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A B S T R A C T   

This study utilizes advanced wavenumber selection techniques to improve the prediction of amylose content in 
grounded rice samples with near-infrared spectroscopy. Four different wavenumber selection techniques, i.e. 
covariate selection (CovSel), variable combination population analysis (VCPA), bootstrapping soft shrinkage 
(BOSS) and variable combination population analysis-iteratively retains informative variables (VCPA-IRIV), were 
used for model optimization and key wavenumbers selection. The results of the several wavenumber selection 
techniques were compared with the predictions reported previously on the same data set. All the four wave
number selection techniques improved the predictive performance of amylose in rice samples. The best per
formance was obtained with VCPA, where, with only 11 wavenumbers-based model, the prediction error was 
reduced by 19% compared to what reported previously on the same data set. The selected wavenumbers can help 
in development of low-cost multi-spectral sensors for amylose prediction in rice samples.   

Credit 

Puneet Mishra: Conceptualization, Data curation, Investigation, 
Writing, Ernst Woltering: Writing – review & editing. 

1. Introduction 

Amylose concentration in rice is the key quality attribute related to 
its eating quality [1]. Amylose content is correlated with the retrogra
dation behavior, influencing the textural properties of cooked rice and 
the viscoelasticity dynamics of rice starch gel. Amylose content is an 
important biomarker for screening rice genotypes in breeding programs 
[2]. The amylose content in rice can range from 0 to even >26% [3]. 
High amylose rice is gaining huge attention due to its associated health 
benefits such as slow digestion to glucose, which allows management of 
health conditions such as diabetes [4]. Traditional methods to determine 
amylose content includes iodine reaction coupled with potentiometric 
or amperometric titration [2], differential scanning calorimetry [5] and 
chromatography [6]. However, a main drawback with traditional wet 
chemistry approaches is that they are time and labor intensive, and 
usually have higher complexity related in terms of sample preparation. 
Furthermore, wet chemistry techniques are not suitable for 

non-destructive in-line implementation. 
In recent years, several applications of near-infrared (NIR) spec

troscopy can be found related to rapid nondestructive prediction of 
chemical components in agri-food products [7]. NIR spectroscopy al
lows capturing the physical and chemical properties of samples as a 
function of light scattering and absorption, respectively [8]. In relation 
to amylose prediction in rice, a previous report demonstrated that with 
NIR spectroscopy (12,000–4000 cm− 1), a prediction R2 and error of 0.88 
and 1.938%, respectively, were achievable [2]. Such high correlation 
and low errors were obtained by using the interval and window based 
wavenumber selection techniques popular in the chemometrics model
ling [9]. However, the interval and window based wavenumber selec
tion techniques do not allow identifying the discrete bands related to the 
property of interest [10]. The interval and window based techniques rely 
on several user defined parameters such as interval or window size, 
number of maximum latent wavenumbers to model for each interval or 
window and criterion for selecting the intervals. Furthermore, the 
selected intervals and windows are insufficient for gaining a better un
derstanding of background chemistry and for development of low cost 
multi-spectral systems. 

In recent years, several new wavenumber selection methods have 
emerged for use in the analysis of NIR data [11–14]. Of particular 
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interest are the techniques that allow selection of discrete sets of 
wavenumbers. Some of the key techniques are covariate selection 
(CovSel) [11], variable combination population analysis (VCPA) [13], 
bootstrapping soft shrinkage (BOSS) [12] and variable combination 
population analysis-iteratively retains information wavenumbers 
(VCPA-IRIV) [14]. These recent techniques were not available a few 
years ago, and therefore, most of the data analysis was limited just to 
either the PLS regression or its variants, such as interval and window 
based PLS regression [9], for wavenumber selection, as also used in the 
recent work related to amylose prediction in rice [2]. Hence, this works 
aims to highlight and compare four major, recently developed, wave
number selection techniques for optimizing the NIR models for pre
dicting amylose content in rice samples. It was hypothesized that the 
new discrete wavenumber selection techniques can improve the model 
accuracies compared to those previously reported on the same data set 
using interval and window based wavenumber selection approaches. 
The four discrete wavenumber selection techniques used were CovSel, 
VCPA, BOSS and VCPA-IRIV. The key wavenumbers selected by the 
techniques are discussed and provided in a table, such to facilitate the 
improvement of NIR data modelling and the development of low cost 
multi-spectral systems for amylose content prediction in rice. 

