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A B S T R A C T

The threats of substandard and falsified (SF) antimicrobials, posed to public health, include serious adverse drug
effects, treatment failures and even development of antimicrobial resistance. Next to these issues, it has no doubt
that efficient methods for on-site screening are required to avoid that SF antimicrobials reach the patient or even
infiltrate the legal supply chain. This study aims to develop a fast on-site screening method for SF antimicrobials
using spectroscopic techniques (mid infrared, benchtop near infrared, portable near infrared and Raman spec-
troscopy) combined with chemometrics. 58 real-life illegal antimicrobials (claiming 18 different antimicrobials
and one beta-lactamase inhibitor) confiscated by the Belgian Federal Agency for Medicines and Health Products
(FAMHP) and 14 genuine antimicrobials were analyzed and used to build and validate models.
Two types of models were developed and validated using supervised chemometric tools. One was used for the

identification of the active pharmaceutical ingredients (APIs) by applying partial least squares-discriminant
analysis (PLS-DA) and another one was used for the detection of non-compliant (overdosed or underdosed)
samples by applying PLS-DA, k-nearest neighbors (k-NN) and soft independent modelling by class analogy
(SIMCA). The best model capable of identifying amoxicillin and clavulanic acid (co-amoxiclav), azithromycin,
co-trimoxazole and amoxicillin was based on the mid-infrared spectra with a correct classification rate (ccr) of
100%. The optimal model capable of detecting non-compliant samples within the combined group of amoxicillin
and co-amoxiclav via SIMCA showed a ccr for the test set of 88% (7/8) using mid infrared or benchtop near
infrared spectroscopy. The best model for detecting non-compliant samples within the group of amoxicillin via
SIMCA was obtained using mid-infrared or Raman spectra, resulting in a ccr of 80% for the test set (4/5) and a
ccr for calibration of 100%. For the group of co-amoxiclav, the optimal models showed a ccr of 100% for the
detection of non-compliant samples by applying mid-infrared, benchtop near infrared or portable near infrared
spectroscopy. Taken together, the obtained models, hyphenating spectroscopic techniques and chemometrics,
enable to easily identify suspected SF antimicrobials and to differentiate non-compliant samples from compliant
ones.

1. Introduction

Since decades, pharmaceutical falsification is gradually attracting
more and more attention worldwide. In order to simplify and generalize
the term used for falsified medicines, the World Health Organization
(WHO) adopted the term “substandard and falsified (SF) medical

products’’ to replace the term “substandard/spurious/falsely-labeled/
falsified/counterfeit (SSFFC)” [1]. The definition of SF medical pro-
ducts includes three categories: substandard, unregistered/unlicensed
and falsified medicines.

It has no doubt that falsification of antimicrobials spreads drug re-
sistance, endangers public health and leads to economic loss [2,3]. In
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2017, industry estimates have shown that illegal and falsified medical
products made profits ranging from USD 163 to USD 217 billion per
year [4]. Such lucrative business boosted the illegal drug trade. Indeed,
the incidents of pharmaceutical crime increased by 102% over the past
five years according to the Pharmaceutical Security Institute (PSI) [5].
Moreover, it has been reported that four million SF drug tablets were
confiscated in Germany in 2015 [4]. To curtail the pharmaceutical
crime and eliminate the detrimental effects posed by SF medical pro-
ducts, efforts in all aspects were made. In this context, regulations were
made and implemented. The European Union executed the Falsified
Medicines Directive (FMD) in 2019. According to the FMD, obligatory
safety features, e.g. tamper-evident package, are prescribed for drug
products and also strict rules on wholesale distributors and the import
of drug substances are put in place [6].

Among these SF medical products, antimicrobials are one of the
most commonly reported SF drugs [1]. According to the global sur-
veillance and monitoring system (GSMS) of WHO, more than 40% of
the reported cases were antimicrobials and of the reported antibiotics,
around 90% were listed by the WHO as critically important anti-
microbials [7]. These case reports of SF medical products came from all
WHO regions: 42% reports were from Africa, 21% from America, 21%
from Europe, 8% from the western pacific region, 6% from the Eastern
Mediterranean and 2% from South-East Asia [7]. The greater the efforts
to look for SF medical products, like in Western Europe and North
America, the more SF samples are found. In the meantime, the dangers
of SF antimicrobials have been revealed. It has been reported that in
Uganda the treatment failure of bacterial meningitis was due to se-
verely underdosed SF ceftriaxone [8]. WHO released medical product
alert N° 9/2019, confirming falsified Augmentin (amoxicillin trihy-
drate-potassium clavulanate) found in Uganda and Kenya. These falsi-
fied versions of Augmentin contained no active pharmaceutical in-
gredients (APIs) [9]. The two major quality issues regarding SF
antimicrobials were wrong APIs and insufficient dosage [7], which
caused detrimental effects in the past [8]. Therefore, these two primary
quality criteria for SF antimicrobials, i.e. correct API and dosage, are
required for on-site inspection. Additionally, Belgium is a hub for
medicines coming from Asia and going to Africa, due to its central
position and the specialization of the Belgian airliners for the African
continent. In this context, these transit medicines are at high risk of
being falsified. Thus, efficient on-site methods capable of high-
throughput screening of transit medicines are paramount for Belgian
inspectors.

Many methods have been published for the off-site evaluation of SF
antimicrobials, i.e. LC-UV and LC-MS [10–12]. It has to be admitted
that off-site evaluation can provide a holistic characterization of SF
antimicrobials concerning APIs, impurities, dissolution profiles and
microbiological quality. However, the on-site inspection, e.g. at cus-
toms or hospitals, of SF antimicrobials is also important since the in-
field monitoring of suspected illegal antimicrobials is the first line of
defense. On-site inspection should be characterized with little or no
sample preparation, fast measurements and easy manipulation. Spec-
troscopic techniques embrace these advantages and are commonly ap-
plied in the detection of falsified or adulterated medical products [13].
However, limited information can be extracted from the raw data ob-
tained by spectroscopic techniques. In this context, chemometric
methods serve as a tool to interpret and to capture more information
from the spectra [14]. Studies applying chemometric-assisted spectro-
scopic methods for (SF) antimicrobials are rare. Lê et al. used near in-
frared (NIR) spectroscopy combined with chemometrics to qualitatively
and quantitatively analyze amoxicillin and penicillin [15]. Rodionova
et al. performed a feasibility study on antimicrobial drugs using NIR
hyperspectral imaging together with chemometric analysis to identify
SF antimicrobial drugs [16]. Unfortunately, detailed information was
not disclosed in the article. Other studies on antimicrobials using che-
mometrics reside in the domain of food or wastewater analysis [17,18].
A systematic and comprehensive method using chemometric-assisted

spectroscopic techniques for rapid in-field detection of SF anti-
microbials in terms of APIs identification and dosage compliance was
not available. The current study aims to develop such an on-site
screening method enabling rapid evaluation of 18 different anti-
microbials and one beta-lactamase inhibitor that are frequently en-
countered by Belgian controlling agencies.

