to those obtained by OPLSR.
The results indicate that MCR-ALS can isolate and capture both the
spectra of the drug and the cell responses under the different scenarios,
in comparison with OPLSR, which only provided information about the
mean trends of the spectral changes with time. Finally, a real dataset
was studied, derived from the in vitro subcellular analysis of the time
dependent uptake and localisation of the drug doxorubicin (DOX) in
human lung cancer cells (A549) [20]. The predicted concentrations
map out the drug uptake and cellular response curves. The technique
shows great potential to investigate non-linear kinetics and modes of
action.

2. Materials and methods

Here, we provide a summary of the materials and methods used for
the experimental data. Further information can be accessed in the ori-
ginal publications [17,20].

2.1. Cell culture and inoculation

A549 cells were cultured in DMEM-F12 with 10% fetal bovine
serum (FBS) at 37 °C in a humidified atmosphere containing 5% CO2

and cells were split every two days to maintain ~60% confluency.
Cells (~1×104/window) were seeded and incubated on CaF2

windows (Crystan Ltd, UK) for 24 h for both control and exposure to
DOX. The medium was then removed and samples were rinsed twice
with sterile PBS and covered with DOX at the corresponding IC50 in-
hibitory concentration, adjusted to the cell number [20]. After each
incubation period, 2, 6, 12, 24, 48 and 72 h, cells were washed twice
with sterile PBS and fixed in formalin (4%, 15min) [22].

2.2. Raman spectroscopy

A Horiba Jobin-Yvon LabRAM HR800 spectrometer with a 785 nm,
300mW diode laser as source, Peltier cooled 16-bit CCD, 300 lines/mm
grating and 100 μm confocal hole, was used for this work. Spectra were
acquired in the range from 400 cm−1 to 1800 cm−1 using a ×100
objective (LCPlanN, Olympus), in dry conditions, for 30s two times,
from three cell locations: cytoplasm, nucleus and nucleolus, visible
under white light illumination. A final data set of 30 spectra per cell
location for each time point, 2, 6, 12, 24, 48 and 72 h was produced
after DOX exposure and for control cells, for each cell line, amounting
to a total of over 210 cells per cell line, corresponding to a total data set
of 1260 spectra. For the purpose of this study, data from the nucleolus
only were considered.

2.3. Data simulation

Experimental control spectra were derived from the study of
Farhane et al. [20], measured as described above, and the 30 nucleolar
spectra averaged. Based on the results of the PLSR analysis of the ori-
ginal study, simulated early (Response 1) and late (Response 2) spectral
response profiles were generated in the Horiba Labspec 5 software, as
described in Byrne et al. [17] The temporal evolution of the respective
contributions of the simulated responses were derived according to the
rate equations described in the “Results Section”. Simulated datasets
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were created by adding weighted sums of the responses to the control
spectra using the Matlab 2019a platform (Mathworks, Natick, MA,
USA).

2.4. Data analysis

Data Treatment and data analysis is available at the Zenodo re-
pository (10.5281/zenodo.3339285). Data analysis was performed
using MATLAB 2019a from Mathworks (Natick, MA, USA). MCR-ALS
was performed using the Graphical user interface available at https://
mcrals.wordpress.com/ [23,24]. Non negativity constrains were used
for both spectra and concentrations. Considering the absence of maxima
and minima in the concentration profiles, a unimodality constraint was
also applied to the concentration. Pure spectra were normalised using
the total sum (i.e. Each spectrum was divided by the total sum of the
spectra). This step ensured that all the pure spectra computed were in a
similar range. A maximum of 50 iterations were considered, employing
a tolerance sigma value of 0.1. The initial estimations of the con-
centrations were obtained using those column profiles from the original
data matrix which were numerically most different. The number of
components tested varied from 2 to 3, depending on the Single Value
Decomposition analysis performed prior to the MCR-ALS. Two kinds of
MCR-ALS models were considered: without equality constraints and
with equality constraints involving one component. In the latter case,
the pure spectrum was forced to be the initial spectrum (InC) and the
concentration was fixed to 1 for all the time points. Firstly, MCR-ALS
was used without any equality constraint. If the model provided results
with rotational ambiguity, the constraint was introduced.

OPLSR models were calculated using the PLS_Toolbox 8.6 from
Eigenvector Res. Inc. (Manson, WA, USA). Standard Normal Variate
(SNV) and mean centring was used for spectral pre-processing. Model
complexity (i.e. number of LVs) was selected as the smallest number for
which a decrease in the RMSECV between consecutive LVs was less
than 3%.

