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ARTICLE INFO ABSTRACT

Keywords: The technique of Fourier transform infrared spectroscopy is widely used to generate spectral data for use in the
MCPD prediction detection of food contaminants. Monochloropropanediol (MCPD) is a refining process-induced contaminant that
GC-MS is found in palm-based fats and oils. In this study, a chemometric approach was used to evaluate the relationship
FTIR

between the FTIR spectra and the total MCPD content of a palm-based cooking oil. A total of 156 samples were
used to develop partial least squares regression (PLSR), artificial neural network (nnet), average artificial neural
network (avNNET), random forest (RF) and cubist models. In addition, a consensus approach was used to
generate fusion result consisted from all the model mentioned above. All the models were evaluated based on
validation performed using training and testing datasets. In addition, the box plot of coefficient of determination
(R?), root mean square error (RMSE), slopes and intercepts by 100 times randomization was also compared.
Evaluation of performance based on the testing R? and RMSE suggested that the cubist model predicted total
MCPD content with the highest accuracy, followed by the RF, avNNET, nnet and PLSR models. The overfitting
tendency was assessed based on differences in R? and RMSE in the training and testing calibrations. The ob-
servations showed that the cubist and avNNET models possessed a certain degree of overfitting. However, the
accuracy of these models in predicting the total MCPD content was high. Results of the consensus model showed
that it slightly improved the accuracy of prediction as well as significantly reduced its uncertainty. The im-
portant variables derived from the cubist and RF models suggested that the wavenumbers corresponding to the
MCPDs originated from the —-CH = CH, or CH=CH (990-900 cm™ 1Y) and C-Cl stretch (800-700 cm™ 1) regions of
the FTIR spectrum data. In short, chemometrics in combination with FTIR analysis especially for the consensus
model represent a potential and flexible technique for estimating the total MCPD content of refined vegetable
oils.

Chemometric analysis
Consensus model

1. Introduction

Monochloropropanediol (MCPD) is a contaminant that is detected
extensively in refined vegetable oils. MCPD is present in refined vege-
table oils in the ester form. According to a report published in the EFSA
Journal in 2016, palm-based fats and oils have the highest content of
MCPD of all available refined vegetable oils. The average MCPD content
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of palm oils and fats was reported to be 1.5ppm for 2-MCPD and
3.9 ppm for 3-MCPD [10].

In terms of toxicology, 3-MCPD and its dipalmitate fatty acid ester
are readily absorbed by the gastrointestinal tract after de-esterification
and can cause effects in the liver or kidney. Although there are in-
sufficient supporting data to suggest toxicological effects of 2-MCPD, an
isomer of 3-MCPD, the potential hazards caused by 2-MCPD are con-
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sidered to be equal to those of 3-MCPD [5].

The common methods for determining the MCPD content of foods
require the application of gas chromatography with mass spectrometry
detection (GC-MS). These methods have been established as official by
the AOCS, and there are three approved methods. For each of these
methods, intensive sample preparation is required. Given the potential
hazards imposed by MCPD, there is a need to develop a rapid method
for screening and quantitating the MCPD content of edible oils as an
alternative to the GC-MS approach.

Chemometric analysis is considered a technique that is able to
perform pattern recognition and computational learning theory. It is
closely related to predictive modeling and mathematical optimization.
It is a study that can evaluate input patterns and make predictions or
decisions based on algorithms. In short, chemometric analysis makes it
possible to use computers to learn and predict difficult tasks (normally
from big data) in ways that are simply not possible to perform manu-
ally. This technique has been widely applied in science to make pre-
dictions involving diseases such as Parkinson's [11], leukemia [18] and
heart disease [14]. Therefore, we are interested in exploring the po-
tential of the chemometric analysis to determine the relationship be-
tween the FTIR spectra of palm-based cooking oils and their respective
total MCPD content.

The available literature shows that FTIR spectroscopy is a com-
monly applied analytical tool in studies of edible fats and oils. The
relevant studies can be extended to determine the adulteration of oils
[20,32] and to predict characteristics such as antioxidant activity [6]
and free fatty acid content [34]. In addition, the screening of con-
taminants such as acrylamide can be successfully accomplished using
FTIR in combination with chemometric analysis [2,3].