58 suspected illegal antimicrobial samples confiscated by the
Belgian Federal Agency for Medicines and Health Products (FAMHP)
and 14 genuine samples were used in this study. All of these samples
were analyzed using Fourier transform (FT)-mid infrared (MIR), FT-
NIR-benchtop, NIR-handheld and Raman spectroscopy. Initially, it was
examined whether aforementioned spectroscopic techniques were
capable to identify the APIs present in the samples by performing un-
supervised analysis. Based on the promising results obtained from un-
supervised analysis, it was decided to perform supervised analysis.
Partial least squares-discriminant analysis (PLS-DA) as a supervised tool
was employed here in order to build a classification model for APIs.

Besides the right API, the correct dosage is also essential.
Subsequently, models were built enabling the detection of non-com-
pliant (underdosed or overdosed) samples. Three chemometric model-
ling techniques were tested for this purpose, i.e. PLS-DA, k-nearest
neighbors (k-NN) and soft independent modelling by class analogy
(SIMCA).

2. Methods and materials

2.1. Samples and standards

58 suspected illegal samples were collected by the inspectors of the
FAMHP and were composed of 18 different antimicrobials and one
beta-lactamase inhibitor, i.e. amoxicillin, ampicillin, azithromycin,
benzathine penicillin G, ceftriaxone, cephalexin, ciprofloxacin, dox-
ycycline, erythromycin, griseofulvin, ofloxacin, penicillin V, roxi-
thromycin, tetracycline (hydrochloride), nitrofurantoin, norfloxacin,
sulfamethoxazole, trimethoprim and clavulanic acid.

14 Genuine drug products were bought from a Belgian pharmacy,
consisting of Amoxiclav (amoxicillin/clavulanic acid, 500/125 mg or
875/125 mg), amoxicillin (500 mg) and azithromycin (250 mg or
500 mg) from Sandoz (Vilvoorde, Belgium), Flemoxin Solutab (amox-
icillin, 500 mg) from Astellas (Brussels, Belgium), Augmentin (amox-
icillin/clavulanic acid, 500/125 mg) from GlaxoSmithKline (Wavre,
Belgium), Bactrim forte (trimethoprim/sulfamethoxazole, 800/160 mg)
from Roche (Brussels, Belgium) and Eusaprim forte (trimethoprim/
sulfamethoxazole, 800/160 mg) from Aspen (Dublin, Ireland).
Moreover, genuine drug products of Amoclane (amoxicillin/clavulanic
acid, 875/125 mg), amoxicillin syrup (250 mg/5 mL), azithromycin
(250 mg or 500 mg) and roxithromycin (250 mg) were from
Eurogenerics (Brussels, Belgium). It has to be noted that the genuine
drugs of amoxicillin syrup and roxithromycin were received in a later
phase. As a result, these two genuine drugs were only analyzed by
benchtop NIR and Raman spectroscopy. Overview of samples including
illegal and genuine ones are described in Supplemental Table 1.

2.2. Sample preparation

For recording the spectra, all tablets were powdered and homo-
genized prior to measurement. The powders of capsules, injectables and
syrups were measured directly.

2.3. Data acquisition

2.3.1. MIR spectroscopy
A Nicolet iS 10 FT-IR (ThermoFisher Scientific, Waltham, USA)

supplied with a Smart iTR accessory and a deuterated triglycine sulfate
(DTGS) detector was employed for the MIR spectra acquisition. The
Smart iTR accessory was used with a single bounce diamond crystal and
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was calibrated every week via a polystyrene film.
To record the spectrum, a small quantity of sample powder was

placed directly on the diamond crystal. In order to ensure uniformity of
the spectra, proper pressure was applied to the sample in order to ob-
tain a homogenous surface. This pressure is part of the basic specifi-
cations of the instrument. After each measurement, the crystal was
cleaned with methanol and dried in ambient air. MIR spectra were
recorded from 4000 to 650 cm− 1. The instrument resolution was set at
4 cm−1 and comprised 32 co-added scans. Prior to each sample testing,
a blank (air: no sample) was measured to verify the crystal for con-
tamination and carry over according to the absorbance limits pre-
scribed by the European Directorate for the Quality of Medicines
(EDQM) [19]. A background spectrum was recorded hourly against air
using the same instrumental conditions as for the samples. Spectral
visualization and data export were performed using OMNIC software
version 8.3 (Thermo Scientific, Madison, USA).

2.3.2. Benchtop and portable NIR spectroscopy
The sample powder was brought into a glass vial and spectra were

measured using a benchtop and a portable NIR spectrometer respec-
tively. Spectra for benchtop NIR were collected in the region of
10000–4000 cm−1 with a resolution of 16 cm−1 and an average scan of
16 using a benchtop FT-NIR Antaris MX (Thermo Fisher Scientific,
Erembodegem, Belgium). A portable NIR microPHAZIR RX spectro-
meter (ThermoFisher Scientific, Boston, USA) with a resolution of
12 nm and co-added scans of 5 was employed to record spectra in the
wavelength region from 1600 to 2400 nm.

2.3.3. Raman spectroscopy
Sample powder was placed in a specific metal holder for the mea-

surements using a Raman Rxn2 spectrometer (Kaiser Optical Systems,
Ann Arbor, MI, USA) equipped with a charge coupled device (CCD)
detector. A fiber-optic cable was used to connect the Raman PhAT
probe with the spectrometer. The laser wavelength was 785 nm and the
resolution was 5 cm−1. Raman spectra were recorded with an exposure
time of 15 s in the range from 250 to 1890 cm− 1. Spectral data ma-
nipulation was performed using iC Raman 4.1 collection software
(Kaiser OS, MI, USA).