3. Results

3.1. Simulation of spectral responses of cells under different scenarios

Simulations were based on previous works by Farhane et al. [20]
and Byrne et al. [17], which identified spectral responses of A549 cells
to the inoculation of DOX over time, in the subcellular regions of nu-
cleolus, nucleus and cytoplasm. Considering only the example of the
nucleolus, the studies indicated that the interaction of DOX induced two
perturbations to the spectra. The first response (Mode of action) was
synchronous with the drug uptake and was caused by the binding of the
drug to the RNA and DNA, resulting in a decrease of phosphate bands,
including the 785 cm−1 band (associated with RNA and DNA O-P-O
stretching), the 1095 cm−1 band (assigned to the DNA PO2− sym-
metric stretching), and the 1683 cm−1 (protein Amide I). The second
response (Mechanism of action) was subsequent to the drug uptake and
was related to the phenotypic response of the cell to the drug, including
an increased intensity of the RNA-sugar phosphate band at 1047 cm−1,
amide III band at 1271 cm−1 and CH2 deformation band at 1444 cm−1.
Fig. 1 shows the simulated spectral responses (Response 1 and Response
2) caused by the drug, along with the spectrum of the drug itself.

The effects of drug uptake after inoculation on a cell, described by
the intensity of Responses 1 and 2, can be simulated considering or-
dinary differential equations [17]. Nb, the number of DOX molecules
bound to DNA and Nr , the intensity of the subsequent cellular response
as a function of time can be expressed as:

=dN
dt

N N K D( )b
recp b up (2)

=dN
dt

N N K N( )r
resp r resp b (3)

where Kup and Kresp describe the drug uptake and response rates, re-
spectively (2.5× 10−4 and 2.5×10−6 h−1 in this study), D is the drug
dose, Nrecp is the number of receptors in the nucleolus and Nresp is a
parameter to limit the number of responses. To simulate the measured
cellular responses, the spectral responses, weighted according to their
temporal evolution, can be added to a measured, control dataset.

In this study, the use of MCR-ALS to different scenarios in which the
phenotype of a cell is disrupted by an external agent was evaluated in
simulated spectral data sets using the profiles calculated from equations
(1) and (2) (see Fig. 2a), and considering extrinsic perturbations with
and without identifiable Raman spectral signatures as well as additive
and subtractive spectral contributions.

3.2. Dataset I. Undetectable perturbation, subtractive response 1 and
additive response 2

This dataset simulates the effect of a perturbing factor which does
not have its own a characteristic Raman spectrum, as is the case, for
example, for ionising or non-ionising radiation, or a drug or toxicant
which does not have a strong Raman signature at the dose applied [25].
The presence of this perturbation provokes a synchronous alteration of
the cellular composition (i.e. Response 1, e.g. DNA damage) that trig-
gers a subsequent molecular response of the cell (Response 2). Such a
response can be simulated according to equation (4):

= + +S (t) IC S I (t) S I (t) N1 R1 R1 R2 R2 (4)

where IC is the initial component (i.e. Raman spectrum of the cell
without the drug), SR1 and SR2 are the simulated spectra of the Re-
sponses 1 and 2, respectively and IR1 (t) and IR2 (t) are the simulated
intensity profiles of Responses 1 and 2, respectively. N is Gaussian
noise, computed as the 0.1% of the length (maximum of the dataset
minus minimum of the dataset) of the spectra).