Partial least squares regression (PLSR) modeling is a widely used
linear modeling method that can explain the relationship between two
datasets. As mentioned earlier, PLSR, together with the FTIR technique,
was extensively used by scientists in the prediction of the physico-
chemical properties of food compounds. However, as an alternative to
PLSR to predict the relationship if nonlinear behavior is observed,
modeling such as artificial neural network (nnet) modeling can be ap-
plied. The use of nnet modeling in the prediction of antioxidant activ-
ities in plant extracts was also reported [25]. Neural network modeling
can be further improved to avNNET (average neural network) mod-
eling, which utilizes several segregated neural networks [15].

Most biochemical properties can be explained by using decision tree
modeling, namely, random forest (RF) and cubist models. Decision tree
modeling uses a specific technique to partition a dataset into subsets in
a binary splitting manner. The partitioning process is continued until no
available option remains. Then, the RF model establishes multiple de-
cision trees, similar to a forest. The observation and variables randomly
become the subsets of the trees, representing the branching operation.
The cubist model utilizes an advanced regression tree model that uses
the rules of “if-then” conditions to make predictions. The RF model has
been used to predict the antioxidant properties of plant extracts [19];
cubist modeling is still not widely used in biochemical-related fields but
it has been proven to be a powerful and cost-saving machine learning
tool for digital mapping [33].

Ultimately, a consensus strategy can be applied to improve the
weakness (for example overfit or underfit behavior) of using conven-
tional multivariate calibration techniques based on single model. The
member models are trained individually, and then their predictions
ability can be evaluated. Then, these prediction powers are combined
by simple averaging or weightage averaging. In consensus or fusion of
model, it is expected to increase the prediction accuracy and robustness
[22].

The objective of this study is to develop and compare the perfor-
mance of the selected single model (PLSR, nnet, avNNet, RF and cubist
modeling) and a consensus regression model method in predicting the
total MCPD content of palm-based cooking oils based on their FTIR
spectra as a rapid assessment method.
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2. Materials and methods
2.1. Chemicals and materials

PP-3-MCPD (1,2-dipalmitoyl-3-chloropropanediol, purity > 95%),
PP-2-MCPD (1,3-dipalmitoyl-2-chloropropanediol, purity > 95%), and
pentadeuterated forms of PP-3MCPD-d5 (purity > 95%) were pur-
chased from Toronto Research Chemical Inc., North York, ON, Canada.
All the palm-based cooking oils were purchased at local grocery stores
by random selection.

2.2. Preparation of standards

Stock solutions of PP-3-MCPD (1,2-dipalmitoyl-3-chloropropanediol,
purity > 95%) and PP-2-MCPD (1,3-dipalmitoyl-2-chloropropanediol,
purity > 95%) standards were prepared at a concentration of 1 mg/mL.
An internal standard of PP-3-MCPD-d5 was also prepared at a final
concentration of 40 ug/mL. Standard curves of 2- and 3-MCPD at con-
centrations ranging from 0.10 to 7.2 mg/kg were plotted based on area
ratios and used to quantitate the content of the compounds in the se-
lected palm-based cooking oils.

2.3. Measurement of total MCPD by GC-MS

All the oil samples were derivatized based on the AOCS Official
Method Cd 29a-13. Briefly, 100 mg of sample was measured and spiked
with a known amount (50 puL) of internal standard of PP-3-MCPD-d5
solution. Bromination of glycidyl esters (GE) was then performed using
an acidic bromide solution to differentiate GE from MCPD in a 15-min
incubation at 50 °C. Bromination was terminated by the addition of a
solution of 0.6% sodium hydrogen carbonate. The oil was extracted in
n-heptane solution and collected by evaporating the excessive solvent.
De-esterification of the MCPD ester was then conducted under acidic
conditions with a 16-hr incubation at 40 °C. The de-esterification re-
action was stopped by adding 3mL of saturated sodium hydrogen
carbonate solution, and the unwanted fatty acid portion was discarded
by n-heptane solution. Then, free MCPD was collected and derivatized
with a saturated phenylboronic acid (PBA) in a sonicator bath for 5 min.
Finally, the derivatized MCPD was extracted with n-heptane, evapo-
rated to complete dryness under a nitrogen stream and reconstituted in
400 puL. of n-heptane. The supernatant was collected as the prepared
analyte and stored at 4 °C prior to GC-MS analysis.