2.4. Chemometric approaches

2.4.1. Data pretreatment
The complete spectra obtained from benchtop NIR, portable NIR

and Raman were used as input for the chemometric methods. MIR
spectra were tailored to the fingerprint regions from 2000 to 650 cm−1

prior to chemometric analysis. The MIR spectral region of
4000–2000 cm−1 was deleted due to the atypical characteristics of the
spectra.

The raw spectral data need to be pre-processed in order to eliminate
the influence of noise, fluctuations of the baseline, variations in the
detector and so on. Five different approaches were selected for data
pretreatment. Standard Normal Variate (SNV) was used to remove
variations generated from the measurement itself, e.g. scattering ef-
fects. Moreover, the methods of the first derivative and the second
derivative were applied since they correct for drift and baseline errors
and magnify small differences between spectra of different samples
[20]. In this context, the first or second derivative was calculated using
the Savitzky-Golay method [21] with a second order polynomial and a
window size of 17. Additionally, SNV followed by the first derivative or
the second derivative were used as two supplementary approaches for
data pretreatment. Generally, SNV and the second derivative were
performed separately as pretreatment methods for unsupervised ana-
lysis and supervised analysis. The first derivative and also SNV followed
by the first derivative or the second derivative were only applied for
modelling dosage compliance (see Section 3.2.2).

2.4.2. Unsupervised analysis
Unsupervised analysis was performed to provide a general idea of

data distribution and to detect clusters of samples that could be linked
to the API in the samples. This unsupervised analysis can be seen as a
data exploration step in which differences between samples are sear-
ched for, giving a rational basis to proceed to supervised modelling. In
this study, Principal Component Analysis (PCA) and Hierarchical
Clustering Analysis (HCA) were selected for this purpose.

2.4.2.1. PCA. PCA is a projection technique simplifying the
interpretation of multivariate data by projecting high dimensional
data onto a lower number of dimensions, defined by new latent
variables called principal components (PCs). The latent variables or
PCs are defined as linear combinations of the original variables, in
which the loadings indicate the contribution of each variable to a given
PC. The first PC describes the largest variation in the data and the
second PC the largest residual variation around PC 1. PC 3 explains the
highest remaining variation around the plane PC 1–PC 2. By definition
all PCs are orthogonal to each other. The projections of the objects on a
PC are called the scores. A plot of the scores in two or three dimensions
allows to explore the (dis)similarities among the objects and is called a
score plot. The loading plot allows to identify those original/manifest
variables responsible for the difference among samples or clusters of
samples [20].

2.4.2.2. HCA. HCA is used for clustering the objects according to their
(dis)similarity and is therefore an alternative to PCA for interpreting the
distribution and structure of a data set. Data clustering is depicted by a
dendrogram, which is hierarchical since large clusters are split into
smaller ones until each cluster only comprise one or a predefined
number of objects. Different distance metrics and clustering algorithms
were tested in this study to compare clustering performances.

2.4.3. Supervised analysis
Contrary to the unsupervised method, supervised analysis in-

corporates preliminary obtained information from the samples, e.g.
drug classes of samples. In this way, supervised methods generate
models to classify samples or predict information for a new object.
Many techniques are developed for supervised data modelling. In this
study, PLS-DA, k-NN and SIMCA were employed for modelling, among
which PLS-DA was performed for all supervised analysis (APIs identi-
fication and dosage compliance) while k-NN and SIMCA were only
applied for modelling the compliance of the samples (see Section 3.2.2).

2.4.3.1. Selection of training and test set. For model validation, an
external test set needs to be selected. Two selection methods were
applied, i.e. Kennard & Stone and Duplex [22]. These two algorithms
assure that the selected test set is representative for the complete
original data set, and thus is uniformly distributed within the whole
data space [23]. In general 20% of the samples were assigned to the test
set, used for external validation of the obtained models, and the
remaining samples were allocated to the training set, used for the
construction of the models.

According to the Kennard & Stone algorithm, the sample located
farthest from or closest to the data mean is selected first for the test set,
subsequently the second sample, situated farthest from the first one, is
selected. The third selected sample is the one, most distant from the
previous two selected samples. This procedure continues until the de-
sired number of samples is obtained for the test set. The un-assigned
samples are used for the training set [24].

The Duplex algorithm is performed based on Euclidean distances.
All samples are selected in pairs. Initially, the two samples with the
highest Euclidean distance between each other are selected and as-
signed to a first set. Subsequently, another two samples with the highest
Euclidean distance are allocated to a second set which is the test set.
This continues in an iterative way until a predefined number of samples
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is obtained for the test set. The first set and the remaining, not selected
samples, compose the training set [23].

2.4.3.2. PLS-DA. PLS is a supervised projection technique. Similar to
PCA, the PLS latent variables, also called PLS factors, are obtained by
the linear combination of manifest variables. However, the criterion of
constructing latent variables in PLS requires maximal covariance with
the targeted response variable(s). PLS-DA is a variant of PLS, used when
the response variables are categorical [20]. In this study, PLS-DA was
used to build classification models in terms of API identification and
detection of non-compliant samples, respectively. A 10-fold cross
validation procedure was applied here to select the optimal number
of PLS factors for the different models.

2.4.3.3. k-NN. k-NN is a simple supervised modelling tool using
nearest neighbors to classify objects. This algorithm starts with
calculating the Euclidean distances (or correlation coefficients)
between the unknown objects and the objects of the training set.
Then k objects with the lowest Euclidean distance (or the highest
correlation coefficients) are selected. According to the majority rule,
the unknown object is attributed to the group to which the majority of
the k nearest neighboring objects belong [20]. Since k-NN is performing
best to solve binary problems, it was only applied to distinguish
between compliant and non-compliant samples. According to the
characteristics of known samples (training set), samples were divided
into two classes, i.e. compliant samples and non-compliant samples. k-
NN was applied on these known samples to build classification models
allowing unknown samples to be assigned to one of the classes, based
on the spectroscopic data. In this case, a 10-fold cross validation
procedure was performed to select the optimal k value to obtain the
model with highest correct classification rate (ccr) for cross-validation
(see Section 3.2).