The simulated data set is depicted in Fig. 1, showing the decrease of
RNA band intensities associated with the simulated Response 1 and the
increase of the intensity of protein bands due to the simulated sub-
sequent Response 2. Fig. 2a and b shows the intensity and spectral
profiles of the responses used for the simulation. The spectral profiles
obtained from the MCR-ALS analysis (Fig. 2d) were highly correlated
with the simulated spectra. MCR-ALS components 1 and 2 were as-
signed to the simulated responses 2 and 1, respectively, and the Pearson
correlation coefficients between the reference and predicted spectra
were higher than 0.99. The variations of the concentration of these
components as a function of time are depicted in Fig. 2c. The con-
centration of MCR-ALS component 2 showed a monotonic decrease,
reaching a plateau after 20 h, in agreement with the simulated con-
centration of Response 1. In contrast, MCR-ALS component 1 showed
an increase in concentration, highly correlated with the simulated
concentration of Response 2. Thus, MCR-ALS was able to extract both
the spectral responses and the time dependant profiles of both re-
sponses. Results from the analysis of the simulated data set by OPLSR
are shown in Fig. 2e and f. The first OPLSR loading, which represents
the spectral variance associated with time, showed negative bands at
785, 811, 1099 and 1670 cm−1 (i.e. Response 1) and positive bands at
1047, 1275 and 1436 cm−1 (i.e. Response 2). Cross validated predicted
time values showed a significant correlation between the simulated
spectra and the time (see Fig. 2e). However, a basic assumption of PLSR
is that the association between the changes in the spectra and the re-
sponse (i.e. time) is linear. The simulated data set included non-linear
responses and so, the generalisation performance of PLSR is limited and
the model may not be adequate as shown by the non-uniform dis-
tribution of the residuals of the y predicted values. In contrast, MCR-
ALS provides a more accurate description of the non-linear relationship
between the two components with time. Asynchronous subtractive and
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Fig. 1. (Colour) Spectral profiles of the initial component (IC) simulated responses and experimental spectra of DOX (Top). Simulated and real datasets employed on
the study. Dataset I: Undetectable disruption, subtractive Response 1 and additive Response 2. Dataset II: Detectable disruption, additive Response 1 and additive
Response 2. Dataset III: Enhanced response (e.g. DOX), subtractive Response 1 and additive Response 2. (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)

Fig. 2. (Colour) MCR-ALS and OPLSR analysis of Dataset I (Undetectable disruption, substractive Response 1 and addytive Response 2). Simulated time evolution (a)
and simulated spectral signatures (b) employed on the creation of Dataset I, simulating the spectral signatures of the disruption (Response 1) and subsequent cellular
response (Response 2). Concentration (c) and spectral (d) profiles determined by the MCR-ALS. Actual time values versus predicted (by cross validation) time values
(e) and first loading vector of the OPLSR (f). Concentration profiles on a) and c) have been normalised to the range [0 1]. Spectra in b) and d) have been shifted on the
y axis for clarity. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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additive responses were represented as decreasing and increasing sig-
natures on the concentration profiles, respectively.

3.3. Dataset II. Detectable disruption, additive response 1 and additive
response 2

Dataset II simulates the effect of a Raman active perturbation factor,
such as a drug or particle with a concentration above the limit of de-
tection. Its subcellular interaction provokes a simultaneous Response 1,
which represents the binding of the molecule or particle to the mole-
cules of the cell and a subsequent phenotypic response of the cell
(Response 2). Dataset II was simulated according to equation (5):

= + + + +S (t) IC S I (t) S I (t) S I (t) N2 Drug Drug R1 R1 R2 R2 (5)

in which SDrug and IDrug are the spectra and concentration profile of the
perturbing agent, in this case the drug spectrum and its dynamic up-
take, respectively. Here, we assumed a negligible concentration of free
drug compared to the bound drug, and that the drug uptake and Re-
sponse 1 occur simultaneously. Also, in this case we also changed the
sign of Response 1 to explore the use of MCR-ALS under additive con-
ditions (i.e. the perturbative interaction resulted in an increase in the
contribution of constituent cellular components). A visual inspection of
the spectra of dataset II (Fig. 1) revealed spectral variations associated
with Responses 1 and 2, as well as characteristic drug bands.

The accuracy of the MCR-ALS decomposition is demonstrated by the
high degree of correlation observed between the simulated spectral
profiles (Fig. 3d) and the spectra of the components obtained by MCR-
ALS (Fig. 3b). Raman bands of the second MCR-ALS component were
assigned to Response 2 and Raman bands of the first MCR-ALS com-
ponent are consistent with a combination of the spectra of the drug and
Response 1. As expected, MCR-ALS was not able to resolve the simu-
lated drug internalisation and cellular response as two independent
components, because both processes are synchronous. If they had dif-
ferent kinetics, it would have been possible to use the known DOX

spectra as a pure spectrum to help resolve the system. Nonetheless, the
MCR-ALS estimated concentration profiles obtained, depicted in
Fig. 3c, are highly correlated with the intensity profiles employed for
the simulation (Fig. 3a). In this case, the profile corresponding to the
first MCR-ALS component, which represented the simultaneous uptake
of drug and cell response increased over time.

Analysis by OPLSR (see Fig. 3e and f) revealed again the lack of the
linearity of the spectra and time. Although the first loading appro-
priately indicated an increase of DOX, Response 1 and Response 2
bands, MCR-ALS provided a more accurate description of the different
non-linear spectral variations in the dataset over time.