Injection of 1 pL of the analyte into a GS-MS system (Shimadzu
GCMS-TQ 8040) was performed using an autosampler (AOC-20i); se-
lected ion mode (SIM) detection was used as described in AOCS official
method Cd 29a-13.

2.4. FTIR measurements

The FTIR spectra of the palm-based cooking oils were acquired
using a MIRacle attenuated total reflection ATR accessory (Pike tech-
nologies, Germany) in a Fourier transform infrared spectrometer
(Shimadzu, IRTracer-100). Spectra were collected in the wavelength
range of 4000-600cm™' with 40 interferograms at a resolution of
4cm™!. Each sample scan was started by scanning a blank background
(air background) followed by dropping a 40uL oil sample onto the
surface of a diamond/ZnSe plate. After each sample scan, the ATR plate
was cleaned using a dust-free tissue and hexane solution.

2.5. Datasets

The total MCPD content of the selected palm-based cooking oil was
determined by the AOCS method as described in Section 2.3; a cali-
bration curve was used as described in Section 2.2. The MCPD content
was determined separately in terms of the isomers of 2- and 3-MCPD
esters. The combined concentration of the two isomers was calculated
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by adding the concentrations of the two compounds. The total MCPD
content was used as the Y-variable for modeling in this study.

A total of 156 samples (n = 156), each consisting of 1546 ob-
servations (in nm wavenumber), was obtained using ATR-FTIR mea-
surement as described in Section 2.4. The spectral data were further
processed and were used in the modeling as the X-variables.

The purchase of samples, the GC-MS measurements of MCPD con-
tent and the collection of FTIR spectral data on the selected palm-based
cooking oils were conducted between September 2016 and May 2017.

2.6. Data preprocessing

All the collected spectra were converted from absorbance wave-
number in the units of nm (represented by R) to the form of log (1/R).
The converted spectra were filtered by the smoothing method Savitzky-
Golay (SG) algorithm with a window size of 21 and a polynomial of
order 2. The data processing was followed by Standard Normal Variate
(SNV) transformation. By applying the described data processing, in-
strumental noise within the spectra can be removed using the SG al-
gorithm with polynomial regression, whereas SNV is a method of nor-
malizing the absorbance data (normally an FTIR spectrum) that scales
the spectrum to zero mean and corrects the signal. The combination of
the SG algorithm and SNV normalization was based on a previous study
[26,30]. The prospectr R package [35] was used for Savitzky-Golay
(SG) filtering. Fig. 1 shows an example of the spectral filtering.

Each FTIR spectrum consisted of 1546 variables from wavelength
number 599.86-4000.36 nm with an interval of 2 nm. The total number
of datasets used in the study was 156 samples (n = 156).

2.7. Variable selection

The use of a large number of variables (= 1546) can lead to non-
optimal solutions for predictive regression models, since some variables
might be correlated. Thus, only relevant variables were selected for
prediction of MCPD in palm-based cooking oil. In this study, selection
of variables was done by the R software package Boruta: Wrapper
Algorithm for all Relevant Feature Selection [17] as a variable selection
method. This method is based on a wrapper algorithm around Random
Forest [39]; it searches relevant variables by comparing the importance
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of the original variable with that of randomly permuted copies of the
variables [17]. Advantages of Boruta are, it works well with regression
and classification problem, multi-variable relationships are taken into
account, and it is an all-relevant variable selection method, which
considers the features relevant to outcome variable [17]. Of the 1546
variables, 51 variables were relevant, while 92 variables are tentative
and the remaining variables is rejected. Only the relevant variables
were selected for input into all six models which will be described in
Section 2.8.