2.4.3.4. SIMCA. SIMCA is used as a supervised tool for the
classification of data. Unlike previously introduced chemometric
tools, SIMCA gives an emphasis on the similarity inside the class
rather than the discrimination between the classes. This is also called
disjoint class modelling. In this study, SIMCA uses samples with known
features to construct classification models with two classes (compliant
or non-compliant), which enables to assign new samples with unknown
features to one of the classes. By performing SIMCA, each class is
modelled separately using PCA. Once the number of PCs for a specific
class is chosen, a space around the class is defined by two critical
values, defining the boundaries of samples residing in that class. The
two critical values are the Euclidian distance towards the SIMCA model
and the Mahalanobis distance determined in the space of scores
following the Hotelling T2-distribution.

To determine the location of a new sample, the scores and loadings
of the created PCA model are calculated. The new sample is classified
into a certain class if it is located within the defined space around the
training set of a particular class. This classification algorithm is re-
peated for each of the classes in the model according to the obtained
PCA model for each class. Confidence limits are usually set at 95% [20].
The algorithm of SIMCA uses cross-validation for the selection of the
optimal number of PCs to be included [20]. Unfortunately, cross vali-
dation results for the whole model cannot be retrieved. Therefore, only
calibration errors and errors for the external test set are reported.

2.5. Software

Data calculation and modelling were performed using Matlab
R2016b (The Mathworks, Natwick, MA, USA). The algorithms of PCA,
HCA, Kennard & Stone, Duplex, Savitzky and Golay, PLS-DA and k-NN
were part of the ChemoAC toolbox (Freeware, ChemoAC Consortium,
Brussels, version 4.0). The SIMCA toolbox was downloaded from the
Matlab Central [25].

3. Results

Spectra were recorded for all suspected illegal and genuine samples
using MIR, benchtop NIR, portable NIR and Raman spectroscopy. The
obtained spectral data was subjected to chemometric analysis.

3.1. Unsupervised analysis

In a first step, it was examined whether MIR, NIR and Raman tech-
niques were capable to identify the different APIs in the samples.
Unsupervised analysis was performed as exploratory analysis. PCA and
HCA were selected as analysis tools and to assist in data visualization.
Three dimensional score plots (PC1-PC2-PC3) were computed for all
sample sets. Concerning HCA, single and Ward's methods were applied
with five different distance metrics, i.e. the Euclidean distance, the
standardized Euclidean distance, the city block distance, the Mahalanobis
distance and the Minkowski distance. All dendrograms computed with
different combinations of methods and distance metrics were compared
considering the clusters based on the different APIs. In this section, all
spectra were preprocessed by SNV and the second derivative separately.

3.1.1. MIR spectroscopy
MIR spectra were recorded for all suspected and genuine samples

and used as input for PCA analysis. Three dimensional score plots (PC1-
PC2-PC3) obtained with the different data pretreatment procedures
were compared and the best score plot, obtained with SNV as pre-
processing is shown in Fig. 1a. Clusters of azithromycin (contaminated
with one erythromycin sample) and co-trimoxazole can clearly be dis-
tinguished, while co-amoxiclav and amoxicillin samples were clustered
together. Similarly, it can also be observed in the dendrogram obtained
with HCA (Ward's method with the Euclidean distance as similarity
measure) on MIR data preprocessed via SNV that amoxicillin and co-
amoxiclav were mixed (Fig. 1b). Additionally, it has been observed in
Fig. 1b that samples of tetracycline, doxycycline and ampicillin were
clustered, although the sample size was small within the respective
groups. The rest of the samples (not marked in Fig. 1) were sole in their
respective class of APIs.

3.1.2. Benchtop NIR spectroscopy
For the spectra obtained with the benchtop NIR, the best score plot

for PCA was computed on spectra pretreated with the second derivative
as shown in Fig. 2a. The groups of co-trimoxazole and tetracycline were
clustered while the rest of samples were not well separated. However,
better clustering was observed in the dendrogram obtained with Single-
Euclidean distance and SNV as pretreatment (see Fig. 2b). An additional
clustering of the azithromycin class was obtained.

3.1.3. Portable NIR spectroscopy
The best score plot for PCA was obtained on spectra preprocessed by

SNV (See Fig. 3a). The best dendrogram was computed with the single
algorithm and the Minkowski distance when data were pretreated with
SNV (See Fig. 3b). Similar results as benchtop NIR were obtained:
amoxicillin and co-amoxiclav were not separated and even mixed with
ampicillin.

3.1.4. Raman spectroscopy
When co-amoxiclav, tetracycline and nitrofurantoin were screened

by Raman spectroscopy, signals were saturated. For this reason, these
three drugs were excluded from the Raman data set. The optimal PCA
score plot (data preprocessed by SNV) shows no clear differentiation in
APIs except for the group of co-trimoxazole (See Fig. 4a). The optimal
dendrogram computed using HCA (single-Euclidean distance) on data
pretreated with the second derivative is illustrated in Fig. 4b. It displays
better clustering compared to the PCA plot and it is able to differentiate
macrolide antibiotics (Fig. 4b), i.e. azithromycin, erythromycin and
roxithromycin.
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3.1.5. Discussion
Towards a comprehensive consideration among the aforementioned

four spectroscopic techniques, MIR generated the best results. In gen-
eral, co-trimoxazole and azithromycin samples could be clustered re-
spectively in an unsupervised way. Amoxicillin and co-amoxiclav could
not be separated, which is probably due to the low amount of clavulanic
acid compared to the dose of amoxicillin in the sample.

3.2. Supervised analysis

Since promising results were obtained with unsupervised

techniques, it was decided to continue with supervised analysis. In this
context, data characteristics on APIs and dosage compliance were
modelled. In this section, PLS-DA was employed for API identification
and dosage compliance, while k-NN and SIMCA were only performed
for dosage compliance.

3.2.1. Identification of APIs
For on-site inspection of illegal antimicrobials, the first task is the

identification of APIs. PLS-DA was applied as a supervised technique on
the different spectral data sets, either preprocessed by SNV or the
second derivative in order to enhance the discrimination of the samples

Fig. 1. (a) PCA plot obtained with the MIR spectra after SNV pretreatment. (b) Dendrogram constructed via hierarchical clustering (Ward-Euclidean distance) on MIR
spectra pretreated with SNV. Colored rectangles indicate different drug groups which contain not less than two samples. The rest of the numbers outside the colored
rectangles indicate individual samples.