3.4. Dataset III. Resonant drug, subtractive response 1 and additive
response 2

Data III simulates specifically the in vitro inoculation of A549 cells
with DOX. In this case, the perturbing effect is a resonant drug and
therefore its signal is comparable or significantly more intense than the
signal associated with the drug bonding (Response 1) and subsequent
cellular metabolic reaction (Response 2). The representative, Dataset III
can be simulated according to:

= + + +S (t) IC F S I (t) S I (t) S I (t) N3 Drug Drug R1 R1 R2 R2 (6)

where F is a factor which increases the signal of the drug relatively to
the signal of Response 1 and Response 2. In this study F=8 was se-
lected to match the values observed in the real dataset. Here, Response
1 was negative, again to simulate the experimentally observed spectral
signature of the drug bonding to RNA/DNA in the nucleolus of the cell.

Three components were considered for the MCR-ALS analysis of this
dataset, the first (i.e. component 3) being the initial cellular control
spectrum, which was time independent. Spectral bands of MCR-ALS
component 2 (Fig. 4b) were seen to be highly correlated with Response
2 (R2=0.9935), although the spectrum was slightly contaminated with
bands from DOX, such as those at 1620 and 420 cm−1 and control

Fig. 3. (Colour) MCR-ALS and OPLSR analysis of Dataset II (Detectable disruption, additive Response 1 and additive Response 2). Simulated time evolution (a) and
simulated spectral signatures (b) employed on the creation of Dataset II, simulating the spectral signatures of the disruption (e.g. a drug) the bonding of the disruption
(Response 1) and subsequent cellular responses (Response 2). Concentration (c) and spectral (d) profiles determined by MCR-ALS. Actual time values versus cross
validated predicted time values (e) and first loading vector of the OPLSR (f). Concentration profiles on a) and c) have been normalised to the range [0 1]. Spectra on
b) and d) have been shifted on the y axis for clarity. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of
this article.)
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cellular components such as the Phenylalanine band at 1005 cm−1. The
concentration profile of this component also followed that of Response
2 (Fig. 4b). A visual inspection of the first MCR-ALS component re-
vealed a high correlation with the DOX spectrum (R2=0.9963). Bands
of Response 1 should also be present in this component, as they were
simulated to occur simultaneously. However, in contrast to Dataset II,
in this case they should produce a negative contribution, as in the case
of Dataset I, for which the concentration profile indicated a decrease of
the component. In the specific scenario considered here, Component 2
should represent the increase of DOX bands and the simultaneous de-
crease of Response 1 bands.

For dataset III, the concentration profile indicated a signal increase,
similar to the simulated DOX uptake (see Fig. 4c). A close inspection of
the spectra of first MCR-ALS component confirms the presence of bands
with a negative contribution at the Response 1 positions (insets below
Fig. 4d). Bands at 780 and 810 cm−1 were flattened to the 0 value and
bands at 1095 and 1685 cm−1 were found as negative shoulders of DOX
bands. In summary, Component 1 was a combination of a large con-
tribution of the DOX spectrum minus a small contribution of Response
1, correctly reproducing the information introduced in the simulation.
From these observations, it can be established that, in the case of a
resonant drug, spectral signatures of the binding can be masked by the
large contribution of the drug, and that subtractive contributions will
be represented as nodes in the spectra. For comparison, the first loading
vector of the OPLSR (Fig. 4f) shows a combination of the three sources
of variation, dominated by the DOX bands, but also reveals small po-
sitive contributions of Response 2 and negative contributions of Re-
sponse 1.

3.5. Experimental DOX dataset

The experimental DOX dataset, previously described by Farhane
et al. [18], was analysed using MCR-ALS and OPLSR under the

conditions described on the “Data Analysis” section. Fig. 1 depicts the
Raman dataset, which shows similarities with Dataset III. For MCR-ALS,
two components were used, as a third component provided ambiguous
results (see Electronic Suppslementary Material, SM1). The pure spec-
trum of MCR-ALS Component 2 (Fig. 5d, blue) shows typical bands of
the original cell, whereas the spectra of MCR-ALS Component 1 (green)
shows signatures of DOX bands and decreasing bands of DNA at 782,
812 and 1680 cm−1. The temporal evolution of the spectral profile
(Fig. 5a) indicates an increase of these bands, evidencing an increase of
DOX content and a decrease of DNA bands, which reaches a plateau
after 16 h. This indicates that the real data follows the simulated Re-
sponse 1 of Dataset III. The OPLSR component loading (Fig. 5d) also
shows similar bands, but it does not provide any kinetic information
about the spectral evolution over time.