2.8. Model development

Six regression models were generated for prediction of the total
MCPD content of palm-based cooking oil; these were the PLS regression
(PLSR) [38], artificial neural network (nnet) [13], average artificial
neural network (avNNET) [15], random forest (RF) [24], cubist models
[16] and a consensus regression model comprised of all the mentioned
models

2.8.1. Partial Least Squares Regression (PLSR)

PLSR has been widely used in the field of near-infrared (NIR)
spectroscopy with considerable success. It is a multivariate regression
method that decomposes X-variables into orthogonal scores, T, and
loadings, P, and regresses Y (dependent variables) not on X itself but on
the first column of the T scores [38]. Here, the PLSR model was applied
using the PLS package in R software; the cross-validation approach was
used to determine the number of optimum components and it was
found equal to 9 components.

2.8.2. nnet and avNNET

The artificial neural network (nnet) model is a commonly used
chemometric analysis that performs classification, pattern recognition
and prediction modeling. The model assumes that there is a nonlinear
relationship between each layer, and the layers are connected by a
weightage [1]. In avNNET, some neural network models were fitted
using different random number seeds. All the resulting models were
used for prediction, and the average results were then calculated. The
nnet [37] and neural networks using model averaging (avNNET) R
packages were used in this study. In this study, both nnet and avNNET
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Fig. 1. Top: The original FTIR spectrum without preprocessing. Middle: The spectrum was converted from its absorbance wavelength (represented by R) to units of
nm using log (1/R) and filtered using the Savitzky-Golay (SG) smoothing method algorithm with a window size of 21 and a polynomial of order 2. Bottom: The
spectrum was further normalized by Standard Normal Variate (SNV) transformation.
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Fig. 2. Flow chart of consensus regression model from fusion of Cubist, random forest, nnet, avNNET and PLSR models. R* value from testing is used for evaluating

model acceptance as consensus.

consisted of three layers: input, hidden and output layers with 51 nodes
for inputs, 5 hidden nodes, and a single output for MCPD in the sample.
Decay parameter for both models was also same, 0.01. In training
process, both nnet and avNNET were iterated until converged or to
reach maximum iterations (= 1000). Relatively small values for num-
bers of hidden node and maximum number of iterations were addressed
to avoid overfitting in both models.

2.8.3. Random forest

Random forest (RF) is a typical tree-based ensemble method that
was first proposed by Breiman [4]. RF ensemble a number of regression
(known as trees). RF considered to have multiple decision tree. A
bootstrapping technique is used to subset the data randomly from the
observations and variables. In the case of regression, prediction is based
on the average output from each tree. Oshiro et al. [27] recommended
that between 64 and 128 trees be used as a compromise between ac-
curacy and processing time; in this study, the number of trees was fixed
at 100, as recommended. The random forest model was performed
using the Random Forest R package [23,24,27].

2.8.4. Cubist

Cubist is a further development of Quinlan's M5 model tree [28].
Cubist results in a series of “if-then” rules in terms of the multivariate
linear model. Whenever a set of variables matches a rule's conditions,
the prediction value of the variables is calculated using the corre-
sponding model. The cubist model was conducted using the Cubist R
package [16]. In the Cubist, two parameters: committees and neighbors
were set equal to 5 and 2, respectively. One of the conditional rules
established by the cubist model in this study is shown below.

Model 1:

218

Rule 1/1: [94 cases, mean 4.6003, range 1.277-9.455, est. err
0.9483]
if

X956.692736 < = 0.2028248

X991.411424 > 0.09607272

then

outcome —65.1398 + 369 X993.34024 — 283 X991.411424

— 199 X1261.445664 +
233 X964.408 — 102 X979.838528 — 77 X981.767344
— 83X956.692736 + 19.5X1163.0760
48 + 87 X1265.303296 — 26 X1689.642816 + 48 X948.977472
— 69 X806.245088

where X956 and X991 represent the wavenumbers from X-variables
with conditional rules followed by the outcome quantitation model.

