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Highlights 
 

 Label-free optical biosensor based on multifunctional silica colloidal assembly (SCA) 

 Effective optical thickness is highly sensitive to biomolecules within the nanostructure 

 SCA acts as a size-exclusion element to entrap and to concentrate enzymatic degradation products 

 Biosensor can be coupled to downstream mass spectrometry analysis 

 

ABSTRACT: An optical biosensor for rapid monitoring of proteolytic activity is constructed by immobilization of 

proteases onto multifunctional silica colloidal assembly (SCA). The SCA serves as Fabry-Pérot thin film, which is 

highly sensitive to the presence of biomolecules (e.g., enzymes, proteins and short peptides) within the nanostructure. 

Moreover, the SCA acts as a size-exclusion element, allowing to entrap and to concentrate the enzymatic degradation 

products for downstream mass spectrometry analysis for substrate profiling and cleavage sites identification. 

KEYWORDS: Biosensors, Colloidal Assembly, Enzyme, Protease, Mass Spectrometry, Silica,  
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Silica colloidal crystals have been recently used in a variety of applications including drug delivery systems, 

chemical sensors, biological nanoreactors and bioseparations [1-6]. These emerging applications are facilitated by the 

ability to selectively control the molecular transport within the highly porous nanostructure of silica colloidal crystals 

by modifying their surface and by varying the pore size, which can be achieved by changing the nanosphere diameter 

[7]. Colloidal crystals are produced by self-assembly of silica nanospheres into a close-packed face-centered cubic 

(fcc) lattice, presenting a highly ordered three-dimensional (3D) array with interconnected nano-scale pores [8-10]. 

These tunable architectures are attractive for the construction of versatile platforms for optical biosensing applications 

[1, 2, 11, 12].  

In the present work, we describe the design and fabrication of a simple optical biosensing platform based on silica 

colloidal assembly (SCA) that offers rapid monitoring of proteolytic activity. Identifying protease substrate repertoire 

is important for understanding the functions of protease enzymes, revealing their biological roles, and generating lead 

compounds for new therapies [13-16]. As a proof of concept, trypsin, one of the most widely used enzymes for peptide 

mapping [17], was immobilized onto the suryface of the SCA using standard silane chemistry. Specific interaction of 

protein substrates with trypsin molecules produced short peptides that infiltrated into the SCA nanostructure, which 

acted as Fabry-Pérot thin film [18]. This immediately translated into a shift in the reflectivity spectrum of the SCA, 

owing to the change in their effective optical thickness (EOT) [19]. The latter equals 2nL, where n is the effective 

refractive index of the porous film and L is its physical thickness [20, 21]. Subsequently, the retrieved proteolytic 

reaction products were analyzed by common proteomic methods for substrate profiling and cleavage site 

identification. 

2. Fabrication 

In order to prepare the nanoporous SCA films, 230±20 nm silica spheres, synthesized using the Stöber method 

[22], were assembled into ordered colloidal films by vertical deposition onto a silicon wafer substrate. Figure 1 

presents high-resolution scanning electron microscopy (HRSEM) images of a typical SCA and Figure S1 

(Supplementary Material) depicts the corresponding image of the film. The cross-sectional micrograph of the SCA 

shows ~ 5 µm thick film, comprising of close-packed silica spheres. The film is characterized by a nanoporous 

structure with interconnecting interstitial spaces. The top-view micrograph (inset Figure 1) reveals the void space 

between the hexagonal closely packed silica spheres, which may allow infiltration of molecules/biomolecules into the 

SCA porous structure. It should be noted that occasional point defects within the fcc nanostructure were present, but 

did not persisted beyond one or two layers of the SCA [23]. Additional information as noted in the text is in the 

Supplementary material section. 

3. Results and discussion 

The optical properties of the resulting SCA were investigated using reflective interferometric Fourier transform 

spectroscopy (RIFTS) [24]. The film was fixed in a custom-designed cell to assure that the reflectivity was collected 

at the same spot during all the measurements. RIFTS is highly sensitive to small changes in the average refractive 

index of the thin-film, allowing for direct and real-time monitoring the binding/infiltration of different species to the 

pore walls/voids [20, 25-28]. A change in the average refractive index, e.g., infiltration of enzymatic reaction products 

or/and binding of target analyte onto the porous scaffold, leads to a red shift in the observed reflectivity spectrum that 

correlates with EOT changes [21, 29].  

To demonstrate the applicability of the SCA as an optical sensor platform it was exposed to a model analyte 

solution (5 µL ethanol), which immediately resulted in a significant reflectivity spectra change (Figure 2a), that 

correlates to an EOT increase from EOTair 16,990 nm to EOTEtOH 18,690 nm (Figure 2b). The resulting EOT increase 

provided a direct measurement of the pore filling, which confirmed the SCA’s potential as an optical platform for 

biosensing applications [1, 2].  