The ambiguity found when three components were employed con-
firms that the secondary cellular response, expected to be similar to the
simulated Response 2, was not identified in the real dataset.
Nevertheless, it has to be noted that the real dataset included only
spectra collected at 7 time points, and this limited temporal resolution
hampered the resolution of complex cellular signatures. In order to
study this, a further simulation experiment with the Dataset III was
performed in which MCR-ALS models from simulated data with dif-
ferent levels of noise and number of time points were simulated. Noise
was found in all the pure spectra for the three datasets (See
Supplementary Material 1), but in all cases the signal was significantly
higher than the noise. Under the presence of enough noise, however, it
is expected that the components cannot be resolved properly. Fig. 6
shows the similarity between the Response 2 spectral signature and the
MCR-ALS component calculated as the correlation coefficient, over
different temporal resolutions and noise levels. Results showed that,
regardless the noise level, the quality of the resolved concentration and
spectral profiles improves with the number of time points.

In summary, the results indicate that MCR-ALS outperforms the

Fig. 4. (Colour) MCR-ALS and OPLSR analysis of Dataset III (Detectable disruption, substractive Response 1 and additive Response 2). Simulated time evolution (a)
and simulated spectral signatures (b) employed on the creation of Dataset III, simulating the spectral signatures of the perturbation (e.g. a resonant drug) the bonding
of the drug (Response 1) and subsequent cellular responses (Response 2). Concentration (c) and spectral (d) profiles determined by MCR-ALS. Actual time values
versus predicted (by cross validation) time values (e) and first loading vector of the OPLSR (f). Insets represent enlargement of the Component 2 spectral bands.
Concentration profiles on a) and c) have been normalised to the range [0 1]. Spectra on d) and b) have been shifted on the y axis for clarity. (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web version of this article.)
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OPLSR method in extracting kinetic information as well as spectral
markers of the different processes involved. On the other hand, in a
recent study using the same experimental data and simulation ap-
proach, the use of a two dimensional correlation analysis [17] method
was also able to determine that bands associated with Response 1 and
Response 2 are asynchronous (i.e. they occurred at different rates). It
did it also for the real dataset, while in this study MCR-ALS was not able
to detect the Response 2, probably because the poor spatial resolution
of the experimental data. However, compared to 2D correlation, MCR-
ALS was able to provide the concentration profiles over time, which are
extremely useful for the study of the kinetics involved on the drug

uptake and cellular response.

4. Conclusions

Results indicated that MCR-ALS is a usefully method for in-
vestigating the temporal evolution of drug uptake and cellular re-
sponses in cells in vitro. It outperforms OPLSR, as it provides kinetic
information from different components that can evolve according to
different non-linear time profiles. Dataset I indicated that additive and
subtractive perturbations of the constituent cellular components can be
identified in the concentration profiles and pure spectra profiles.
Dataset II showed that simultaneous changes in molecules appear in-
tegrated as a single component, the use of molecular information (e.g.
prior knowledge about the location of drug bands) being necessary to
differentiate contributions of different species. Dataset III indicated
that, if a component represents both, additive and subtractive con-
tributions, the spectrum calculated by MCR-ALS will contain positive
bands and nodes respectively.

MCR-ALS applied to real data from exposure to DOX in A549 cells
extracted a component representing the drug uptake as well as the
binding to DNA and RNA molecules. The dataset was limited in terms of
temporal resolution, which hampered the extraction of the subsequent,
longer term cellular responses. In summary, the application of MCR-
ALS to decompose time series of Raman spectra after drug inoculation
extracted significant information about changes on cell composition
induced by the presence of the drug. This could be applied in the in-
vestigation of drug kinetics and modes of action and could be regarded
as a revolutionary technique in preclinical screening to improving drug
effectivity and investigate drug resistance.
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Fig. 5. (Colour) MCR-ALS and OPLSR analysis of the Real Dataset (A549 cells exposed to DOX). Reference spectra of DOX (b) Concentration (a) and spectral (d)
profiles determined by the MCR-ALS. Actual time values versus predicted by CV time values (c) and first loading vector of the OPLSR (e). Spectra on b) and d) have
been shifted on the y axis for clarity. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 6. (Colour) Correlation coefficient of the spectral signature of Response 2
and the pure spectra extracted by the MCR-ALS for datasets simulated using
different amount of noise and temporal resolution. (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web
version of this article.)
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Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.talanta.2019.120386.
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