2.8.5. Model validation

The validations of those five models above were repeated 100 times;
the dataset (n = 156) was split randomly at a ratio of 7:3 for training
and testing dataset. The performance of the models during training and
testing was evaluated using the coefficient of determination (R?), the
root mean square error (RMSE), slopes and intercepts of linear regres-
sion between observed and predicted MCPD. These repetitions resulted
in 100 realisation models for each model in both training and testing.
From these realisations, the difference between mean R? (or RMSE)
from training and testing would be used to evaluate degree of overfit of
the model.
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2.8.6. Consensus regression model

The consensus modeling combines the results of multiple individual
models. These individual models are often known as the member
models. Consensus modeling is based on the idea whereby the multiple
models can identify and encode more aspects of the relationship be-
tween the independent and dependent variables as compared to use a
single model. It is believed consensus model can solve overfit and un-
derfit problem due to small training set and enhance the prediction
stability (reduce uncertainty) [22]. Consensus model presents the pre-
diction results from multiple member models in average and therefore
the relationship between dependent and independent variables will be
estimated more effectively [21]. A simplify operational flow chart of
consensus regression model is showed in Fig. 2. The models consisted
from all the member model evaluated earlier in the study (PLSR, nnet,
avNNet, RF and cubist modeling). The operation based on K-fold cross
validation (K=5), with 80% data as training and 20% data as predic-
tion. Among the 80% training datasets, it was further divided into
training and testing subsets at ratio 7: 3 for each model training pur-
pose. The acceptance criteria of R* value from testing was 0.8 and
above. If the particular dataset generates a R®> > 0.8, it goes to the
prediction testing. These training-testing steps were repeated up to 100
iterations. As a result, total iteration was 500.

3. Results and discussion
3.1. Analysis of the MCPD spectra of refined vegetable oils

The composition of refined vegetable oil has been well established
by FTIR analysis. In this study, the FTIR spectrum obtained from palm-
based cooking oils spiked with MCPD did not differ from the spectra
obtained in previous studies. Notably, the overall spectra showed
characteristic bands at 1743-1744cm™ %, 2852 and 2922cm ™! re-
sulting from C=O stretching of esters (carboxylic acid or triglycerides),
C-H asymmetric stretching of CH, and C-H symmetric stretching of CH,
[29]. In addition, bands in the 1300-1150 cm ™! region that corre-
sponded to CH, wagging, bands of 1470-1450 cm ~ ! resulting from CHs
bending, and bands of 3100-3000 cm ~* due to the CH stretching of cis
double bonds were also seen [9].

A typical FTIR spectrum of a palm -based cooking oil with Boruta
selection is shown in Fig. 3. The figure shows the confirmed (but not

Talanta 198 (2019) 215-223

limited to) variables were fall between some of the described functional
bands of an oil FTIR spectrum, Evidently, Boruta selection was able to
target on important bands, for example, CH, wagging
(1300-1150 cm ™ 1). Several wavenumbers between bands
990-900 cm ™! (CH=CH), were selected. Besides, wavenumbers be-
tween 800 and 700 cm ™ (702, 704, 705, 802, 804, and 806) corre-
sponding to C-Cl bond [8], whereby a MCPD functional band located.
This finding provided strong evident that a hypothetical region of C-Cl
bond is important to MCPD prediction.

When MCPD exists in the free form, its chemical structure is rather
simple because one of the OH groups of the glycerol backbone is re-
placed by a chloride ion at either the 2- or 3- position. However, in
nature, MCPD is commonly found in an ester form, the structure of
which is more complicated [40]. The ester group or the fatty acid at-
tached to the glycerol can vary according to the nature of the oil; for
instance, esterified palmitic acid is commonly found in palm oil [41].
The complexity of the fatty acids contributes to variation in the struc-
ture of the MCPD ester. Furthermore, MCPD esters can be present in
mono- or di-ester forms. The detection of MCPD or MCPD ester from the
FTIR spectrum of the oil alone appeared to be extremely difficult due to
the presence of long-chain fatty acids that could be attached to the
MCPD ester.

