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Abstract: The use of quartz crystal microbalance (QCM) sensor arrays for analyses of 

volatile organic compounds (VOC) has attracted significant interest in recent years. In this 

regard, a group of uniformed materials based on organic salts (GUMBOS) has proven to be 

promising recognition elements in QCM based sensor arrays due to diverse properties afforded 

by this class of tunable materials. Herein, we examine the application of four novel 

phthalocyanine based GUMBOS as recognition elements for VOC sensing using a QCM based 

multisensor array (MSA). These synthesized GUMBOS are composed of copper (II) 

phthalocyaninetetrasulfonate (CuPcS4) anions coupled with ammonium or phosphonium cations 

respectively (tetrabutylammonium (TBA), tetrabutylphosphonium (P4444), 3-(dodecyldimethyl-

ammonio)propanesulfonate (DDMA), and tributyl-n-octylphosphonium (P4448)). These materials 

were characterized using ESI-MS and FTIR, while thermal properties were investigated using 

TGA. Vapor sensing properties of these GUMBOS towards a set of common VOCs at three 

sample flow rate ratios were examined. Upon exposure to VOCs, each sensor generated 

analyte specific response patterns that were recorded and analyzed using principal component 

and discriminant analyses. Use of this MSA allowed discrimination of analytes into different 

functional group classes (alcohols, chlorohydrocarbons, aromatic hydrocarbons, and 

hydrocarbons) with 98.6% accuracy. Evaluation of these results provides further insight into the 

use of phthalocyanine GUMBOS as recognition elements for QCM-based MSAs for VOC 

discrimination. 
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1. Introduction 

Although many volatile organic compounds (VOCs) are non-toxic, many of them can 

cause harmful health and environmental effects including, but not limited to, headaches, nerve 

disease, or cancer[1, 2]. Furthermore, VOCs play a critical role in food quality control, [3, 4] 



 

explosives detection, [5-7] and medical diagnostics [8-10]. Therefore, it is very important to 

develop vapor-sensing techniques for detection and discrimination of various types of VOCs.  

A variety of techniques, including optical sensors and colorimetric sensors, have been 

used for VOC analysis [11-14]. However, more recent use of electronic noses (e-nose) has 

gained considerable popularity[15] since e-nose devices are designed to mimic the human 

nose. In this regard, when the human nose encounters a scent, a signal travels from multiple 

receptors in the nose to the brain, which processes the receptor response pattern and identifies 

the scent. A mechanized analogue of an e-nose will typically comprise multiple chemically 

distinct coatings that act as cross reactive elements within a multisensor array [16, 17]. Upon 

exposure to vapors, sensor-vapor interactions generate analyte specific response patterns that 

can be analyzed using statistical analyses such as artificial neural networks (ANN), cluster 

analysis, analysis of variance (ANOVA), principal component analysis (PCA), and discriminate 

analysis (DA). E-noses can be categorized into many classes, including metal oxides, gas 

chromatography-mass spectrometry (GC-MS), and many others [15]. However, these 

approaches have distinct disadvantages; for example, GC-MS is complex, expensive, and 

typically requires an expert operator[18], while metal oxides require operation at high 

temperatures, high power consumption, and have a limited selection of sensor coating materials 

[19]. To overcome these disadvantages, use of a quartz crystal microbalance (QCM) as an e-

nose has been proposed due to its good precision, high sensitivity, and diverse range of sensor 

coating materials [19].  

 The QCM is a thickness shear mode device that consists of an AT-cut quartz crystal 

resonator (QCR), sandwiched between two metallic electrodes and based on the reverse 

piezoelectric effect. In such a system, an external voltage is applied causing the QCR to 

oscillate, resulting in the generation of an acoustic shear wave. At the interface of a QCR and 

coating material, the shear wave undergoes an attenuation and phase shift, resulting in a 



 

change in frequency [20]. The operating principle of a QCM is based on the Sauerbrey 

equation: 

    
 

 
    

 

