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A B S T R A C T   

Two-dimensional transition metal carbides/nitrides, known as MXenes, have recently received significant 
attention for gas sensing applications. However, MXenes have strong adsorption to many types of volatile organic 
compounds (VOCs), and therefore gas sensors based on MXenes generally have low selectivity and poor per
formance in mixtures of VOCs due to cross-sensitivity issues. Herein, we developed a Ti3C2Tx-based virtual sensor 
array (VSA) which allows both highly accurate detection and identification of different VOCs, as well as con
centration prediction of the target VOC in variable backgrounds. The VSA’s responses from the broadband 
impedance spectra create a unique fingerprint of each VOC without a need for changing temperatures. Based on 
the methodologies of principal component analysis and linear discrimination analysis, we demonstrate highly 
accurate identifications for different types of VOCs and mixtures using this MXene based VSA. Furthermore, we 
demonstrate an accuracy of 93.2% for the prediction of ethanol concentrations in the presence of different 
concentrations of water and methanol. The high level of identification and concentration prediction shows a 
great potential of MXene based VSA for detection of VOCs of interest in the presence of known and unknown 
interferences.   

1. Introduction 

Gas sensing has attracted considerable research interests in recent 
years [1–3], and sensitive and selective gas detection becomes critical in 
agriculture, pollution monitoring, food quality assurance, and medical 
diagnosis [4–6]. In particular, detection of volatile organic compounds 
(VOCs) in exhaled breath of human is regarded as a promising method 
for early diagnosis of illness [7]. Around 200 VOCs have been detected 
in human breath and their contents reflect the person’s physical con
ditions [8]. Accordingly, gas sensors are required not only to sensitively 
detect an individual VOC but also to effectively distinguish different 
VOCs and quantify the specific target VOC in the presence of a complex 
background. 

Typically, a sensing material is deposited on the gas sensor and the 
properties of this sensing layer greatly affect the responses of gas sen
sors. Two-dimensional (2D) materials [9], such as graphene [10,11], 
MoS2 [12,13], and black phosphorus (BP) [14] are among the most 
promising materials for gas sensing applications, because of their large 

surface area, versatile surface chemistry, and capability of sensitive 
detection at room temperature. Recently, gas sensors based on a new 
family of 2D materials called MXene have also shown promising per
formance [15,16]. 

MXenes, with a molecular formula of Mn+1XnTz, are generally syn
thesized by etching the intermediate layer (A) of a Mn+1AXn phase 
[17–19], in which M, A, X, and T represent transition metal (e.g., tita
nium, vanadium), intermediate element (e.g., aluminum, silicon), C or N 
element, and surface group (e.g., OH-, F-), respectively. As one of the 2D 
transition metal carbides/nitrides, MXenes possess a metallic conduc
tivity, while their surfaces are covered with functional groups. Such a 
good combination makes MXene based gas sensors having ultrahigh 
signal-to-noise ratios and low limit of detection (LOD) compared with 
those based on the other 2D materials [20]. Interestingly, it was also 
reported that Ti3C2Tx based gas sensors show a better response to VOCs 
over the oxidizing gases [21]. 

However, MXenes have strong adsorptions to many types of VOCs. 
Currently most MXene based sensors are based on measurements of 
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changes in their electrical resistances (or often called chemiresistors), 
but they are ineffective for sensing of VOC mixtures due to issue of cross- 
sensitivity [22–24]. The selectivity of these MXene based sensors re
mains a key challenge. The poor selectivity of individual conventional 
sensor can be mitigated through combining sensors into arrays, which is 
sometimes referred as an “electronic nose” [25,26]. However, increasing 
number of sensors in the sensor array increases the power consumption 
and complicates the device’s circuitry and computation [27]. Addi
tionally, the higher the number of sensing elements, the higher the 
chances of breakdown for the sensor array [28]. 