3.2. Model comparison

The results of performance were evaluated in terms of R%, RMSE,
slopes and intercepts of linear regression between observed and pre-
dicted MCPD from all five models Supplementary Tables 1-4 show the
numerical data in detail. Also, the consensus model was evaluated by
R?, RMSE, slope and intercept and compared with the member models.
Comparison among the models are summarized as box plots in
Fig. 4(a)-(d).

3.2.1. Accuracy of testing dataset

Based on the testing R? mean, the accuracy of the testing model can
be evaluated. Notably, the cubist model achieved the highest accuracy
in predicting the total MCPD content, with an R? = 0.78, followed by
the RF model (R?> =0.76). The two neural network models presented
similar performances, with R? differences of approximately 0.1. The
nnet model was considered slightly weaker than the avNNET model in

o
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Fig. 3. Representative FTIR spectra obtained by spiking palm-based cooking oil with PP-3-MCPD. The numbers indicate the wavenumbers of the peaks corresponding
to the functional groups. The red dots are confirmed and the ones in green and blue are tentative and rejected, respectively based on variable selection results from

the Boruta algorithm.
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total MCPD content prediction. Lastly, the testing accuracy by the PLSR
model with R* = 0.65 was the lowest of the tested models.

The accuracy of the testing models can be further evaluated by
mean RMSE. The results showed the same trend as their R? perfor-
mance. The cubist model achieved the prediction of total MCPD content
at the lowest RMSE = 1.046, followed by avNNET (RMSE =1.093), RF
(RMSE = 1.095), nnet (RMSE = 1.141) and PLSR (RMSE = 1.346).
Therefore, the sequential performance of the models based on their R?
and RMSE box plots was, in decreasing order, cubist, RF, avNNET, nnet
and PLSR. Evidently, consensus model was having comparable R? value
with cubist model, but with much lower standard deviations. Besides,
consensus model presented a prediction of total MCPD at the lowest
RMSE with low standard deviation of RMSE as well. This observation
clearly showed that a consensus model made up from high level fusion
of cubist, RF, nnet, avNNET and PLSR models successfully improve the
prediction of total MCPD in palm-based cooking oil to a higher level
accuracy with low uncertainty.

3.3. Overfitting behavior

Generally, an overfitted model can provide an optimistic model with
high R? (usually close to 1.0) and low RMSE in the training (calibra-
tion). However, an overfitted model will not perform optimally for
prediction when a new dataset is introduced [31]. In other words, the
overfitting phenomenon indicates that the specific algorithm simply
learns all the given parameters and is able to predict the outcome
within the training dataset without failure, but the predictive power for
unseen data decreases. This feature should be avoided in the prediction
of total MCPD content in palm-based cooking oils simply because the
presence of MCPD in fats and oils is a critical parameter in terms of
hazard potential and legislative issues.
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(d)

Overfitting properties can be observed when there are drastic
changes in the R? and RMSE of the models between their training and
testing datasets. In our study, the difference between the training and
testing R means was approximately 0.13-0.23 for all the models. The
training set RMSE ranged from 0.081 to 1.041. In the testing set, the
RMSE mean range increased to between 1.004 and 1.346. Based on the
observed R? and RMSE differences, the cubist model showed the largest
differences in RMSE between training and testing among all the models
generated. In addition, it showed a higher tendency to exhibit over-
fitting compared to its similar RF model.

For the neural network models, The behavior of reduction in R? and
RMSE was similar, decreases of R? was about 13% and RMSE of both
models were increased near 1.1 from 0.73 and 0.76 in the training set.
This result showed nnet and avNNET model did possess certain level of
overfitting but lower than a cubist model.

Although PLSR was considered to have the least accuracy and least
overfitting tendency, we do not reject the potential application of PLSR
in assessing biochemical properties. In a previous study of the re-
lationship between the antioxidant properties of pegaga extract and its
NMR spectra evaluated by PLS and neural network modeling, PLS was a
preferred model compared to the neural network model because PLS
provided better generalization and was safe from overfitting [25].