 
    , 

where  Δf is change in resonance frequency, ɳ is harmonic number, c is mass sensitivity which 

is 17.7 ngcm-2Hz-1 for a 5 MHz AT-cut crystal as used in this study;    is the density of the film, 

and    is film thickness [21]. Essentially, change in mass on the QCR surface is directly related 

to change in frequency on the oscillating crystal as reflected in the above equation. Thus, 

change in frequency allows an estimation of the mass of analyte adsorbed onto the surface of 

the QCR. Since these terms are directly proportional, the resonance frequency should decrease 

as mass is added to the QCR surface, which is characterized as ideal Sauerbrey behavior. In 

essence, the QCM has commonly been used simply as a mass detector. Selectivity and 

sensitivity of a QCM sensor depends on the characteristics of the coating material. In this 

regard, QCM sensors typically employ chemosensitive materials such as ionic liquids, imprinted 

polymers, and composite materials [6, 22-24]. However, there are some limitations associated 

with use of such materials including complex synthesis, intricate deposition procedures, and 

slow response times [6, 22-26].  

 Phthalocyanines and their derivatives are an appealing class of sensing materials due 

to their flexible synthesis and ability to interact with a large number of organic vapors [27-29]. In 

addition, conversion of these materials into GUMBOS may allow optimization of both sensitivity 

and selectivity [30]. The acronym GUMBOS is derived from group of uniformed materials based 

on organic salts as coined by Warner, et al. [31]. This class of compounds are similar to ionic 

liquids (ILs) in that both are organic salts using similar counterions; however, GUMBOS 

represent solid phase organic salts with melting points between 25°C and 250°C [31], while ILs 

have melting points below 100°C and are typically liquid at room temperature. Both classes of 



 

compounds have tunable properties such as hydrophobicity, melting point, toxicity, etc. simply 

by alteration of the counterion. 

Herein, a QCM based multisensor array is described for class specific discrimination of 

VOCs. To achieve this goal, a novel set of GUMBOS were synthesized using copper (II) 

phthalocyanine tetrasulfonate as anions and four different cations as recognition elements for 

VOC detection. Thin films of each compound were deposited on the surface of the QCRs via 

use of electrospray and then exposed to a set of ten VOCs in order to evaluate gas-sensing 

properties. The set of sensors exhibited cross-reactive patterns, thus rendering them as 

adequate candidates for development of a sensor array. The resulting data from these four 

sensors were then used to develop a statistical model for distinguishing four classes of 

compounds (alcohols, aliphatic hydrocarbons, aromatic hydrocarbons, and chloro-

hydrocarbons). PCA was used to assess the dimensionality of the observed sensor data and to 

obtain a visual representation of  separation among the four compound classes. DA was used to 

develop the predictive model for distinguishing among the present compound classes, using the 

four sensor variables directly as predictor variables. It is often necessary to reduce the 

dimensionality of the predictor space in an experiment because of small sample size, and PCA 

can be used in this regard. However, in this manuscript, and for this analysis, compound 

classes are predicted rather than individual compounds, and thus adequate data allows use of 

the four sensor variables directly as predictor variables in this DA.  

2. Materials and Methods  

2.1. Materials  

Copper (II) phthalocyaninetetrasulfonic acid (CuPcS4) tetrasodium salt, 

tetrabutylammonium (TBA) bromide, tetrabutylphosphonium (P4444) bromide, 3-

(dodecyldimethyl-ammonio)propanesulfonate (DDMA), anhydrous methanol, anhydrous 1-

propanol, anhydrous dichloromethane (DCM), anhydrous chloroform, anhydrous toluene, 

anhydrous heptane, hexane, and anhydrous benzene were purchased from Sigma-Aldrich (St. 



 

Louis, MO USA). Tributyl-n-octylphosphonium (P4448) bromide was purchased from TCI 

(Portland, OR USA). Xylenes was purchased from Mallinckrodt (Paris, KY USA) and ethanol 

was purchased from Koptec (King of Prussia, PA USA). All chemicals were used as received 

without further purification.  