To overcome these drawbacks, a recent breakthrough comes from 
the virtual sensor array (VSA), in which one individual sensor can be 
used to generate multi-dimensional signals similar to those produced by 
the electronic nose [29]. These multi-dimensional signals could produce 
unique responsive patterns for different VOCs [30]. To facilitate accu
rate identification of each VOC, pattern recognition techniques, such as 
principal component analysis (PCA) [27], linear discriminant analysis 
(LDA) [31], and partial least squares (PLS) [29] are often applied. These 
reported VSAs are mostly relied on varying the temperature of the 
sensing element to overcome cross-sensitivity of those sensors based on 
the measurement of resistance (or capacitance) [32–34]. Nevertheless, 
the time to reach the targeted temperature is often too long for many 
real applications. Besides, a permanent change of material properties for 
the sensing layer may occur when temperature cycling is applied. 

Currently most gas sensors only detect changes of a single property 
(e.g., resistance or capacitance) of the sensor, whereas changes of other 
electrical properties from the sensors are often ignored, thus resulting in 
a significant loss of valuable information. The impedance spectra mea
surement is possible to provide electric properties of a bulk and an 
interface which we cannot easily obtain from direct current (DC) signals 
[35]. On one hand, impedance spectra have usually been used to analyze 
the electrical process of gas sensors and understand the gas sensing 
mechanism [36]. On the other hand, they are rarely used for quantita
tive sensing, just like resistance or capacitance measurements. The 
impedance spectra of VOC sensors can be used to distinguish different 
types of VOCs. For example, Liu et al. have detected impedance changes 
using a gas sensor at different frequencies of 19.9 kHz and 2.1 kHz, 
respectively, and managed to distinguish between formaldehyde and 

acetone [37]. 
Herein, we propose a Ti3C2Tx based VSA which allows highly accu

rate detection and identification of different types of VOCs, as well as 
estimation of concentration for a single VOC within a multiple VOCs 
mixture. In this method, we deposited a thin film of Ti3C2Tx on the 
surface of an interdigital electrode (IDE) to form a VSA, which was then 
exposed to a range of different VOCs with various concentrations at 
room temperature. The broadband impedance spectra of the Ti3C2Tx 
based VSA were obtained at various conditions. They were then used as 
the inputs for supervised and unsupervised machine learning, and the 
impedance responses from the VSA obtained at different frequencies 
were analyzed systematically using PCA, LDA, and PLS regression. The 
high accuracy of identification and concentration estimation shows the 
potential of MXene based VSAs for detection of VOCs in the presence of a 
variable background. To the best of our knowledge, this is the first report 
of a VSA based on MXene and broadband impedance spectra. 

2. Experimental section 

2.1. Fabrication of MXene based VSA 

A schematic illustration of the fabricated Ti3C2Tx based sensor is 
shown in Fig. 1a. The sensor was prepared by covering the fabricated 
IDE with a layer of Ti3C2Tx. Two atomic layers of carbon were sand
wiched between three atomic layers of titanium in the Ti3C2Tx structure. 
With a typical synthesis method, we expect that the surface of Ti3C2Tx 
would be randomly terminated with hydroxyl (–OH), oxygen (− O), and 
fluorine (–F) groups [15]. Detailed synthesis processes of Ti3C2Tx have 
been presented in S1 of Supplementary Material. An IDE was made on 
Al2O3 ceramic substrate (5 mm × 5 mm) with 11 pairs of interdigitated 
Au/Ni/Cu electrodes (thicknesses of 10 μm/4 μm/ 1 μm). The distances 
among Au strips and their widths were both 100 μm. A dispersion (20 
μL) of Ti3C2Tx in deionized water with a concertation of 0.05 mg/mL 
was dropped on the prepared IDEs and dried in a vacuum chamber, thus 
forming a sensing layer. 

Fig. 1. Schematic illustration and morphological characterization of the Ti3C2Tx film. (a) Schematic illustration of the Ti3C2Tx film based sensor. (b) SEM 
image of the Ti3C2Tx based sensor surface. (c) Cross-section view of the Ti3C2Tx film. (d-g) Elemental mapping analyses of Ti3C2Tx film: (d) Ti, (e) C, (f) O, (g) F. 
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2.2. Material characterizations 

A field emission scanning electron microscope (FE-SEM; SU-8100, 
Hitachi) equipped with an energy dispersive X-Ray spectrometer (EDS; 
X-max80, Oxford) was used to study the surface morphology of the 
produced sensing film and distribution of elements. The thickness of the 
MXene film was measured using a profilometer (KLA/Tencor D-100). An 
X-ray diffractometer (MAXima XRD-7000, Shimadzu) was used for X-ray 
diffraction (XRD) analysis. X-ray photoelectron spectroscopy (XPS, 
Escalab 250Xi, Thermo Fisher) was used to characterize the chemical 
components and chemical bonding structures of the Ti3C2Tx film. XPS 
analysis was conducted through curve fitting and calculations using 
Gaussian–Lorentzian method. 