Based on the high accuracy discussed in the previous section, the
results showed that all the models were relatively useful in predicting
the total MCPD content of palm-based cooking oil based on the FTIR
spectrum data. However, if the results of these 5 models are compared
with a consensus model, a consensus model was a better alternative
than using single model in the prediction. The overfit tendency was
lowest with high accuracy. As discussed in the literature, consensus
model is capable to reduce the overfit or underfit problem when the
sample size is considered small. In this case, at fixed amount of sample
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size, (n = 156), consensus model showed better generalization and it
should be practically used in the total MCPD prediction from FTIR
spectrum.

3.4. Comparison between slopes, intercepts and predicted total MCPD
content

Interestingly, all of the models showed overestimation of the pre-
dicted total MCPD content when the measured total MCPD content
increased, but underestimation was observed after the interception
between the perfect and actual fitted line. The interception of the
perfect fitted line and the actual fitted line was recorded at approxi-
mately 5 ppm MCPD.

The observations suggested to us that the potential use of FTIR and
multivariate analysis to determine total MCPD content during pre-
screening prior to tedious GCMS analysis is highly feasible. The slight
overestimation at total MCPD content values below approximately
5 ppm provides a margin of safety for the estimation of the level of
MCPDs in palm-based cooking oil.

Comparison of the slope and interception values among the models
can access the accuracy of the models other than evaluation of R? and
RMSE values. The evaluation as shown in Fig. 4(c) and (d). A slope
value of 1.0 and an intercept value of O considered a model is having
perfect accuracy, and perform well in predicting the Y-variables. From
Fig. 4(c), the slope values of cubist and nnet models were consider high,
average slope values were 0.81 and 0.79, respectively. Contrary, PLSR
model was having low slope value (0.71) among the member models
suggested the predictions were deviated from a perfect fitted line.

On the other hand, intercept values also evaluate the model which
can overestimate the predicted result. One model interception at Y-axis
is preferred to be as close to 0. From Fig. 4(d), PLSR model showed high
intercept values with large standard deviation. RF model was having
intercept at 1.66 by average, slightly higher compared to PLSR but the
uncertainty was much narrow (low standard deviation).

Notably, a consensus model made from the mentioned member
models showed that it was able to comprise the weakness of using
single model. The slope value of consensus model was still slightly
lower than cubist, but the slope values were always consistent among
the models. Similarly, intercept values of a consensus model were least
deviated, although it was not as close to O like cubist model.

3.5. Contribution of member models to the consensus model and feasibility
of consensus model use

The contribution portion of each member model to the consensus
model is shown in Fig. 5. Each member model was tested among 100
iterations (and repeated 5 times with K-fold cross-validation) and the
testing R acceptance criteria or threshold was 0.8. When a testing test
was fulfilled a R® > 0.8, it is accepted as one of the weightage to
contribute for average R* in consensus model. From the figure, it is not
surprised the highest acceptance percentage was cubist model, followed
by RF, avNNET, nnet and PLSR. The acceptance sequence agreed with
the discussion above. Cubist model possessed the properties of higher
R?, lower RMSE, slope value closer to 1, and interception close to 0.
Cubist model performed better as a single model among other tested
model, therefore, the higher chance that cubist testing was contribute
larger portion to the established consensus model. Contrary, the ac-
ceptance percentage of a PLSR was as low as 2.4%. Obviously, PLSR
model was least preferred in MCPD prediction but the result was ex-
pected due to lower average R® of PLSR in the training if access in-
dividually.

The ultimate consensus result derived from every member models
prediction. The comparisons between consensus model and single
model clearly showed that consensus model was able to reduce re-
dundancy and guarantee complementarity. Therefore, the prediction
power of the systems was improved based on a fusion result [36].
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Fig. 5. Accepted and discarded percentages of member models to the final
consensus regression model among 500 iterations.