Fig. 2. (a) PCA plot obtained with the benchtop NIR spectra after pretreatment with the second derivative. (b) Dendrogram constructed via hierarchical clustering
(Single-Euclidean distance) on benchtop NIR spectra pretreated with SNV. Colored rectangles indicate different drug groups which contain not less than two samples.
The rest of numbers outside the colored rectangles indicate individual samples.
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in their respective classes of APIs (see Section 2.4.1). The samples were
analyzed using chromatography according to a method developed
previously by our group [12]. The screening results indicated that all
samples contained the label claimed APIs, which was taken into ac-
count as a response for chemometric analysis (Supplemental Table 1).
Seen the raw data as described in Supplemental Table 1, it was decided
to divide the samples into five groups including co-trimoxazole,
amoxicillin, azithromycin, co-amoxiclav and other for the modeling of
APIs identification. The reason of creating a group “other” is that
sample size is less than two towards each API.

3.2.1.1. MIR spectroscopy. In total five classes of different APIs were
included in the model, i.e. co-trimoxazole, amoxicillin, azithromycin,
co-amoxiclav and all the others. 70 samples were split into a training set
(56 samples) and a test set (14 samples) by applying Duplex. The
external test set of 14 samples covered all five classes. As shown in
Table 1, the optimal PLS-DA model on MIR data was obtained by using
8 PLS factors (the spectra were pretreated with SNV) showing a correct
classification rate (ccr) for cross validation of 91%, in which 5 out of 56
samples were misclassified. From these five misclassified samples, three
of them were co-amoxiclav, misclassified as amoxicillin and another
two samples, belonging to the “other” group, were wrongly assigned to

Fig. 3. (a) PCA plot obtained with the portable NIR spectra after pretreatment with SNV. (b) Dendrogram constructed via hierarchical clustering (Single-Minkowski
distance) on portable NIR spectra pretreated with SNV. Colored rectangles indicate different drug groups which contain not less than two samples. The rest of
numbers outside the colored rectangles indicate individual samples.

Fig. 4. (a) PCA plot obtained with the benchtop Raman spectra after pretreatment with SNV. (b) Dendrogram constructed via hierarchical clustering (Single-
Euclidean distance) on Raman spectra pretreated with the second derivative. Colored rectangles indicate different drug groups which contain not less than two
samples. The rest of numbers outside the colored rectangles indicate individual samples.

Y. Tie, et al. Talanta 217 (2020) 121026

6



the group of amoxicillin or azithromycin. Meanwhile, the test set
showed a ccr of external validation of 93% or 13 of 14 correctly
classified. The misclassified sample was within the “other” group, but
was assigned to the azithromycin group. Since the “other” group
contained different APIs, such as griseofulvin, nitrofurantoin,
cephalexin, ampicillin and so on, it may induce noise into to the
model. Therefore, it was decided to limit the classes to four, including
co-trimoxazole, amoxicillin, azithromycin and co-amoxiclav. In this
case, the PLS-DA model on spectra pretreated by either SNV or the
second derivative, showed a 100% ccr for cross validation and external
validation (see Table 1), indicating that the high variation in the
“other” class introduced errors in the model.

3.2.1.2. Benchtop and portable NIR spectroscopy. For the analysis of
benchtop NIR spectra, the Duplex method was used to select 14 samples
for the test set. The remaining 58 samples composed the training set.
The optimal PLS-DA model for five classes (24 PLS factors) was built on
data pretreated with SNV, showing a cross validation ccr of 93% (54/
58) and a ccr of external validation of 86% (12/14) (See Table 1).
During cross validation, four misclassified samples were all from the
“other” class. Two of them were wrongly classified as co-amoxiclav
samples, and another two samples were incorrectly assigned to the
group azithromycin and co-trimoxazole. Similarly, two misclassified
samples from the test set were also from the “other” class, but were
wrongly classified as azithromycin. If the class “other” was omitted,
then the PLS-DA model with 8 PLS factors showed a ccr of cross
validation of 98% (42/43) and a ccr of external validation of 100%,
which was built on data pretreated with SNV. The one misclassified
sample of co-amoxiclav during cross validation was wrongly assigned to
the group of amoxicillin, which could be attributed to the fact that this
SF co-amoxiclav sample contained only 14.2% of the claimed dose of
clavulanic acid [12].

Concerning the portable NIR, the best PLS-DA model was obtained
on data pretreated with the second derivative and sorted by the
Kennard & Stone method. The model showed a cross validation ccr of
89% (50/56) and an external validation ccr of 79% (11/14). Among the
six misclassified samples during cross validation, three samples from
the class “other” were assigned to the group azithromycin and co-
amoxiclav, two samples from the class co-amoxiclav were wrongly al-
located to the group amoxicillin and one sample of amoxicillin was
mistakenly assigned to the group co-amoxiclav. For misclassifications of
external validation, two samples were from the class “other”, but were
incorrectly assigned to the group co-trimoxazole and co-amoxiclav and
one sample was amoxicillin that was wrongly assigned to the class
“other”. Additionally, another model obtained on data preprocessed by
SNV and sorted by Kennard & Stone showed a cross validation ccr of
95% (53/56) and an external validation ccr of 71% (10/14), which
generated a higher ccr value of cross validation compared with the
previously described model. However, seen the difference in values
between the Root Mean Squared Error Cross Validation (RMSECV) and

the Root-Mean-Square Error of Prediction (RMSEP), this model has
higher probability of showing overfitting. When the number of classes
was limited to four, the optimal model was built on the data pretreated
with the second derivative, and the selection method of the Kennard &
Stone algorithm was used to select 14 samples for the test set and 43
samples for the training set. In this case, the model performance was
improved with a ccr of cross validation of 98% (42/43) and a ccr of
external validation of 100%. This one misclassification during cross
validation was the same one as encountered with benchtop NIR, which
was co-amoxiclav with a clavulanic acid content of 14.2% of the
claimed dose and which was wrongly classified as amoxicillin.

Generally, compared with the models obtained on MIR spectra, NIR
spectra generated less performant models.