Once the optical properties of the SCA thin-film were validated, we anchored enzymes onto the surface of SCA 

using a well-established methodology.[30] Briefly, SCA was first aminated by 3-aminopropyl-(triethoxyl)silane 

(APTES), see Figure 3b, with the aid of an organic base, diisopropylethylamine, followed by treatment with glutaric 

di-aldehyde (GluAld) to obtain an activated surface (Figure 3c). In the final step, primary amines on the exterior of 

trypsin or horseradish peroxidase were used for the immobilization onto the surface via the second reactive group of 

the GluAld (Figure 3d). Trypsin, one of the biologically relevant proteases for peptide mapping [17, 18], was selected 

as a model protease enzyme. 

It should be noted that the SCA film allows proper infiltration of the biomolecules into the colloidal nano-scale 

pores (Figure 1, inset) [4]. Thus, it is expected that the chemical modification of the SCA surface will induce a red 

shift in the EOT, upon introducing different species onto the nanostructure [19]. Indeed, Figure 3e shows significant 

relative EOT changes after each of the described immobilization steps (APTES, GluAld and trypsin that are 
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normalized with respect to the EOT value of the unmodified SCA,) revealing the sensitivity of RIFTS technique as a 

rapid, simple and label-free detection method for small molecules as well as  biomacromolecules [21]. The 

immobilization of the enzyme molecules onto the SCA was also confirmed by the fluorescence labeling followed by 

observation of the surfaces under a fluorescence microscope (see Figure S2 in the Supporting Information for details).  

Once we showed that a successful biofunctionalization was achieved, we investigated the catalytic activity of 

trypsin by introduction of a fluorescently-labeled substrate and subsequent confocal laser scanning microscopy 

(CLSM) imaging. Trypsin-modified SCA was exposed to fluorescein thiocarbamoyl-labeled casein (FTC-casein) 

solution, allowed to react for 30 min, thoroughly washed and monitored under the microscope. As a control, 

horseradish peroxidase (HRP), a non-protease enzyme, was immobilized onto the SCA and the resulting film was 

subjected to a similar FTC-casein treatment. Figure 4 shows CLSM 3D projection images of both enzyme-modified 

SCA following their exposure to fluorescein-tagged substrate and the fluorescence intensity values calculated by 

image analysis of the CLSM data. The CLSM projection was conducted in the z direction from the upper surface into 

the pores over the depth of ~ 5 µm with a scanning step of 0.35 µm. Figure 4a shows significant fluorescence intensity 

throughout the entire volume of the porous scaffold, revealing that the proteolytic enzymes remain catalytically active 

by producing digestion products (FTC-casein peptides), and releasing fluorescence quenching on the substrate initial 

state [31]. The CLSM image of the HRP-modified SCA (Figure 4b) depicts insignificant fluorescence of the substrate. 

The calculated fluorescence intensity values for trypsin-modified SCA is 5-fold higher than that for the control, HRP-

modified SCA (Figure 4c), confirming that the selectivity and the sensitivity of the conjugated proteases are preserved 

following surface immobilization. 

Next, we demonstrate the application of our label-free RIFTS technique for monitoring the catalytic activity of 

trypsin. Trypsin-modified SCA was incubated with a substrate solution (i.e., myoglobin) while reflectivity spectra 

were collected at different time points and the corresponding EOT values were calculated. Figure 5a shows the relative 

EOT changes upon myoglobin introduction onto trypsin-modified SCA at two-time periods (following 1 and 2 h of 

incubation in room temperature). A red shift in the relative EOT is observed (Figure 5a) and a significant increase in 

the EOT with time, providing a direct measure of the digestion products and the myoglobin concentration inside the 

porous scaffold. For the control HRP-modified SCA (non-protease enzyme), exposed to a similar myoglobin solution, 

a small increase in the EOT values after 1 h of incubation (Figure 5a), resulting from myoglobin infiltration and 

adsorption unto the SCA nanostructures [18], while further incubation induced no significant EOT changes with 

respect to the previous step (t-test, p>0.05), as opposed to the trypsin reaction with the substrate (t-test, p<0.05). These 

results show that that the second increase in the EOT for trypsin-modified SCA can be attributed to the accumulation 

of the digestion products within the nanostructure, a result absent for the control HRP-modified SCA, as no fragments 

were obtained, demonstrating the specificity of our biosensor for monitoring proteolytic activity by RIFTS technique. 