2.2. Instrumentation 

 A Q-Sense QCM-D E4 system and associated QCRs were purchased from Biolin 

Scientific (Stockholm, Sweden). Each QCR is an AT-cut gold-coated quartz crystal with a 

diameter of 14 mm, thickness of 0.3 mm and fundamental frequency of 4.95 MHz +/- 50 kHz. 

Both readout equipment (Model 5878) and mass flow controllers (Model 5850E) were obtained 

from Brooks Instrument, LLC (Hatfield, PA, USA). 

2.3. Synthesis and Characterization of GUMBOS 

GUMBOS were synthesized using a biphasic metathesis reaction [30]. As an example of 

a typical synthetic procedure, [Na]4[CuPcS4] was dissolved in water while [TBA][Br] was 

dissolved in DCM at a 1:4 mole ratio. Prepared solutions were mixed together and left to stir in 

the dark for 48 hours to obtain [TBA]4[CuPcS4]. Following completion of the reaction, the DCM 

layer was rinsed several times with water to remove byproducts (NaBr). DCM was removed by 

rotary evaporation and any residual water was removed via freeze-drying. The reaction 

procedure referenced above was followed to obtain remaining GUMBOS by reacting 

[Na]4[CuPcS4] with [P4444][Br], DDMA, and [P4448][Br] to obtain [P4444]4[CuPcS4], 

[DDMA]4[CuPcS4], and [P4448]4[CuPcS4], respectively. The final products for all GUMBOS were 

blue, tacky solids. Structures of starting materials are shown in Figure S1 (supporting 

information).  

 All compounds were characterized using electrospray ionization mass spectrometry 

(ESI-MS) and Fourier transform infrared spectrometry (FT-IR). ESI-MS was accomplished using 

an Agilent 6210 system in positive and negative ion modes. FT-IR was performed using a 

Bruker Alpha & Tensor 27 FT-IR instrument. Thermal properties were also investigated using 



 

thermogravimetric analysis (TGA), which was completed using a Hi-Res Modulated TGA 2950 

instrument (TA instruments).  

2.4. Preparation and Characterization of Sensing Films 

 Prior to coating , each QCR was cleaned using  RCA standard clean 1 solution (5:1:1 

deionized water, 30% hydrogen peroxide, and ammonium hydroxide).[32] Stock solutions of 

[TBA]4[CuPcS4], [P4444]4[CuPcS4], [DDMA]4[CuPcS4], and [P4448]4[CuPcS4] (1 mg/mL) were 

prepared using DCM in 20 mL borosilicate glass scintillation vials. A fairly uniform deposition of 

GUMBOS onto each QCR was achieved using electrospray. Parameters for electrospray 

remained constant for each thin film: deposition time of 2 minutes, flowrate of 100 µL/min, 

current of 30 µA, voltage of 16.6 kV and a working distance of 7 cm. After coating, films were 

blown with nitrogen and subsequently stored in a desiccator for at least 24 hours. The change in 

frequency between coated and uncoated QCRs in all of the studied GUMBOS was maintained 

at ~ -2000 Hz. Once coated with GUMBOS, QCRs are referred to as sensors. GUMBOS thin 

films were analyzed using scanning electron microscopy (SEM).  

2.5. Data Collection  

 In these studies, analyte vapors were generated using a flow type system. In brief, each 

analyte was exposed at three different instrumentally controlled dilutions of flow rate ratios (0.1, 

0.2, and 0.3 Fs/Ftot) which correspond to 10%, 20%, and 30% of equilibrated headspace in a 20 

mL vial of VOC and argon gas. This flow system consisted of two independent gas flow 

channels, one for sample vapors and the other for carrier gas (ultrapure argon). To begin, a 

stable baseline was established by purging the system with ultrapure argon. After a stable 

baseline was obtained, a vial containing the VOC of interest was bubbled with argon to generate 

a sample of equilibrated headspace. The sample and carrier channels merged to allow dilution 

of the sample flow to yield respective flow rate ratios [33]. Digital mass flow controllers were 

used to control and adjust the total flow rate to 100 sccm.  VOC vapors mixed across 1-meter 



 

length of tubing and then flowed over each sensor. Analyte vapor was removed from sensors by 

purging the system with argon at room temperature until the baseline was recovered. A 

schematic of the system described is shown in Figure 1.  