3.6. Importance of variables for total MCPD content prediction

Unlike neural network models, the tree-based model is able to
provide the user with a list of variables that are important in the pre-
diction. In this study, the top five important variables (among the se-
lected 51 wavenumbers) derived from the cubist model were at wave-
numbers 950, 956, 1269, 991, and 952. These variables were furthered
refined from important variables by Boruta selection as described in
Section 3.1. From the available literature, it is suggested that com-
pounds with C-O bonding from esters or ether functionality can appear
as overlapping peaks in the region between 1350 and 950 cm ™! in the
FTIR spectrum. In addition, a terminal or vinyl-CH=CH, and trans
unsaturated CH=CH bonds can appear in the 990-900 cm ™' region
[8]. This information suggested that the cubist model could estimate
the total MCPD content based on the ester and unsaturated carbon-
carbon bonds in the fatty acid chain. Although the exact relationships
between the important variables and the content of MCPD are not
known, unsaturated carbon bonds are found in abundance in palm oil,
which consists of approximately 40% of the monounsaturated fatty acid
oleic acid and 10% of the polyunsaturated fatty acid linoleic acid [7].
MCPDs in ester form may possess at least one unsaturated fatty acid
chain [12] and could function as a potential indicator for determining
their concentration based on analysis of the FTIR spectrum using the
cubist model.

Similarly, the top few important variables contributing to the pre-
diction by the RF model were found at wavenumbers 954, 956, 987,
950, 989, 991, 945 and 975 cm ™ L. In addition, the wavenumbers 802
and 702 cm ™' were considered important variables in the RF model.
The wavenumber in the region 800-700cm ™! is well defined as the
region corresponding to the C-Cl stretch bond in aliphatic chloro
compounds [8]. These findings agreed with our initial hypothesis that
the C-Cl bond should serve as an indicator for predicting the total MCPD
content of palm-based cooking oils. We believe that processing of the
FTIR spectrum using the SG algorithm and SNV normalization can
improve the signal corresponding to this unique region.

4. Conclusions

It is necessary to compromise between the advantages and dis-
advantages of applying chemometrics to the prediction of total MCPD
content from the FTIR spectrum. Based on our study, one shortcoming
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of using chemometrics such as the cubist, RF, nnet and avNNET models
was the need for preprocessing of the FTIR spectrum. Furthermore, the
demonstration performed in this study showed that there is an ex-
tensive need for data processing by coding software.

FTIR spectra include a large amount of data and require a tre-
mendous amount of computational processing. Fortunately, R software
and the processing library needed are available as open source mate-
rials. Although PLSR was developed by R software in the current study,
PLSR is also commonly available as part of some commercial software
packages such as SIMCA, which requires no capability in coding tech-
nique and offers a better graphical user interface (GUI).

Some of the main findings of the current study on predicting the
total MCPD content from FTIR spectrum via chemometric analysis are
as follows:

o The most accurate model in term of testing R was the tree decision
model, especially the cubist model, which recorded a testing R*
= 0.78.

The models that displayed a low degree of overfitting were the RF,

avNNET, and PLSR models.

The overall performance of the generated models in predicting the

total MCPD content from the FTIR spectrum was good and showed

high R? and similar RMSE values.

o The evaluation of slopes and intercepts of linear regression between
observed and predicted MCPD showed cubist model was able to
predict the data with least overestimation. PLSR model had the
tendency to overestimate the total MCPD in prediction due to a
steeper slope (away from 1.0) and high intercept value (1.48).

® A consensus modeling made from member models, namely, cubits,
RF, nnet, avNNET, and PLSR was able to establish a stronger pre-
diction tools for total MCPD prediction from palm-based cooking oil.

e The most accepted member model with a pre-set R? criteria above
0.8 was cubist model, followed by RF, avNNET, nnet, and PLSR.

e The main important variables suggested by the cubist and RF that
ensured the detection of MCPD functional groups were -CH = CH, or
CH=CH (990-900 cm ~") and C-Cl stretch (800-700 cm ™ ').

Finally, the current study successfully demonstrated the application
of chemometric analysis in the prediction of total MCPD in palm-based
cooking oil. The use of chemometric analysis provides a cost-effective
and reliable method for the rapid screening of MCPD in palm-based
cooking oil. It is a highly flexible and repeatable method that extends
the potential for estimation of the total MCPD content of other refined
vegetable oils.
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