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Abstract: In this work we demonstrate a suspended core microstructured optical fiber-based sensor 
platform for explosives detection based on the fluorescence quenching of a surface-attached conjugated 
polymer poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV). These fibers allow 
for strong evanescent field interactions with the surrounding media because of their small core size, 
and can sample minute liquid volumes. This is the first demonstration of a fluorescent conjugated 
polymer sensor capable of measuring liquid explosives samples loaded within an optical fiber. This 
technique is used to identify 1,4-dinitrobenzene (DNB), a member of the nitroaromatics family of 
explosives, in acetone for concentrations as low as 6.3 ppm in a total sampling volume of 27 nL and to 
quantify its concentration using the fluorescence decay lifetime, requiring an analysis time of only a 
few minutes. 
 
Keywords: Explosives detection; Fluorescence sensor; Optical fiber sensor 

1. Introduction  
Sensing of nitroaromatic explosives such as trinitrotoluene (TNT), dinitrotoluene (DNT) and picric 
acid (PA) in groundwater or seawater is of importance for detecting buried unexploded ordnance and 
for locating underwater mines[1,2]. There are also environmental monitoring applications for 
characterizing soil and groundwater contaminated by toxic TNT at military bases[3]. Many 
technologies have been employed for the detection of trace levels nitroaromatics explosives,for 
example ion mobility spectrometry (IMS)[4], Terahertz spectroscopy[5], Raman spectroscopy [6], 
molecularly imprinted polymers (MIP) [7] and fluorescence quenching methods[8]. Among these, 
fluorescence quenching sensing methods are promising for rapid and sensitive detection of 
explosives[9]. The mechanism of fluorescence quenching is based on photoinduced electron transfer 
from excited fluorescent molecules to analytes. The electron-deficient nitroaromatics explosives in 
particular are much stronger quenchers of the fluorescence of electron-rich chromophores than a 
number of possible quenching molecules, imparting a degree of selectivity to the detection 
mechanism[10,11]. Utilizing sensory polymer films coated on a planar substrate (e.g., glass plate) has 
become the common method of choice for fluorescence quenching explosive detection[8,9,12]. 
However, large sampling volumes are needed as the fluorescent film is immersed in the explosives 
solution[12] and remote sensing can’t be implemented.  
 
Fiber optic sensing systems for explosives detection, in contrast are portable, flexible, low-cost, and 
capable of accessing hard-to-reach areas over long distances [13].Microstructured optical fibers (MOFs) 
have the potential to dramatically improve the performance of fiber optic sensors based on fluorescence 
spectroscopy and have recently attracted considerable interest [14-16], since a significant portion of the 
guided light can be located in voids within the fiber that can be used to sample the surrounding medium 
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[17].Suspended-core MOFs with relatively large air voids surrounding the core can serve as a 
convenient platform to enable close interaction with liquids loaded into the voids, with portion of the 
guided light located in these voids. Thus, suspended-core MOFs enable the development of small 
sample volume, flexible and cost-effective sensing architectures[18].  
 

In this work，the conjugated polymer poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] 

(MEH-PPV)which shows good solubility in organic solvents and high luminescence quantum yield in 
solutions and neat films[22], was used as a fluorescence indicator and coated on the inside of voids 
surrounding the core of a suspended-core optical fiber. The fiber is made from lead-silicate (Schott 
F2HT) glass as it combines high transmission in the visible spectral range with high refractive index 
[19]. The high transmission in the visible is of particular advantage for biological and chemical sensing 
applications since it allows for the efficient excitation of a range of fluorophores (for example Ru+ for 
dissolved oxygen sensing at 477 nm [20]). The refractive index of F2HT glass (n0 = 1.62 at 588 nm) is 
significant higher than that of silica glass (n0 = 1.46 at 588 nm), which results in enhanced fluorescence 
capture fractions for nano to microscale core sizes [17].This paper reports, for the first time to our 
knowledge, the use of a suspended core optical fiber sensor to detect explosives dissolved in an organic 
solvent. The explosive nitroaromatic analyte, 1,4-dinitrobenzene (DNB), was used during this 
investigation as it is chemically similar to the explosive TNT and highly electron-deficient[23-24]. The 
fluorescence intensity was integrated after the F2 suspended core fiber filled with DNB in acetone 
within a few minutes, and an exponential decay curve was obtained. The decay time of the exponential 
curve was used to determine the concentration of DNB. The limit of detection is 6.3ppm and there 
repeatability of the system was also explored. 

2. Materials and methods  

2.1 Solutions preparation  
MEH-PPV (number average Mn = 70,000 - 100,000) was purchased from Sigma-Aldrich. Solutions of 
the polymer were prepared at 0.5mg/mL concentrations in different organic solvents (chloroform, 
chlorobenzene and tetrahydrofuran). The absorption spectra of these solutions were measured by a 
spectrophotometer (Agilent Technologies Cary Series UV-Vis-NIR) and are shown in Figure 1. 
 