2.3. Gas sensing system 

A schematic illustration of VOC sensing experimental setup is shown 
in Fig. S1. The sensing experiment was performed at room temperature 
(25℃). The sensing performance was investigated by exposing the 
Ti3C2Tx based VSA to various concentrations of the targeted VOCs. The 
desired VOC concentration was obtained by injecting the required 
quantity of anhydrous liquid analytes into a sealed glass container using 
a microliter syringe. The concentrations of targeted VOCs in the cham
ber were calculated using the following equation [38,39]: 

C =
22.4ρTVs

273MV
× 1000 (1)  

where C is the concentration of the gaseous VOC at the room tempera
ture (ppm), ρ is the density of anhydrous liquid VOC (g⋅ mL− 1), T is the 
testing temperature (K), Vs is the volume of anhydrous liquid VOC (μL), 
M is the molecular weight of a VOC (g⋅ mol− 1), and V is the volume of the 
glass container (L) filled with the VOC. In this work, taking ethanol as an 
example, the values of M, ρ and T are 46 g⋅ mol− 1, 0.789 g⋅ mL− 1 and 298 
K, respectively. Dry air was supplied from an air cylinder and the 
container was cleaned by dry air flow at room temperature before doing 
each gas sensing test. The broadband impedance spectra (with fre
quencies from 20 Hz to 2 MHz) were measured using an LCR meter 
(Keysight E4980A). The response was defined as the relative change in 
the impedance of the VSA after exposure to VOCs compared to the 
baseline impedance (ΔR (X) /R0 (X0) (%)). Response and recovery time 
can be defined as the time from when the impedance starts to change 
until the impedance reaches 90% of its final value. The LOD value, i.e. 
the lowest concentration of target gas that can be distinguished from the 
common atmosphere, was calculated based on the signal-to-noise ratio 
(S/N > 3). 

2.4. Analysis of Ti3C2Tx based VSA data 

Predictive models were developed using eight representative pa
rameters obtained from the broadband impedance spectra, i.e. using the 
resistance values at 20 Hz, 336 kHz, 2 MHz and the reactance values at 
189 kHz, 299 kHz, 710 kHz, 1.19 MHz, 2 MHz. First, PCA was applied 
for classification of multivariate data and reducing the dimensionality of 
the original data set. PCA is a powerful unsupervised analysis tool that 
basically projects the data points into a new coordinate system, whose 
coordinates account for the largest variance in the original data [27]. It 
allows a qualitative survey of the discriminating power of the VSA. The 
LDA was performed as a supervised pattern recognition tool meaning 
that the correct classification is known for each object [31]. The resul
tant principal components in the PCA were used as input variables to the 
LDA to quantitatively identify different test analytes. A cross-validation 
method was used to estimate the identification. To quantify concentra
tions of individual vapor in a mixture, we applied PLS with five latent 
variables (LVs). The PLS determines correlations between the indepen
dent variables (ethanol concentration) and the VSA’s response by 

finding the direction that explains the maximum variance of the inde
pendent variables in the multidimensional space of the sensor response 
[29]. Multivariate data processing (PCA, LDA and PLS) was carried out 
using MATLAB programs in this study. 

3. Results and discussion 

3.1. Material characterizations 

Surface morphology of the Ti3C2Tx based sensor is shown in Fig. 1b 
and optical microscope images of the obtained sensor are shown in 
Figs. S2a and S2b, which reveal a uniform layer of the deposited Ti3C2Tx. 
The thickness of the MXene films on the surface of three devices is about 
240 nm, as shown in Fig. S2c, indicating a good repeatability. A cross- 
sectional SEM image of the Ti3C2Tx film is shown in Fig. 1c, which is 
produced through vacuum filtration of the same Ti3C2Tx solution used 
for the sensor fabrication. The observed layered structure is due to the 
ordered stacking of individual layers of Ti3C2Tx, which results in 
increased surface-to-volume ratio, potentially contributing to a large 
sensing response. Fig. 1d to g show the EDS analysis of the deposited 
Ti3C2Tx film. The core elements (Ti, C) and surface elements (O, F) are 
evenly distributed across the entire film. These results indicate a uni
form deposition of Ti3C2Tx on the device surface. 