 
2.6. Data Analysis  

 A single data set was acquired from vapor sensing studies expressed by change in 

frequency (Δf) in units of hertz (Hz). PCA was used to assess the dimensionality of the 

observed sensor data and to obtain a visual representation of  separation among the four 

compound classes with respect to the principal components. DA was used to develop the 

predictive model for distinguishing four  VOC classes, using the four sensor variables directly as 

predictor variables. 

 
3. Results and Discussion 
 
3.1. Characterization of GUMBOS 
 
 Each synthetic compound was confirmed using ESI-MS (Fig. S2 – S6) and FT-IR (Fig. 

S7 – S10). Thermal properties of our GUMBOS were evaluated using TGA and these curves 

are shown in Fig. S11 – S14. All four compounds exhibited good thermal stability. The onset 

temperature of decomposition for [TBA]4[CuPcS4], [P4444]4[CuPcS4], [DDMA]4[CuPcS4], and 

[P4448]4[CuPcS4] is found to be 256°C, 172°C, 175°C, and 364°C, respectively.  

3.2. Characterization of Sensing Films 
 
 GUMBOS sensing films were analyzed using SEM. Here, the entire sensor was 

investigated using SEM. However, the images represent only a portion of the sensor. SEM 

images shown in Fig. S15 – S18 show that most of the QCRs surface are covered with 

GUMBOS.  

3.3. Evaluation of Vapor Sensing Properties 
 

Four QCM sensors with [TBA]4[CuPcS4], [P4444]4[CuPcS4], [DDMA]4[CuPcS4], and 

[P4448]4[CuPcS4], respectively, as recognition elements were inserted into QCM-D chambers to 



 

evaluate vapor sensing properties. All sensors were introduced to a set of ten VOCs that 

included: methanol, ethanol, 1-propanol, dichloromethane, chloroform, xylenes, toluene, 

heptane, hexane, and benzene. Sensors were exposed to three different instrumentally 

controlled sample flow rate ratios (0.1, 0.2, and 0.3 Fs/Ftot) of respective VOCs at 3-minute 

intervals for a total exposure time of ~10 minutes and changes in resonance frequency were 

measured. Three replicate measurements were performed for each VOC. Plots of Δf versus 

flow rate ratios are depicted for each sensor, [TBA]4[CuPcS4], [P4444]4[CuPcS4], 

[DDMA]4[CuPcS4], and [P4448]4[CuPcS4] in Figures 2, 3, 4, and 5, respectively. Each sensor was 

determined to have a stable baseline and reversible sorption, thus rendering them reusable 

(data shown in Fig. S19 – S20). Furthermore, sensor responses were stable and reproducible. 

Due to inherent differences in chemical properties of the tested VOCs, flow rate ratios for 

different VOC vapors are not the same when expressed as concentrations in milligram per liter 

(mgL-1); calculated concentrations are presented in Table S1. Thus, to compare sensitivity of 

each thin film towards a set of analytes, sensitivities were calculated. The sensitivity of 

GUMBOS  has been previously defined as sensor response corresponding to 1 mgL-1 of an 

individual VOC vapor [34]. Figure 6 illustrates the calculated sensitivities while Tables S2 and 

S3 summarize calculated sensitivities and detection limits of [TBA]4[CuPcS4], [P4444]4[CuPcS4], 

[DDMA]4[CuPcS4], and [P4448]4[CuPcS4]. Based on calculated sensitivities and sensor 

responses, these sensors demonstrated cross reactivity, which allowed for MSA fabrication. 