2. Materials and methods 

2.1. Rice data set 

The data set used in this study is publicly available as data in brief 
[15] and is related to scientific publication utilizing NIR spectroscopy 
for amylose determination in rice [2]. The data set consist of NIR spectra 
and reference amylose measurement from sixteen rice varieties grown at 
4 different locations related to a Portuguese Rice Breeding Program 
executed along four seasons (2012–2015), providing 168 samples. In 
addition, samples from 11 rice varieties sourced from International Rice 
Research Institute, Philippines [2]. The NIR measurement were per
formed on rice flour obtained by grinding 20g of rice samples in a 
Cyclone Sample Mill (Falling number 3100, Perten, Sweden). The NIR 
measurements were performed in transflection mode using the MPA 
equipment (Bruker Optics, Germany). For each rice sample, 16 succes
sive scans were performed, over a wavenumber range (12,000–4000 
cm− 1), at 16 cm− 1 of resolution. The reference amylose content was 
determined using the standard iodine colorimetric method and more 
details can be found in Refs. [2]. 

For our modelling we applied exactly the same calibration and test 
sets that were used for the modelling in the previous work [2]. The exact 
same data partition was possible as the labels were provided along with 
the data set in the data in brief [15]. A further description of calibration 
and test set is provided in Table 1. 

2.2. Data pre-processing 

The NIR data range was reduced from 12000 to 3595 cm− 1 

(833–2781 nm) to 8933–3595 cm− 1 (1119–2781 nm) due to very low 
absorbance in the wavenumbers range 12000–8932 cm− 1 (833–1119 
nm). To have a fair comparison of different wavenumber selection 
techniques the same pre-processing i.e. 2nd derivative (Savitzky-Golay 
[16] window 51 and 2nd order polynomial) was used. The 2nd deriva
tive was used to reveal the underlying peaks to facilitate the 

wavenumber selection techniques [17]. All data analysis was performed 
in MATLAB 2018b, MathWorks, Natick, USA. 

2.3. Wavenumber selection techniques 

2.3.1. Covariate selection 
Covariance selection (CovSel) is a popular chemometric technique 

for selecting discrete wavenumbers [11]. In CovSel, wavenumber se
lection is accomplished by iterating two steps i.e. the wavenumber 
having maximum covariance with the response(s) is selected and later 
both the predictor and the response matrices are orthogonalized with 
respect to the selected wavenumber. These two steps are repeated until a 
pre-defined criterion is met. In this study, the venetian blind 
cross-validation approach was used to identify optimal number of 
wavenumbers which lead to the minimum root mean square error. 
CovSel was implemented by means of the MBA-GUI toolbox [18]. 

2.3.2. Variable combination population analysis 
Variable combination population analysis (VCPA) is a two-step 

procedure [13]. First, an exponentially decreasing function (EDF) is 
employed to determine the number of wavenumbers to keep and 
continuously shrink the wavenumber space. Second, in each EDF run, a 
binary matrix sampling (BMS) strategy that gives each wavenumber the 
same chance to be selected and generates different wavenumber com
binations is used to produce a population of subsets to construct a 
population of sub-models. Then, model population analysis (MPA) is 
employed to find the wavenumber subsets with the lowest root mean 
square error of cross validation (RMSECV). The frequency of each 
wavenumber appearing in the best 10% of sub-models is computed. The 
wavenumbers with highest frequency are the most important and vice 
versa. The VCPA was tested using the free codes found at: 

https://nl.mathworks.com/matlabcentral/fileexchange/47739-vcp 
a-1-1-zip. 

2.3.3. Bootstrapping soft shrinkage 
Bootstrapping soft shrinkage (BOSS) [12] combines the ideas of 

weighted bootstrap sampling and model population analysis. The 
weights of wavenumbers are determined based on the absolute values of 
the regression coefficients. Weighted bootstrap sampling is applied ac
cording to the weights to generate sub-models and model population 
analysis is used to analyze the sub-models to update weights for wave
numbers. During optimization, soft shrinkage is imposed, in which less 
important wavenumbers are assigned smaller weights. The algorithm 
runs iteratively and terminates when the number of wavenumbers rea
ches one. The optimal wavenumbers carrying low cross-validation error 
(RMSECV) are retained and a new calibration is established with the 
retained wavenumbers. BOSS was implemented in MATLAB (2018b, 
Natick, MA, USA) using the freely available codes available at the 
website: 

http://www.mathworks.com/matlabcentral/fileexchange 
/52770-boss. 