XRD measurements of the Ti3C2Tx film reveal a sharp peak at 2θ =
6.7◦ as shown in Fig. 2a. There are no peaks related to Ti3AlC2 in MAX 
phase, indicating that Ti3C2Tx was successfully transformed from 
Ti3AlC2. This sharp peak corresponds to the (002) peak of Ti3C2Tx with a 
center-to-center distance of 13.3 Å. Given the thickness of one atomic 
layer (~10 Å), the free interlayer spacing is roughly 3.3 Å, which is in a 
good agreement with the previously reported results [40]. 

Fig. 2b to d show a set of high-resolution XPS spectra (Ti 2p, C 1s, O 
1s) of Ti3C2Tx. The Ti 2p spectrum (Fig. 2b) can be fitted with four 
doublets (Ti 2p1/2, Ti 2p3/2) with an area ratio of 1:2, and the doublet 
separation is 5.8 eV. The binding energies of Ti–C (Ti+), Ti–X (Ti2+), 
TixOy (Ti3+), and TiO2 (Ti4+), are 454.88, 455.85, 457.42, and 459.05 
eV, respectively. The Ti–X corresponds to sub-stoichiometric titanium 
carbides or titanium oxy-carbides, which is in a good agreement with 
previous XPS studies [20]. The C 1s spectrum shown in Fig. 2c can be 
deconvoluted into four peaks centered at 281.66, 284.8, 285.41, and 
288.7 eV, corresponding to C–Ti, C–C, CHx/CO and –COO, respec
tively [41]. The O 1s spectrum in Fig. 2d can be deconvoluted into four 
peaks centered at 529.77, 531.57, 533.6, and 533.92 eV, corresponding 
to TiO2, sub-stoichiometric TiOx, Ti–OH, and adsorbed H2O on the 
surface, respectively [20]. These results confirm that the surface of the 
Ti3C2Tx nanosheet is indeed terminated by many types of functional 
groups (–OH, –O, –F, etc.), facilitating its adsorption of VOCs. 

3.2. Dynamic VOC sensing 

The resistance responses of the sensor operated at 20 Hz with the 
continuous changes of ethanol concentrations were firstly investigated. 
The resistance values were continuously recorded with a time interval of 
1 s and the data showed a good tracking performance of the sensor as the 
ethanol concentration was continuously changed, as indicated in Fig. 3a. 
The short-term repeatability performance of the Ti3C2Tx based sensor 
operated at 20 Hz was further studied by repeatedly changing the 
ethanol concentration between 0 and 100 ppm, and the results are 
shown in Fig. 3b. The short-term repeatability performance of the sensor 
operated at other frequencies are shown in Fig. S3. A good repeatability 
was obtained over several cyclic tests at all frequencies. The response 
and recovery speeds of the sensor were investigated by rapidly changing 
the ethanol concentration between 0 and 100 ppm, and detailed 
response and recovery processes of the sensor are shown in Fig. 3c and d. 
According to the definitions mentioned previously, the response and 
recovery times of the sensor are 59 s and 71 s, respectively. The resis
tance values of the sensor operated at 20 Hz were further recorded when 
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the ethanol concentration was fixed at different levels (i.e., 100 ppm and 
200 ppm), as shown in Fig. 3e. There is only a very small fluctuation in 
the resistance values. Fig. S4 shows fluctuations in the impedance of 
sensor operated at different frequencies when the concentration of 
ethanol is zero. Theoretical LOD values of the sensor to ethanol are 862 
ppb, 780 ppb, 791 ppb, respectively, obtained based on the values of 
resistance at 20 Hz, reactance at 299 kHz, and reactance at 2 MHz, 
respectively. 