Tetrahydrofuran (THF) was chosen as the solvent as the polymer solution shows a peak in its 
absorption spectrum centered at 486nm which matches the 488 nm peak of the Argon ion laser used in 
this work. In addition, the boiling point of THF (66oC) is lower than Chlorobenzene (132oC), making 
evaporation of the solution within the fiber voids faster. DNB solutions were prepared by dissolving 2 
mg of DNB in 20 ml of acetone and further diluting down to 0.0003 mg/ml (3.8 ppm), 0.0005 mg/ml 
(6.3 ppm), 0.001 mg/ml (12.6 ppm) and 0.003 mg/ml (37.8 ppm) to obtain lower concentration 
samples. 

2.2 Coating procedure 
An F2HT suspended core fiber with core diameter of 1.6 μm, determined as the radius of a circle with 
the same area as the fibre core, produced in-house was used. Sensors were made by cleaving 20cm 
lengths of fiber and depositing polymer layers onto the air/glass interfaces by flowing fluorophore 
solutions through the air voids of the suspended core fiber using 20 psi pressure of nitrogen gas at room 
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temperature[25]. The fibers were then annealed at 75 oC for 6-8 hours to completely evaporate the 
solvent. The thickness of the coating was in the order of 20-40 nm, measured by scanning electron 
microscopy (SEM). Figure 2 shows the SEM image of a F2 suspended core fiber coated with 
MEH-PPV. 
 
The uniformity of the polymer coating was estimated using a Typhoon 8600 variable-mode imager that 
creates a map of fluorescence intensity across the entire surface of a coated fiber sample, as shown in 
Figure 3 along with the extracted fluorescence intensity for a cross-section running along the length of 
the fiber. This measurement was performed using 532 nm excitation light and collecting through a 560 
nm long-pass filter for a 16 cm piece of fiber. The fluorescence intensity variation is a result of changes 
in the polymer thickness, with a standard deviation for the fluorescence intensity along the length of the 
fiber of 34%. This calculation excludes the edges of the fiber, which were cleaved prior to actual 
measurements. 

2.3 Experimental setup 
Figure 4 shows the experimental setup used for fluorescence measurements. Continuous wave (CW) 
light from a 488nm Ar+ laser was reflected off a long-pass filter (Semrock 488 nm long-pass Razor 
Edge Ultra steep) and coupled into the F2HT suspended core fiber using a 40x microscope objective. A 
Thorlabs MC-2000 optical chopper was used, set to a frequency of 1.5 kHz, in order to slow down the 
optical bleaching of the fluorophore. After cleaving to achieve good facet quality at the ends of the 
fiber, a 16 cm length of suspended core fiber was used, resulting in a total sampling volume of 27 
nL(the diameter of the air void is about 6.4μm). When one end of the fiber was dipped into the sample, 
capillary forces drew the liquid into the voids along the length of the fiber. Fluorescence could be 
detected at either end of the fiber, although backward detection provided the convenience of 
single-ended devices and an improved signal-to-pump ratio[24]. The fluorescence signal from the fiber 
was collected in backscattering mode through the long pass filter and recorded during and after the 
filling process (~4 mins) by a fiber-coupled cooled-CCD spectrometer (Horiba Jobin-Yvon iHR320). 
Measurements were also performed on fibers filled with pure acetone to evaluate the background level 
of the system. 
 

3. Results and discussions 

3.1Fluorescence emission spectra 

Figure 5 shows the fluorescence spectra when the fiber was exposed to 12.6ppm DNB throughout a 
standard measurement. The spectra show broad fluorescence from MEH-PPV with an emission peak at 
565 nm as well as a sharp peak at 510 nm due to the Raman peak of F2HT glass. The polymer’s 
fluorescence naturally decays slowly due to photo-induced oxidation [27] and the rate at which it does 
so when exposed to pure acetone was used as a baseline. After filling of the fiber with DNB solution 
the fluorescence intensity decreased at a faster pace as a function of exposure time due to quenching by 
the DNB molecules. For a 12.6 ppm solution of DNB in acetone, the decrease in fluorescence intensity 
after 60 s was 35% and after 210 s it had been further reduced by 61%.  

3.2 Quantification and detection limits 
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The fluorescence spectra were integrated across all wavelengths to extract a value for the integrated 
fluorescence intensity value at regular time intervals. The resulting plot of fluorescence intensity as a 
function of measurement time demonstrates a decay behavior, as shown in Figure 6 for a DNB 
concentration of 12.6 ppm. The data for the time-dependent fluorescence intensity I(t) were fitted using 
a single exponential decay equation of the form 

        (Eq. 1) 

where I0 is the initial value of fluorescence intensity, τ is the fluorescence decay lifetime and c is an 
offset constant. As shown in Figure 6 this equation shows a good fit with the experimental data 
(R2=0.996). Different concentrations of DNB are expected to result in different decay dynamics and 
hence different values of τ that can then be correlated to the DNB concentration. 
 