2.3.4. Variable combination population analysis-iteratively retains 
information wavenumbers 

Variable combination population analysis-iteratively retains infor
mative variables (VCPA-IRIV) [14] is a VCPA-based hybrid strategy 
which continuously shrinks the wavenumber space using VCPA as a first 
step. It then employs iteratively retaining informative wavenumbers 
(IRIV) [19] to carry out further optimization in the second step. It takes 
advantage of VCPA and IRIV, and makes up for each one’s drawbacks to 
deal with high numbers of wavenumbers. VCPA-IRIV was tested using 
the free code from: 

https://nl.mathworks.com/matlabcentral/fileexchange/70232-vcp 
a-based-hybrid-strategy?s_tid=FX_rc2_behav. 

Table 1 
A summary of calibration and test data set used in this study. The data has 
exactly the same samples in the calibration and test set as used in the previous 
work [2].  

Data set Spectra Amylose concentration (mean ± std) (%) 

Calibration 203 × 643 19.7 ± 5.3 
Test 110 × 643 20 ± 5  
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3. Results 

The results of all four wavenumber selection techniques are shown in 
Fig. 1. All the four wavenumbers selection techniques improved the 
model performance compared to the model reported previously on the 
same data set using the interval and window based methods [2]. The 
best reported performance with the interval and window based methods 
was R2

P = 0.88 and RMSEP = 1.9% [2]. In the present study, out of the 
four techniques, the VCPA attained the best performance with R2

P =

0.91 and RMSEP = 1.6%. Improvement by VCPA, lead to a 19% decrease 
in the prediction error compared to reported in previous work [2]. 
Further, VCPA attained this by using only 11 wavenumbers (discrete 
wavenumbers) out of the 643 wavenumbers originally present in the 
NIR data. 

The BOSS approach performed the second best in term of the pre
diction error but selected 27 wavenumbers which is almost double to 
that obtained with VCPA. Followed by BOSS, both the VCPA-IRIV and 
CovSel performed similar in terms of prediction error but CovSel 

Fig. 1. A summary of models predicting amylose (%) in ground rice samples developed with selected wavenumbers. (A) Variable combination population analysis 
(VCPA), (B) Bootstrapping soft shrinkage (BOSS), (C) Variable combination population analysis-iteratively retains informative variables (VCPA-IRIV), and (D) co
variate selection (CovSel). 

Table 2 
A summary of selected wavenumbers from each wavenumber selection technique. Variable combination population analysis (VCPA), bootstrapping soft shrinkage 
(BOSS), variable combination population analysis-iteratively retains informative variables (VCPA-IRIV), and covariate selection (CovSel). The best performing 
wavenumbers corresponding to VCPA are highlighted in red.  

Technique Selected wavenumbers (cm− 1) 

3000–3999 4000–4999 5000–5999 6000–6999 7000–7999 8000–8999 

VCPA  4706  6966, 6997 7005,7275, 7360, 7637, 7653, 7707, 7714 8100 
BOSS 3927 4690, 4698, 4706, 

4752, 4760 
5331 6133, 6141, 6966 7259, 7367, 7498, 7529, 7630, 7645, 7699, 7707, 7714, 

7722, 7761, 7768 
8069, 8100, 8108, 
8231, 8262 

VCPA- 
IRIV  

4359, 4667, 4675, 
4713, 4721 

5523 6781, 6966, 6974, 
6989 

7143, 7151, 7167, 7190, 7197, 7251, 7560, 7622, 7630, 
7714, 7768, 7776, 7792, 7830, 

8085, 8100, 8154 

CovSel    6858, 
6989, 6711 

7089, 7414, 
7522, 7722, 7630 

8131, 8308, 8355, 
8339, 8270  
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selected only 13 wavenumbers compared to 27 wavenumbers by VCPA- 
IRIV. Hence, in terms of lowest number of selected wavenumber and 
obtaining the lowest prediction error, VCPA performed the best. 