Fig. 3f displays the responses of Ti3C2Tx based sensor exposed to 
different VOCs, i.e., 100 ppm of methanol (MeOH), ethanol (EtOH), 
acetone, isopropanol (IPA), acetonitrile (MeCN), dichloromethane 
(DCM), hexane, and toluene (TOL). Prior to exposure to the target VOCs, 
the sensor was exposed to dry air for at least 10 min, in order to stabilize 
the baseline impedance. Then the sensor was exposed to the target VOCs 
for 150 s. The Ti3C2Tx based sensor display all positive changes of the 
resistance, indicating that the channel of charge carrier transport was 
hindered when VOC molecules were adsorbed. 

3.3. VOCs fingerprints and working principle of VSA 

The Ti3C2Tx based VSA was exposed to eight different VOCs as 
mentioned above with different concentrations from 100 ppm to 800 
ppm, and the broadband impedance spectra were measured. Based on 
the impedance spectra obtained, we selected eight representative pa
rameters mentioned above as the VOC characteristics. 

A data set of impedance responses can be directly used as a VOC’s 
unique fingerprint by collecting changes of the eight parameters in 
different VOC concentrations, which is shown in Fig. S5. Resistance 
values at 20 Hz, 336 kHz, 2 MHz and reactance values at 189 kHz, 299 
kHz exhibit positive responses, whereas the reactance values at 710 kHz, 
1.19 MHz, 2 MHz exhibit negative responses on exposure to different 
VOCs. In addition, the response amplitudes of all the sensing parameters 
increase as the concentrations of VOCs are increased. The increasing 
slope is much higher at a low concentration of the VOCs. Apparently, 
different VOCs lead to different response patterns as shown in Fig. S5, 
which provides the critical information for a simple and straightforward 
identification of a specific type of VOC. 

In order to visualize the unique response patterns of different VOCs, 
the changes of different characteristic parameters versus different VOC 
concentrations are depicted in a contour plot, as shown in Fig. 4. It 
clearly shows that a discernable discrepancy exists between the patterns 
of different VOCs. Therefore, we can confirm that the multi-parameters 
sensing responses create a unique fingerprint for each VOC, which can 
then be used for identification of the type of VOC. 

The experimental Nyquist curve over a frequency range of 20 Hz-2 
MHz of the proposed VSA in dry air is shown in Fig. S6a. The shape of 
the curve clearly indicates that the circuit model of the sensor is 
composed of several parts [42]. The equivalent circuit model of the 
Ti3C2Tx based VSA is shown in Fig. S6b. Here the circuit element R1 
represents the contact resistance; the circuit elements R2 and L represent 
the resistance in thickness direction and inductance between Ti3C2Tx 
layers; and elements R3 and C represent the transverse resistance and 
capacitance between electrodes. Fig. S6a shows that the fitting data are 
very close to the experimental data, indicating the equivalent circuit 
model is accurate. In the circuit model, the AC resistance (R(f)) and 
reactance (X(f)) can be written as: 

R(f ) = R1 +
(2πf )2L2R2

R22 + (2πf )2L2
+

R3
1 + (2πf )2C2R32

(2)  

X(f ) =
2πfLR22

R22 + (2πf )2L2
−

2πfCR32

1 + (2πf )2C2R32
(3) 

The sensing mechanism of a Ti3C2Tx-based sensor is related to the 
absorption of the VOCs by both defects and functional groups. Some 
VOCs are bonded on the structural defects of the Ti3C2Tx nanosheets, 
and some are bonded and interacted with surface functional groups such 
as –O and –OH [8]. On the other hand, intercalation of molecules from 
gas phase into MXene interlayers can increase the layer spacing of 
MXene, and will play a crucial role in determining the response of VOC 
sensing [21]. Various effects lead to the change of properties of the 
sensor which correspond to different components in the equivalent 
circuit model. The proportions of various effects caused by different 
VOCs are quite different, and each VOC has an effect of specific pro
portion on multiple components in the equivalent circuit model [5,43]. 

Fig. 2. Structural and chemical characterizations of Ti3C2Tx. (a) XRD patterns of Ti3C2Tx. (b-d) XPS of Ti3C2Tx at three core levels: (b) Ti 2p, (c) C 1s, (d) O 1s.  
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The impedance value obtained at each frequency is determined by all 
the components in the equivalent circuit model and the influences of 
changes of every component on impedances (R(f) and X(f)) are affected 
by frequency, which is shown clearly in Eqs. (2) and (3). As long as the 
influences of two VOCs on each component are not the same, the 
changes of impedance spectra will be different. Based on these different 
changes, VOC fingerprints can be generated using the multi-parameters 
sensing responses based on the results of broadband impedance spectra. 
Fig. S7 shows a block diagram of the sensing mechanism of the VSA. 
Several hypothetical examples are shown in Table S1. 