To fabricate a MSA, the complete data set must be analyzed. Notably, each sensor produced 

analyte specific response patterns, but more specifically three of the four sensors exhibited 

class specific responses. For instance, the sensor coated with [TBA]4[CuPcS4] in Figure 2, 

exhibited its highest sensor responses to the chlorohydrocarbons (chloroform and DCM), 

followed by alcohols (methanol, ethanol, and 1-propanol), aromatic hydrocarbons (benzene and 

toluene) and minimal response to aliphatic hydrocarbons (hexane and heptane). Interestingly, 

the response of xylenes was comparable to that of the aliphatic hydrocarbons with minimal 



 

response as compared to aromatic hydrocarbons. Sensor [P4444]4[CuPcS4] exhibited similar 

class specific responses to that of [TBA]4[CuPcS4]; however, an increased response to hexane, 

heptane and xylenes as compared to [TBA]4[CuPcS4] sensor can be seen in Figure 3. Similarity 

in sensitivities and sensor responses for [TBA]4[CuPcS4] and [P4444]4[CuPcS4] could be 

attributed to chemical similarity in the cations heteroatoms and carbon chain length. As shown 

in Figure 4, the [DDMA]4[CuPcS4]  sensor demonstrated an overall lower  response as 

compared to other sensors, with maximum change in frequency being approximately -40 Hz. It 

can also be seen that contrary to the [TBA]4[CuPcS4] and [P4444]4[CuPcS4] sensors, 

[DDMA]4[CuPcS4] sensor had an increased response to both aromatic and aliphatic 

hydrocarbons compared to alcohols. This response pattern and lower sensitivity could be 

attributed to the zwitterionic charge of DDMA; however, more experiments are being explored to 

fully understand the mechanism of this interaction. In comparison to previous sensors, the 

[P4448]4[CuPcS4] sensor exhibited its highest response to the chlorohydrocarbons. However, it 

does not show class specific responses to the remaining VOCs (Fig. 5). Although 

[P4448]4[CuPcS4] does not demonstrate class specific responses for all VOCs; it does have 

increased sensitivities for most analytes as compared to previous sensors. This may be 

attributed to the P4448 cation having a longer carbon chain length. These observations lead us to 

infer that increasing the carbon chain length of GUMBOS will likely result in a more 

homogenous coating on the QCR, which in turn would make the sensor more sensitive. This 

hypothesis is supported by the SEM images (Fig. S15 – S18). 

 

3.4. Evaluation of MSA 

Due to the unique responses of the reported sensors, it was hypothesized that the MSA 

could discriminate between these ten different VOCs by compound classes. To accomplish this, 

the raw Δf data collected from the four sensors were used in developing a predictive model 

using DA. The hypothesis that the covariance matrices associated with the four sensor variables 



 

were the same across all four compound classes was strongly rejected (p-value < 0.0001); thus, 

quadratic DA (QDA) was used, which fits a model that estimates the covariance matrices 

separately for each compound class.  

The first two principal components accounted for 99.44% of the variability in the four 

predictors. The first principal component, which accounted for 97.09% of the variability, 

essentially represents the sum of the four sensor measurements. The second principal 

component, which accounted for an additional 2.35% of the total variation, represents a 

comparison between the [DDMA]4[CuPcS4] and [P4448]4[CuPcS4] sensor measurements. Based 

on a plot of the first two principal component scores, shown in Figure 7, the principal 

components provided a great visual separation between chloro-hydrocarbons and alcohols, as 

well as between chloro-hydrocarbons and the combined classes of aliphatic hydrocarbons and 

aromatic hydrocarbons. However, the first two principal components provided no visual 

separation between the aliphatic hydrocarbons and aromatic hydrocarbons. This suggested that 

there may be difficulty in distinguishing between these two classes of compounds with the 

model produced by  DA. The values for the first two principal components could be used as 

predictor variables in DA for developing the predictive model. However, due to the large number 

of observations within each compound class, this was not necessary and the measurements 

from the four sensors were used directly as predictor variables.  

To assess the predictive accuracy of the resulting QDA, cross-validation classification 

was used. Cross-validation provides a less biased and more accurate assessment of the 

predictive accuracy of a model than the default resubstitution method, which is biased upwards. 