Figure 7 shows the relationship between the fluorescence life time of the MEH-PPV coated fibers, 
calculated using Eq. 1, and DNB concentration in the range of 0 ppm (pure solvent) to 37.8 ppm. From 
this figure we can see that the detection limit of the system is 6.3 ppm (30 μM) which is comparable to 
the limits of detection of 30.1 and 40.7 μM for DNT and TNT respectively by using a 
fluorescent-labeled imprinted polymer[28]. In addition, changes in the absolute value of fluorescence 
intensity, i.e. as a result of laser power fluctuations, do not affect the quantification of explosives, 
resulting in a more robust and reliable senor than techniques that are more sensitive but rely on 
absolute fluorescence intensity changes[29]. Further enhancement to the lowest detection limit could be 
achieved by metal surface enhanced fluorescence[30], which ultilizes surface plasmon effects to 
enhance the fluorescence intensity of the fluorophores and make them resistant to photobleaching[31]. 
 
 
3.3 Reproducibility 
Three pieces of fiber coated under identical conditions were exposed to the same concentrations of 
DNB in acetone (6.3 ppm) at room temperature for four minutes. The emission spectra were recorded 
and decay times were obtained by fitting the exponential curves, as shown in Table 1. 
The standard deviation for the fluorescence lifetime values at the sensor’s detection limit of 6.3 ppm 
for three pieces of fibers was 10.3% which allowed the system to easily distinguish between different 
concentrations of DNB in acetone. These fluctuations can be attributed to slight changes in the polymer 
coating layer thickness and uniformity along the length of the fiber between different samples (the 
variability in the coating process is apparent in Figure 3). 

4. Conclusions 
 
In this work we have successfully demonstrated a sensing platform combining a suspended core optical 
fiber with fluorescence quenching of conjugated polymers by nitroaromatic explosives. The 
fluorescence intensity from a suspended core fiber internally coated with MEH-PPV was recorded over 
a period of a few minutes after filling with DNB in acetone. By fitting the fluorescence intensity as a 
function of time with a mono-exponential decay equation the fluorescence lifetime was used to 
determine the concentration of nitroaromatic compound DNB. The system is capable of detecting DNB 
in solution with limits of detection of 6.3 ppm without relying on absolute fluorescence intensity 
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changes but by analyzing the dynamics of fluorescence quenching. These results highlight suspended 
core fibers as sensors with great promise for small volume, real time identification and quantification 
of trace quantities of explosives in solvents.  
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Table caption 

Table 1.Fluorescence decay lifetimes for three pieces of F2 fiber coated with MEH-PPV and exposed 
to 6.3ppm DNB in acetone for four minutes. 

Figure captions 

Figure 1. Normalized absorbance spectra of MEH-PPV in different organic solvents. The inset shows 
the molecular structure of MEH-PPV. 

Figure 2. SEM image of the inner walls of a F2 suspended core fiber internally coated with MEH-PPV. 
The inset shows a wide-angle view of the same fiber. 

Figure 3. Fluorescence intensity of a MEH-PPV layer coated around the core of an exposed core fiber 
as a function of fiber position. The inset shows the raw image from the Typhoon imager for 532 nm 
excitation and collection through a 560 nm long-pass filter. 

Figure 4. Experimental setup for detection of DNB in acetone solutions using MEH-PPV coated 
suspended core optical fibers. 

Figure 5. Time-dependent fluorescence spectra (excitation at 488 nm) of a F2HT suspended core fiber 
internally coated with MEH-PPV after exposure to a 12.6 ppm DNB acetone solution at room 
temperature. 

Figure 6. The integrated fluorescence intensity from a suspended core fiber internally coated with 
MEH-PPV after exposure to a 12.6ppm DNB solution for four minutes. 

Figure 7. Fluorescence decay lifetime of MEH-PPV coated suspended core optical fibers for different 
concentration of DNB in acetone. 
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Sample number 1 2 3 Average Std. dev. 

τ (s) 99.9 82.3 86.6 89.6 9.2 
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Highlights 

• Suspended core microstructured optical fiber explosives sensor in nanolitre volumes 

• Suspended core coated with conjugated light-emitting polymer MEH-PPV 

• Sensing based on fluorescence quenching dynamics 

• Identification and quantification of nitroaromatic explosives 

• Detection limit of 6.3 ppm for 1,4-dinitrobenzene (DNB) in acetone solution 
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