3.4. Dimensionality reduction of raw data and unsupervised classification 
of VOCs 

We performed the PCA to discriminate the VOCs with the similar 
responses and determine the dimensions of the resulting data set of 
multi-parameters sensing responses. The responses of the two groups 

VOCs (i.e., the oxygenated and non-oxygenated VOCs) were analyzed by 
PCA separately. By performing the PCA on these multi-parameters data, 
high contributions of the first three principle components (PCs) were 
achieved: i.e., 76.6%, 15.7% and 7.6% (oxygenated VOCs); 87.7%, 8.9% 
and 3.2% (non-oxygenated VOCs), for PC1, PC2, PC3, respectively. This 
shows that the high data dimensionality can be obtained from the VSA 
on exposure to only four vapors. 

Fig. 5 shows a 3D plot of the first 3 PCs keeping most of the infor
mation (accounting for a total of 99.8%). Each point corresponds to an 
entire fingerprint of a VOC at a specific concentration (consists of eight 
parameters) and is colored according to the VOC it represents. We 
project two types of overlapping VOCs in this view on the coordinate 
plane. Points belonged to different VOCs are well-separated in space, as 
can be seen in Fig. 5, indicating that the sensor can differentiate the 
VOCs very well. Points belonged to same VOC but with the different 
concentrations (from 100 ppm to 800 ppm) are located approximately in 
one line. These results show that the VSA has a high data dimensionality 

Fig. 3. Dynamic response test of the Ti3C2Tx film based VOC sensor. (a) Continuous response of the resistance of sensor to different ethanol concentrations. (b) 
Short-term repeatability of sensor when the ethanol concentration is repeatedly changed. Detailed response (c) and recovery (d) processes of the sensor. (e) Fluc
tuations in the resistance of sensor at fixed ethanol concentration levels. (f) Resistance variation upon exposure to 100 ppm of 8 VOCs. 
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and a potential to distinguish between different VOCs and quantify 
concentrations of individual vapors. 

3.5. Supervised gas identification 

To quantitatively identify the types of various VOCs, LDA was carried 
out for oxygenated and non-oxygenated VOCs, respectively. Fig. 6a 

shows a 3D plot of LDA results of the oxygenated VOCs. Each point is 
colored according to the VOC type and a pentagram represents the 
center of mass of each points group. Results shown in Fig. 6a clearly 
indicate that each VOC can be well determined. The LDA results of 
oxygenated VOCs are depicted in Fig. 6b. LDA identification accuracies 
of 95.4% were achieved, corresponding to 1 misclassification out of 22 
total samples. Cross-validation is an effective way to verify the obtained 
results, and leave-one-out cross validation (LOOCV) is often used as the 
validation algorithm [31]. The cross-validation results of oxygenated 
VOCs are depicted in Fig. 6c, indicating a cross-validation rate of 90.9% 
was achieved. 

Fig. 6d shows a 3D plot of LDA results for all the non-oxygenated 
VOCs. Points belonged to different VOCs are separated in space, which 
confirms that the VSA can also discriminate non-oxygenated VOCs. The 
LDA results of the oxygenated VOCs are depicted in Fig. 6e. Each sample 
was correctly identified indicating 100% accurate identification of the 
non-oxygenated VOCs. A correct cross-validation rate of 90.5% was 
achieved when using the LOOCV, as shown in Fig. 6f. 

Finally, to provide a more stringent test of the VSA, the identification 
ability toward similar VOC mixtures has been investigated. We use the 
LDA to discriminate the mixtures of EtOH and acetone, EtOH and IPA, 
acetone and DCM, as well as acetone and MeCN. The concentrations of 
mixtures during the test are listed in Table S2. Fig. 6g shows a 3D plot of 
LDA results of the VOCs mixtures. From different view angles, four kinds 
of VOC mixtures are well separated in a 3D feature space. A correct 
classification rate of 100% was achieved, as shown in Fig. 6h. The cross- 
validation results of mixtures are depicted in Fig. 6i, indicating a correct 
cross-validation rate of 90% has been achieved. These results demon
strate that utilizing the Ti3C2Tx based VSA is a promising approach for 
identification of pure VOCs and similar complex mixtures. 