3.2.1.3. Raman spectroscopy. The data set of Raman spectroscopy was
composed of 56 samples that could be classified in four classes, i.e. co-
trimoxazole, amoxicillin, azithromycin and other. Duplex was used to
select 12 samples for the test set and the rest (the remaining 44
samples) composed the training set. As shown in Table 1, the optimal
PLS-DA model for the four classes was obtained with 7 PLS factors and
using SNV as preprocessing technique. This model resulted in a ccr of
external validation of 100% and a ccr of cross validation of 86% (38/
44). Six misclassifications were encountered during cross validation,
five of which were within the class “other”, but were wrongly assigned
to the class azithromycin. Among these five samples, two of them were
roxithromycin, one was erythromycin, one was ofloxacin and one was
doxycycline. Another misclassified sample was amoxicillin that was
wrongly classified as azithromycin. Similar as before, if the class
“other” was deleted, the model was refined to generate both ccr
values of cross validation and external validation of 100%.

3.2.2. Detection of non-compliant samples
Besides the significance of identifying APIs, the dosage of APIs is of

utmost importance as well in terms of drug efficacy as for treatment
efficacy. In this step, we further explored whether the methods were
able to detect non-compliant (underdosed or overdosed) samples. These
models aim to check whether suspected illegal samples comply with the
API dosage or not. An API dosage out of the limit of 95%–105% is
considered non-compliant. Due to the limitation of samples, only
amoxicillin and co-amoxiclav samples were included in this part of the
study. These samples were analyzed using chromatography for assay
[12]. Most suspected illegal samples were underdosed, except one
sample that was overdosed for amoxicillin. Their corresponding clas-
sifications (compliant or non-compliant) based on the contents of
samples towards different models (Supplemental Table 2) were used as
the response for building chemometric models. Five different methods
of data pretreatment as illustrated in Section 2.4.1 were performed on
all data sets of different spectra. The spectroscopic data of amoxicillin
and co-amoxiclav were modelled using PLS-DA, SIMCA and k-NN re-
spectively, to verify if good discrimination/classification models could

Table 1
Overview of PLS-DA modelling results for API identification expressed in correct classification rate (ccr). SNV: standard normal variate, dx2: second derivative.

Dataset pretreatment MIR Benchtop NIR Portable NIR Benchtop Raman

SNV dx2 SNV dx2 SNV dx2 SNV dx2

5 classes 4 classes
No. of PLS-factors 8 7 24 13 26 26 7 9
Cross validation 91% (51/56) 84% (47/56) 93% (54/58) 90% (52/58) 95% (53/56) 89% (50/56) 86% (38/44) 93% (41/44)
External validation 93% (13/14) 79% (11/14) 86% (12/14) 79% (11/14) 71% (10/14) 79% (11/14) 100% 92% (11/12)

4 classesa 3 classesa

No. of PLS-factors 8 8 8 5 8 19 9 4
Cross validation 100% 100% 98% (42/43) 98% (42/43) 95% (41/43) 98% (42/43) 94% (31/33) 100%
External validation 100% 100% 100% 91% (10/11) 100% 100% 100% 100%

a Class “other” excluded.
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be obtained for compliant and non-compliant samples. It has to be
noted that the SIMCA algorithm uses cross-validation to select the op-
timal number of PCs, though the results of cross validation for the
whole model are not able to be retrieved. Thus, only calibration errors
and the errors for the external test set were reported here for SIMCA.

In a first modelling experiment, amoxicillin and co-amoxiclav

samples were grouped to build up the model. Afterwards, the modelling
was also performed on the amoxicillin samples and co-amoxiclav
samples separately.

3.2.2.1. Amoxicillin and co-amoxiclav. Three different datasets
including amoxicillin and co-amoxiclav samples were generated using
MIR, benchtop NIR and portable NIR techniques, respectively. The
quality compliance of the co-amoxiclav samples was based on the
dosage of amoxicillin. The optimal model for the detection of non-
compliant samples within the combined group was obtained with
SIMCA using MIR or benchtop NIR (see Table 2). For the model
obtained on MIR data, the Kennard & Stone algorithm was used to
select training and test set. As a result, eight samples evenly covering
the two classes (compliance or non-compliance) were assigned to the
test set and the remaining 30 samples composed the training set. For
MIR, SIMCA (PCs 13-7) provided the optimal model, which was built on
the data pretreated with SNV, followed by the first derivative, showing
a ccr of 93% or 2 samples out of 30 misclassified during calibration of
the training set as shown in Table 2. These two samples contained
94.6% and 94.0% of the labeled amount of API respectively, which
were located at the borderline of the criterion (95%) describing non-
compliant samples. It may be the reason that the model classified these
two samples as compliant. Moreover, the external validation showed
that 1 out of 8 samples was wrongly classified as compliant. This one
misclassified sample contained only 86.8% of the labeled amount of
amoxicillin, but was wrongly classified as compliant.

For benchtop NIR, Duplex was performed to select eight samples
and the remaining 31 samples composed the training set. The optimal
model was obtained with the spectra pretreated with SNV using SIMCA
(PCs 6-9), showing a ccr of calibration of 90% (28/31) and a ccr of
external validation of 88% (7/8). Three misclassifications encountered
during calibration included two samples with amoxicillin contents of
97.1% and 95.8% respectively of the claimed dose that were wrongly
classified as non-compliant and one sample with an amoxicillin content
of 93.6% of the claimed dose that was misclassified as compliant. One
misclassified sample (91.5% of labeled dosage) of the external valida-
tion was misclassified as compliant. For the portable NIR, Duplex was
performed to select eight samples for the test set and the 30 samples for
the training set. The best model for the portable NIR data was built on
the spectra pretreated with SNV using SIMCA (PCs 6-2). This model
showed a ccr of calibration of 80% (24/30) and a ccr of external vali-
dation of 88% (7/8). The misclassified sample from the test set was
wrongly classified as non-compliant while all six misclassifications
encountered during calibration were wrongly classified as compliant.

As shown in Table 2, all SIMCA and k-NN models obtained with
MIR, benchtop NIR and portable NIR were able to reach a ccr of ex-
ternal validation of 88% (7/8). Among these three spectroscopies, MIR
and benchtop NIR generated comparable models to detect non-com-
pliant samples in the combined group of amoxicillin and co-amoxiclav
if the dosage compliance only took amoxicillin into account. Overall
SIMCA gave always the better performing models.