A summary of the selected wavenumbers with different techniques is 
shown in Table 2. For an easy understanding the wavenumber were 
partitioned into 6 classes i.e. 3000-3999, 4000–4999, 5000–5999, 
6000–6999, 7000–7999 and 8000-8999 cm− 1. In the previous work, the 
interval and window based methods identified wavenumber ranges of 
8941–8194 cm− 1; 5592–5045 cm− 1; and 4683–4335 cm− 1 [2]. How
ever, the discrete wavenumbers selected in this study by VCPA were not 
related to any of the wavenumber ranges identified previously [2]. The 
VCPA identified wavenumber 4706 cm− 1 is related to OH combination 
bonds related to polysaccharides [20,21]. The wavenumbers 6766 and 
6997 cm− 1 can be assigned to OH 1st overtones of crystalline cellulose 
and OH groups with H-bonds of intermediate strength [20,21]. The 
wavenumbers 7005, 7275, 7360, 7637, 7653, 7707 and 7714 cm− 1 can 
be assigned to free OH group or weakly bonded OH and 1st overtones of 
CH, CH2 and CH3 [20,21]. The wavenumber 8100 cm− 1 can be assigned 
to the 2nd overtones of the CH, CH2 and CH3 [20,21]. 

4. Conclusions 

The study showed that the optimization of NIR models with discrete 
wavenumber selection techniques improved the prediction of NIR 
models for amylose prediction. Out of the four wavenumber selection 
techniques used, the VCPA attained the lowest prediction error which 
was almost 19% lower compared to the prediction error reported pre
viously on the same data set using the interval based wavenumber se
lection techniques. VCPA selected only 11 wavenumbers out of 693 and 
were easily assigned to the overtones for OH, CH, CH2 and CH3 present 
in polysaccharides such as amylose. The selected wavenumbers can be 
used to either improve the already developed models or to build low cost 
multi-spectral systems for amylose prediction in rice samples. The 
selected wavenumbers were: 4706, 6966, 6997, 7005, 7275, 7360, 
7637, 7653, 7707, 7714 and 8100 cm− 1. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

References 

[1] Y. Sun, G. Jiao, Z. Liu, X. Zhang, J. Li, X. Guo, W. Du, J. Du, F. Francis, Y. Zhao, 
L. Xia, Generation of high-amylose rice through CRISPR/Cas9-Mediated targeted 
mutagenesis of starch branching enzymes, Front. Plant Sci. 8 (2017) 298. 

[2] P.S. Sampaio, A. Soares, A. Castanho, A.S. Almeida, J. Oliveira, C. Brites, 
Optimization of rice amylose determination by NIR-spectroscopy using PLS 
chemometrics algorithms, Food Chem. 242 (2018) 196–204. 

[3] B.O. Juliano, C.M. Perez, A.B. Blakeney, T. Castillo, N. Kongseree, B. Laignelet, E. 
T. Lapis, V.V.S. Murty, C.M. Paule, B.D. Webb, International cooperative testing on 
the amylose content of milled rice, Starch - Stärke 33 (1981) 157–162. 

[4] K. Tao, W. Yu, S. Prakash, R.G. Gilbert, High-amylose rice: starch molecular 
structural features controlling cooked rice texture and preference, Carbohydr. 
Polym. 219 (2019) 251–260. 

[5] D. Sievert, J. Holm, Determination of amylose by differential scanning calorimetry, 
Starch - Stärke 45 (1993) 136–139. 

[6] J.M. Franco, M.A. Murado, M.I.G. Siso, J. Miron, M.P. Gonzalez, A HPLC method 
for specific determination ofα-amylase and glucoamylase in complex enzymatic 
preparations, Chromatographia 27 (1989) 328–332. 

[7] J.U. Porep, D.R. Kammerer, R. Carle, On-line application of near infrared (NIR) 
spectroscopy in food production, Trends Food Sci. Technol. 46 (2015) 211–230. 

[8] C. Pasquini, Near infrared spectroscopy: a mature analytical technique with new 
perspectives – a review, Anal. Chim. Acta 1026 (2018) 8–36. 

[9] L. Nørgaard, A. Saudland, J. Wagner, J.P. Nielsen, L. Munck, S.B. Engelsen, Interval 
partial least-squares regression (iPLS): a comparative chemometric study with an 
example from near-infrared spectroscopy, Appl. Spectrosc. 54 (2000) 413–419. 

[10] P. Mishra, E. Woltering, B. Brouwer, E. Hogeveen-van Echtelt, Improving moisture 
and soluble solids content prediction in pear fruit using near-infrared spectroscopy 
with wavenumber selection and model updating approach, Postharvest Biol. 
Technol. 171 (2021) 111348. 

[11] J.M. Roger, B. Palagos, D. Bertrand, E. Fernandez-Ahumada, CovSel: wavenumber 
selection for highly multivariate and multi-response calibration: application to IR 
spectroscopy, Chemometr. Intell. Lab. Syst. 106 (2011) 216–223. 