3.6. Concentration prediction of a targeted VOC 

The responses of the sensor to ethanol in a background of variable 
humidity levels and methanol concentrations are shown in Fig. S8. We 
choose the impedance of the sensor in dry air as the zero point. MXenes 
also absorb water and methanol [20,21]. Therefore, the MXene-based 
sensor has drifts when the concentration of ethanol is zero in the pres
ence of water and methanol. When the ethanol concentration is low, the 
response of the sensor is approximately equal to the linear superposition 
of the response to water or methanol and the response to ethanol. When 
the ethanol concentration is relatively high, the response of the sensor is 
not a linear superposition. This is because the adsorption sites for 

Fig. 4. Contour plot of unique fingerprint patterns of different VOCs.  

Fig. 5. 3D plot of the first 3 principal components of oxygenated (a) and non- 
oxygenated (b) VOCs. 
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ethanol are partially occupied by water or methanol. Therefore, we 
cannot eliminate the influence of humidity or methanol, just simply 
detecting a single parameter (e.g., resistance or capacitance). 

We used the PLS to quantify concentrations of ethanol in a back
ground of variable humidity levels and methanol concentrations. The 

number of latent variables (LVs) was selected to provide the minor 
prediction error without generating an overfitting [44]. Fig. 7a reveals 
that 5 LVs is the most appropriate LV number for the modeling, based on 
the root of sum of squared error (SSE) as a function of LV number. 

Fig. 7b presents a simple visualization of the quantitative prediction 

Fig. 6. LDA results of different VOC groups. 3D plot of LDA results the oxygenated VOCs (a), non-oxygenated VOCs (d), and VOC mixtures (g). LDA results of 
oxygenated VOCs (b), non-oxygenated VOCs (e), and VOC mixtures (h). Cross-validation results of oxygenated VOCs (c), non-oxygenated VOCs (f), and VOC 
mixtures (i). 

Fig. 7. Ethanol concentration prediction by PLS. (a) The root of SSE varies with the number of LVs. (b) Ethanol concentration prediction in the presence of a 
variable background. (c) Concentration prediction of second data set. 
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of ethanol vapors in the presence of variable backgrounds. The position 
of each point is given by its real concentration (x-axis) and predicted 
concentration (y-axis). Perfect predictions will lay on the diagonal (i.e., 
prediction matches the real gas concentration). All the VOC concentra
tions were predicted quite well, as all the points are close to the diagonal 
positions. The average accuracy is 93.4% and the root of sum of the 
squared errors is 83.9 using 5 LVs. 

A data set from a second measurement was then used to study the 
robustness of the determined model. Fig. 7c presents a concentration 
prediction of second data set using the obtained PLS coefficients from 
the training set. All the VOC concentrations were predicted quite well, as 
shown in Fig. 7c, demonstrating that the Ti3C2Tx based VSA is an 
excellent approach for individual VOC concentration prediction in a 
variable background. 

4. Conclusion 

In summary, we developed a Ti3C2Tx based VSA for selective VOC 
detection. The VSA was fabricated by depositing a thin film of Ti3C2Tx 
on the surface of an IDE. Eight representative parameters of the pro
posed VSA were selected as VOC characteristics and the multi- 
parameters sensing responses create a unique fingerprint for each VOC 
without temperature change. The VSA showed a high data dimension
ality in PCA. Correct rates of 90.9%, 90.5%, and 90% for the identifi
cation was achieved for oxygenated VOCs, oxygenated VOCs, and VOCs 
mixtures in LDA, respectively. The ethanol concentration estimation 
accuracy is ~93.4% based on the proposed VSA. The high level of 
identification and concentration prediction shows the potential of 
MXene based VSAs for detection of VOCs of interest in the presence of 
known and unknown interferences. We anticipate that the strategy to 
solve the cross-sensitivity of gas sensors of this work could be easily 
adapted to other gas sensors and implemented in a range of emerging 
applications, including agriculture, pollution monitoring, food quality 
assurance, and medical diagnosis. 
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