3.2.2.2. Amoxicillin. Four data sets of the amoxicillin samples using
respectively MIR, benchtop NIR, portable NIR and Raman spectroscopy
were obtained. For the analyses of the MIR spectra, Kennard & Stone
was used to select five samples for the test set and the 20 samples of the
training set. The models of MIR spectra using PLS-DA and SIMCA were
constructed on data preprocessed by SNV. Interestingly, the ccr of
external validation of one model on MIR reached 100% using PLS-DA
with 5 PLS factors (see Table 2). However, this model showed a low ccr
of 65% or 13 of 20 correctly classified during cross validation. Among
these seven misclassifications, four of them were wrongly classified as
compliant and three of them were incorrectly classified as non-
compliant. When SIMCA (PCs 9-4) was applied, the obtained model
on MIR showed a ccr of 100% of calibration and a ccr of 80% of
external validation or 4 out of 5 samples correctly classified. This one

Table 2
Overview of the optimal performance within different models expressed in ccr
(%) for the detection of non-compliant samples.

MIR Benchtop NIR Portable NIR Raman

Dataset Amoxicillin and co-amoxiclav

PLS-DA /
No. of PLS-factors 7 8 2
Cross validation 77% (23/

30)
77% (24/31) 63% (19/30)

External validation 88% (7/8) 88% (7/8) 75% (6/8)

SIMCA
No. of PCs 13–7 6–9 6–2
Calibration* 93% (28/

30)
90% (28/31) 80% (24/30)

External validation 88% (7/8) 88% (7/8) 88% (7/8)

k-NN
No. of nearest

neighbors
5 5 11

Cross validation 80% (26/
30)

65% (20/31) 63% (19/30)

External validation 88% (7/8) 88% (7/8) 88% (7/8)

Dataset Amoxicillin

PLS-DA
No. of PLS-factors 5 8 8 2
Cross validation 65% (13/

20)
67% (14/21) 85% (17/20) 52% (11/

21)
External validation 100% 80% (4/5) 80% (4/5) 80% (4/5)

SIMCA
No. of PCs 9–4 7–3 3–2 11–7
Calibration* 100% 71% (15/21) 60% (12/20) 100%
External validation 80% (4/5) 80% (4/5) 80% (4/5) 80% (4/5)

k-NN
No. of nearest

neighbors
7 5 5 5

Cross validation 85% (17/
20)

71% (15/21) 85% (17/20) 81% (17/
21)

External validation 80% (4/5) 60% (3/5) 80% (4/5) 80% (4/5)

Dataset Co-amoxiclav

PLS-DA /
No. of PLS-factors 3 6 7
Cross validation 89% (8/9) 100% 100%
External validation 100% 100% 100%

SIMCA
No. of PCs 2–2 2–3 2–3
Calibration* 100% 100% 78% (7/9)
External validation 100% 100% 100%

k-NN
No. of nearest

neighbors
3 3 3

Cross validation 100% 89% (8/9) 78% (7/9)
External validation 100% 75% (3/4) 75% (3/4)

/indicates no modelling results for Raman spectroscopy since co-amoxiclav is
not compatible with the Raman technique used in this study.
* The SIMCA algorithm applied in this study is not able to retrieve the results of
cross-validation, so the ccr values of calibration are reported.
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misclassified sample contained 95.8% of the labeled amount of
amoxicillin. Since the amount of amoxicillin resided at the borderline
of the criterion (95%) for non-compliant samples, it may be the reason
for the error.

For benchtop NIR, the Kennard & Stone algorithm was applied to
assign five samples to the test set and 21 samples to the training set. The
optimal model obtained on spectra of benchtop NIR (preprocessed by
the first derivative) using SIMCA (PCs 7-3) showed a ccr of 71% (15/
21) during calibration and a ccr of external validation of 80% (4/5). Six
misclassifications were encountered during calibration, five of which
were misclassified as non-compliant while one was wrongly classified
as compliant. One misclassification of external validation was in-
correctly classified as non-compliant.

Concerning portable NIR, the Kennard & Stone algorithm was used
to select the five samples of the test set and the remaining 20 samples
constituted the training set. In this case, both PLS-DA and k-NN pro-
vided the optimal models, showing two times a ccr of cross validation of
85% (17/20) and a ccr of external validation of 80% (4/5). The optimal
model of PLS-DA was built on the second derivative spectra. Three
misclassifications encountered during cross validation included two
samples wrongly classified as compliant and one was wrongly classified
as non-compliant. Meanwhile, one sample of the test set was wrongly
classified as non-compliant. Additionally, the optimal model of k-NN
was obtained on the spectra pretreated with SNV, followed by the
second derivative, showing the same misclassification of the test set as
the PLS-DA model. Cross validation of the optimal model of k-NN
showed three misclassifications that were wrongly classified as com-
pliant.

For Raman analyses, the Kennard & Stone algorithm was used to
select five samples for the test set and the remaining 21 samples com-
posed the training set. The optimal model of Raman (data pretreated
with SNV then followed by the second derivative) was obtained with
SIMCA (PCs 11-7) capable to reach a ccr of calibration of 100% and a
ccr of external validation of 80% (4/5) as illustrated in Table 2. This
one misclassified sample was wrongly classified as compliant with an
amoxicillin content of the claimed dose of 93.7%.

Overall, MIR and Raman spectroscopy provided the best models to
detect non-compliant amoxicillin samples by using SIMCA.

3.2.2.3. Co-amoxiclav. Three sets containing the different spectral data
(MIR, benchtop and portable NIR) for the co-amoxiclav samples were
created. Quality compliance of the co-amoxiclav samples was based on
the dosage of amoxicillin and clavulanic acid. Since only 13 samples of
co-amoxiclav were available, the rule of 20% of the samples assigned to
the test set was not applicable here. Instead, we selected 30% of the
sample set for the test set in order to have enough representative
samples for the external validation. More than one model displayed
optimal prediction properties (100%) (see Table 2).

For the dataset of MIR, Duplex was used for sample selection. Four
samples were assigned to the test set and the remaining nine samples
constituted the training set. SIMCA (PCs 2-2) and k-NN (k= 3) created
models with optimal prediction properties (100%) (see Table 2). The
best SIMCA model was built on the first derivative spectra and the best
k-NN model was constructed on the spectra pretreated with SNV, fol-
lowed by the second derivative.

For benchtop NIR, Duplex was used to select four samples for the
test set and the nine samples for the training set. As shown in Table 2,
PLS-DA (number of factors 6) and SIMCA (PCs 2-3) produced models
which make a perfect discrimination between API dosage compliance
and non-compliance with a ccr of 100% for both training and test set.
The spectra used for the best PLS-DA model were preprocessed by SNV
while the spectra used for the best SIMCA model were pretreated with
the first derivative.