[12] B.-C. Deng, Y.-H. Yun, D.-S. Cao, Y.-L. Yin, W.-T. Wang, H.-M. Lu, Q.-Y. Luo, Y.- 
Z. Liang, A bootstrapping soft shrinkage approach for wavenumber selection in 
chemical modeling, Anal. Chim. Acta 908 (2016) 63–74. 

[13] Y.-H. Yun, W.-T. Wang, B.-C. Deng, G.-B. Lai, X.-b. Liu, D.-B. Ren, Y.-Z. Liang, 
W. Fan, Q.-S. Xu, Using wavenumber combination population analysis for 
wavenumber selection in multivariate calibration, Anal. Chim. Acta 862 (2015) 
14–23. 

[14] Y.-H. Yun, J. Bin, D.-L. Liu, L. Xu, T.-L. Yan, D.-S. Cao, Q.-S. Xu, A hybrid 
wavenumber selection strategy based on continuous shrinkage of wavenumber 
space in multivariate calibration, Anal. Chim. Acta 1058 (2019) 58–69. 

[15] P. Sampaio, A. Soares, A. Castanho, A.S. Almeida, J. Oliveira, C. Brites, Dataset of 
Near-infrared spectroscopy measurement for amylose determination using PLS 
algorithms, Data in Brief 15 (2017) 389–396. 

[16] A. Savitzky, M.J.E. Golay, Smoothing and differentiation of data by simplified least 
squares procedures, Anal. Chem. 36 (1964) 1627–1639. 

[17] P. Mishra, A. Biancolillo, J.M. Roger, F. Marini, D.N. Rutledge, New data 
preprocessing trends based on ensemble of multiple preprocessing techniques, 
Trac. Trends Anal. Chem. (2020) 116045. 

[18] P. Mishra, J.M. Roger, D.N. Rutledge, A. Biancolillo, F. Marini, A. Nordon, 
D. Jouan-Rimbaud-Bouveresse, MBA-GUI, A Chemometric Graphical User Interface 
for Multi-Block Data Visualisation, Regression, Classification, Wavenumber 
Selection and Automated Pre-processing, Chemometrics and Intelligent Laboratory 
Systems, 2020, p. 104139. 

[19] Y.-H. Yun, W.-T. Wang, M.-L. Tan, Y.-Z. Liang, H.-D. Li, D.-S. Cao, H.-M. Lu, Q.- 
S. Xu, A strategy that iteratively retains informative wavenumbers for selecting 
optimal wavenumber subset in multivariate calibration, Anal. Chim. Acta 807 
(2014) 36–43. 

[20] B.G. Osborne, T. Fearn, P.H. Hindle, Practical NIR Spectroscopy with Applications 
in Food and Beverage Analysis, Longman scientific and technical1993. 

[21] B.G. Osborne, Near-Infrared Spectroscopy in Food Analysis, Encyclopedia of 
Analytical Chemistry, 2006. 

P. Mishra and E.J. Woltering                                                                                                                                                                                                                 

http://refhub.elsevier.com/S0039-9140(20)31199-1/sref1
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref1
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref1
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref2
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref2
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref2
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref3
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref3
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref3
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref4
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref4
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref4
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref5
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref5
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref6
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref6
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref6
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref7
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref7
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref8
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref8
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref9
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref9
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref9
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref10
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref10
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref10
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref10
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref11
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref11
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref11
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref12
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref12
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref12
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref13
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref13
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref13
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref13
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref14
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref14
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref14
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref15
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref15
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref15
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref16
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref16
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref17
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref17
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref17
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref18
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref18
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref18
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref18
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref18
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref19
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref19
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref19
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref19
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref21
http://refhub.elsevier.com/S0039-9140(20)31199-1/sref21

	Identifying key wavenumbers that improve prediction of amylose in rice samples utilizing advanced wavenumber selection tech ...
	Credit
	1 Introduction
	2 Materials and methods
	2.1 Rice data set
	2.2 Data pre-processing
	2.3 Wavenumber selection techniques
	2.3.1 Covariate selection
	2.3.2 Variable combination population analysis
	2.3.3 Bootstrapping soft shrinkage
	2.3.4 Variable combination population analysis-iteratively retains information wavenumbers


	3 Results
	4 Conclusions
	Declaration of competing interest
	References