Next, both of the enzyme-modified SCA were thoroughly washed HEPES (4-(2-hydroxyethyl)-piperazine-1-

ethanesulfonic acid) buffer to retrieve myoglobin residuals, which resulted in a blue shift in the relative EOT. HRP-

modified SCA showed a complete removal of myoglobin and its fragments from the nanostructure, as the 

corresponding EOT returned to its initial values (after enzyme immobilization, t-test, p>0.05). On the other hand, the 

EOT value for trypsin-modified SCA following buffer did not return to its initial value (t-test, p<0.05), which we 

attribute to the presence and entrapment of residual digestion products within the porous scaffold [18, 24]. These 

results clearly demonstrate the simplicity of our biosensing platform to monitor the retrieval of the generated peptides 

form the SCA for downstream/consecutive analysis.  

Finally, the myoglobin peptide fragments generated in the previous experiment (trypsin-modified SCA reaction 

followed by buffer wash) were sequence identified by proteomic analysis by liquid chromatography-tandem mass 

spectrometry (LC-MS/MS) to determine substrate specificity and identify the protease’s cleavage sites. Figure 5b 

shows distinctive sequence results of myoglobin peptide fragments after trypsin digestion under native conditions. As 

expected, all identified peptides contain lysines and arginines in their N-terminal according to the trypsin cleavage 

profile. While for the samples collected from the washing step of HRP-modified SCA, no peptides were detected. 

These results are in agreement with the RIFTS experiments, highlighting our protease-immobilized biosensing 

platform as a general experimental methodology that can be coupled prior to downstream MS proteomic analysis [18, 

32]. 

4. Conclusion 

An optical biosensing platform was designed for label-free detection of enzymatic activity of proteases, using a 

simple and portable experimental setup. We used a silica colloidal assembly as Fabry-Pérot thin film, which is highly 

sensitive to the presence of small and/or biomacromolecules within the highly porous nanostructure. For biosensor 

design, the SCA may present a major advantage over conventional techniques by selectively controlling the molecular 
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transport within the nanostructure (i.e., by acting as a size-exclusion element), which may allow entrapping and 

collecting the proteolytic reaction products prior to downstream proteomic analysis. The “proof-of-concept” 

biosensing scheme presented in this work can be further extended as a generic screening methodology of diverse 

enzymes, for example to analyze various proteases of interest. 
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Figures 

Figure 1. HRSEM images of a typical SCA. The cross-sectional micrograph depicting closely packed layer with a thickness of 

5µm. Inset: a top view of the hexagonal nanostructure. 
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Figure 2. A schematic illustration of a reflectivity-based SCA sensing concept using a model analyte (i.e., EtOH). (a) Reflectivity 

spectra of a typical SCA, which are measured in air and EtOH (blue and red traces, respectively). (b) Fast Fourier transformation 

(FFT) of these spectra leads to single peaks, whose position and magnitude are monitored in real-time upon analyte solution 

introduction. Introduction of ethanol induces an increase the average refractive index of the porous structure, leading to a red-shift 

in the EOT value. 

 

Figure 3. A schematic illustration of the synthetic steps followed for enzyme immobilization onto the SCA: (a) unmodified SCA; 

(b) APTES-modified surface; (c) GluAld-modified surface and (d) Trypsin-modified surface. Note: the enzymes were immobilized 

throughout the entire SCA scaffold surface. (e) The corresponding relative EOT changes upon the biofunctionalization steps onto 

SCA. Note: the EOT values obtained after each modification step were normalized with respect to the EOT value of the unmodified 

SCA (termed as EOT0). 
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Figure 4. Confirmation of proteolytic activity of the SCA immobilized enzymes. CLSM 3D projection images of FTC-casein 

fragments after reaction with (a) trypsin-modified SCA and (b) HRP-modified SCA. The scale bar is 20 µm. (c) Fluorescence 

intensity values of the corresponding CLSM data obtained using the Imaris software. The porous film boundaries were validated 

by monitoring the blue signal (λem = 405 nm) resulting from the photoluminescence of the oxidized nanostructure (data not shown). 

Note: the photoluminescence of the porous nanostructure results from the combination of quantum confinement effect and surface 
chemistry.  

 

Figure 5. (a) Relative EOT changes upon enzymes (trypsin and HRP) biofunctionalization onto the SCA, proteolytic cleavage of 

myoglobin (after 1 and 2 h, respectively) and product retrieval by HEPES buffer wash. Note: the EOT values obtained after each 

modification step were normalized with respect to the EOT value of the unmodified SCA scaffold (termed as EOT0). (b) Amino 

acid sequence of myoglobin after trypsin digestion. Sequences in red reflect the peptides identified by LC-MS/MS analysis. 

*Significantly different (t-test, p<0.05). 
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