The model obtained on the second derivative spectra of portable
NIR using PLS-DA (number of factors 7) showed a ccr of 100% for both
training and test set, in which the Kennard & Stone algorithm was used
to select four samples for the test set.

Generally, PLS-DA, SIMCA and k-NN generated perfect models
capable of detecting non-compliant co-amoxiclav samples if the dosage
compliance considered both amoxicillin and clavulanic acid. Also, MIR,
benchtop and portable NIR spectroscopies all provided models with a
ccr of 100% both in the test set and the training set.

4. Conclusion and discussion

The issues of SF antimicrobials have gradually attracted public at-
tention. According to past incidents of SF antimicrobials, the main
quality problems are wrong APIs and insufficient dosage, which could
result in treatment failure, side effects and even promotion of anti-
microbial resistance [3]. Thus, tests for the correct APIs and dosage are
primary goals for on-site screening of SF antimicrobials. We aim to
develop on-site analytical screening methods capable to monitor the
quality parameters: the presence of APIs and the dosage of SF anti-
microbials using spectroscopic techniques (MIR, benchtop NIR, por-
table NIR and Raman) combined with chemometrics. In this study, 58
suspected illegal antimicrobial samples confiscated by the inspectors
from the Belgian FAMHP and 14 genuine antimicrobial drugs bought
from a Belgian pharmacy were subjected to analysis. The samples were
analyzed in a previous study using chromatographic methods for their
API content, followed by spectroscopic analysis [12]. In a first step, an
exploratory data investigation, also known as unsupervised analysis,
was performed on the obtained spectral data in order to reveal differ-
ences among the samples, that could be linked to the API present. Based
on the promising results acquired from exploratory analysis, supervised
chemometric tools were applied to classify samples according to the
identity of their API and further to distinguish between dosage com-
pliant and non-compliant samples.

During unsupervised analyses it was observed that HCA generated
better clustering results among the different samples than PCA. The best
results were obtained with the MIR spectra with a clear clustering of the
tetracycline, doxycycline, azithromycin and ampicillin samples, though
the separation between amoxicillin and co-amoxiclav was not clear.
This is probably due to the low amount of clavulanic acid, compared to
the amoxicillin content, present in the sample.

During supervised analyses, the first part was to create models
capable of identifying APIs, present in suspected illegal samples.
Applying PLS-DA, perfect models were obtained using both MIR and
Raman spectra as modeling data. However, co-amoxiclav is not in-
cluded in the Raman modeling due to the problem of saturated signals.
For both MIR and Raman models a ccr of 100% for training and test set
was reached. It has to be mentioned that for these models only the
groups containing a representative number of samples were taken into
account. It stands to reason that when group classification is more
specific, less modelling errors were observed. Moreover, the spectra of
MIR either pretreated with SNV or the second derivative were all able
to result in perfect models with a ccr of 100%. Based on the current
collected illegal samples, the obtained PLS-DA models built with MIR
and Raman spectra could easily identify co-trimoxazole, amoxicillin,
co-amoxiclav (not for Raman) and azithromycin. In the future, more
encountered illegal samples could be incorporated to refine the models
and broaden the scope with other APIs.

The second part of supervised analyses was about constructing
models capable of detecting non-compliant samples. PLS-DA, SIMCA
and k-NN were applied here for the combined group amoxicillin and co-
amoxiclav. The misclassified samples of different models, obtained with
the different modeling techniques, were not significantly overlapping.
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So, these misclassifications were the result of the modelling process
rather than an issue of the sample itself. For the combined group
amoxicillin and co-amoxiclav, MIR and benchtop NIR generated equally
good models using SIMCA. The misclassifications of the optimal model
obtained on MIR were all wrongly classified as compliant, though it
mainly concerned samples were the dosage was just beneath the limit of
95% of the claimed dose and so these samples could be considered as
borderline. For the group of amoxicillin, spectra of MIR and Raman
produced the best models with one sample in the test set wrongly
classified as non-compliant (MIR) or compliant (Raman). Also here, the
main reason for misclassification were the previously mentioned bor-
derline samples. A possible way to solve this problem is to update
models with new samples, making the models more accurate, robust
and reliable. For the group of co-amoxiclav, perfect models with a ccr of
100% were obtained with the spectra from MIR, benchtop NIR and
portable NIR. The only concern was the limited sample size in this
group. To obtain more robust models with a more convincing valida-
tion, more co-amoxiclav samples should be incorporated. Since amox-
icillin drugs are frequently targeted by criminals, the developed on-site
screening methods could exert a great effect on fending off falsification
of amoxicillin drugs and especially make sure that these SF medicines
do not reach the patients, restoring confidence in health care and
therapy efficacy.

In this study, the different preprocessing methods of SNV and the
second derivative also played a role in the generation of parsimonious
models. For unsupervised analysis, the optimal PCA plots were obtained
after SNV pretreatment of the MIR, portable NIR and Raman spectra.
For the benchtop NIR spectra, a second derivative resulted in the best
PCA plots. For the optimal HCA plots, three of them (MIR, benchtop
NIR and portable NIR) were computed on the spectra preprocessed by
SNV and one (Raman) was computed on the spectra pretreated with the
second derivative method. This indicates clearly that the best (pre)
processing method is highly dependent of the data and that no general
approach can be defined. Also for supervised analyses, the best pre-
processing methods may differ based on different sample classes and
different types of spectroscopy. Generally, in this study there was no
constant pattern of the best preprocessing method, since it depended on
the different sample groups, the different spectra and the modelling
technique.

To conclude, the obtained models, hyphenating spectroscopic
techniques and chemometrics enable to easily and with high certainty
identify suspected SF-antimicrobials and to differentiate non-compliant
samples from compliant ones and this using on-site screening. These
developed methods could be used by custom staff to efficiently screen
suspected antimicrobials and to avoid sample backlog at customs.
Moreover, this fast on-site screening could be applied in hospitals to
make sure that patients are administered antimicrobials with the right
API and the right dosage, so that drug efficacy and treatment efficacy
can be guaranteed. In the meantime, the developed models will be
continuously refined with newly collected samples and so more robust
and more representative and reliable models can emerge.
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