Using cross-validation, the QDA predictive model accurately classified, with exception of only 

one, all of the compounds into their correct compound classes. The one misclassification was 

due to an aliphatic hydrocarbon being classified as an aromatic hydrocarbon. It was previously 

mentioned that aliphatic hydrocarbons and aromatic hydrocarbons completely overlapped in a 



 

plot of the PCA scores (Fig. 7). Therefore, it was an interesting result that only one of these 

compounds was misclassified. Using uniform prior classification probabilities, the overall error 

rate was estimated to be 1.39%, corresponding to an overall accuracy rate of 98.6%. 

For comparison purposes, in a QDA model using just the first principal component as a 

predictor, which again accounted for 97.09% of the variation in the sensor variables, the overall 

cross-validation classification error rate was 19.91%. In that model, two (2) of the alcohols were 

misclassified as hydrocarbons, seven (7) of the 27 aromatic hydrocarbons were misclassified as 

alcohols while another eleven (11) were misclassified as aliphatic hydrocarbons, and one (1) 

aliphatic hydrocarbon was misclassified as an aromatic hydrocarbon. In a QDA using the first 

two principal components as predictors, the overall cross-validation classification error rate 

dropped to 5.09%. In that model, four (4) aromatic hydrocarbons were misclassified as aliphatic 

hydrocarbons, and one (1) aliphatic hydrocarbon was misclassified as an aromatic hydrocarbon. 

Therefore, when all four sensor variables were used as predictors in the QDA, a more accurate 

predictive model was achieved than when the first two principal components were used as 

predictors.  

4. Conclusion 

In this study, four novel GUMBOS using copper (II) phthalocyanine tetrasulfonate were 

synthesized, and their gas-sensing properties were investigated using a QCM based MSA. 

These GUMBOS showed good thermal stability, sensing characteristics, and cross-reactive 

responses for use in a MSA. By employing this phthalocyanine based GUMBOS multisensor 

array, ten different analytes were able to be discriminated into four classes with 98.6% 

accuracy. It should be noted that this high accuracy is achieved by using the original data set as 

predictor variables in QDA, as compared to the first two principal components, which is 

traditionally used. While the exact interaction of VOC vapors with GUMBOS sensing films is still 

being investigated, this work has given considerable insight into their use as VOC sensors using 



 

a MSA. When one considers the high accuracy in discriminating classes of VOCs, this sensor 

array shows great potential for use in applications such as food quality control  [3, 4].   
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Figure 1. Schematic of QCM flow system. 



 

 

 

Figure 2. Sensor response when coated with [TBA]4[CuPcS4] and exposed to ten VOCs at 
three saturated vapor pressures. Error bars represent standard deviation for three replicate 
measurements.   

 

 

Figure 3. Sensor response when coated with [P4444]4[CuPcS4] and exposed to ten VOCs at 
three saturated vapor pressures. Error bars represent standard deviation for three replicate 
measurements.   

 

 

Figure 4. Sensor response when coated with [DDMA]4[CuPcS4] and exposed to ten VOCs at 
three saturated vapor pressures. Error bars represent standard deviation for three replicate 
measurements.   

 



 

 

Figure 5. Sensor response when coated with [P4448]4[CuPcS4] and exposed to ten VOCs at 
three saturated vapor pressures. Error bars represent standard deviation for three replicate 
measurements. 

 
 

 

 

Figure 6. Graphical representation of calculated sensitivities of [TBA]4[CuPcS4], 
[P4444]4[CuPcS4], [DDMA]4[CuPcS4], and [P4448]4[CuPcS4] sensors. 
 

 



 

 

Figure 7. Principal component plot for discrimination of ten VOCs based on classes with 
respect to a four sensor MSA. Plot considers 90 total measurements consisting of three 
replicate measurements at three different flow ratios for each VOC (9 measurements per 
sample). 
 

 

 

Highlights 

 Four novel GUMBOS using copper (II) phthalocyanine tetrasulfonate were synthesized. 

 GUMBOS showed good thermal stability and cross-reactive responses. 

 Class specificity of ten analytes was achieved with 98.6% accuracy. 

 High accuracy was achieved using original data set as predictor variables in QDA. 
 




