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Summary
Introduction: The optimum duration of cardiopulmonary resuscitation (CPR) prior to first res-
cue shock is unknown. Clinical trials have used 90 and 180 s. Neither of these durations may
be optimal. We sought to determine the optimum duration of CPR prior to first defibrillation
attempt and whether this varied depending on the duration of ventricular fibrillation (VF). In
this porcine model of basic life support, our outcomes were rates of return of spontaneous
circulation (ROSC), survival, and coronary perfusion pressure (CPP).
Methods: We anesthetized and instrumented 45 swine and then induced VF. After 5 or 8 min of
untreated VF, we randomized the swine to mechanical CPR for 90, 180, or 300 s. A single rescue
shock (150 J biphasic) was then administered. If this shock failed, 2 min of mechanical CPR were
completed prior to the next rescue shock. CPP was calculated for each 30 s epoch. ROSC was
defined as a blood pressure >80 mmHg sustained for 60 s. Survival was defined as sustained ROSC
for 20 min. Data were analyzed with descriptive statistics, Fisher’s exact test, and ANOVA.
Results: In the 5 min VF cohort, the rate of ROSC did not differ between the three groups
(90 s: 25%; 180 s: 38%; 300 s: 38%, p > .05). Survival rates did not differ (90 s: 25%; 180 s: 25%;
300 s: 25%, p > 0.05). In the 8 min VF cohort, no animals experienced ROSC or survival. CPP were
calculated by 30 s epoch and did not differ between the three groups (p > 0.05). CPPs decline
after 180 s of CPR.

Conclusions: ROSC and survival were equivalent regardless of VF duration and CPR duration.
When CPR begins late, CPPs are low, stressing the importance of early CPR. We do not recom-
mend 300 s of CPR unless a defibrillator is unavailable.
© 2008 Elsevier Ireland Ltd. All rights reserved.

� A Spanish translated version of the summary of this article appears as Appendix in the final online version at
oi:10.1016/j.resuscitation.2008.04.022.
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ntroduction

he optimum duration of cardiopulmonary resuscitation
CPR) prior to first rescue shock in prolonged ventricular
brillation (VF) cardiac arrest is not known. High-quality
PR improves the chances for survival.1,2 The American
eart Association Emergency Cardiac Care Guidelines (AHA
CC) recommends five cycles of chest compressions (∼2 min)
rior to rescue countershock in cases of unwitnessed car-
iac arrest.1 Prior animal literature has demonstrated that
ncreasing ratios of compressions to ventilations in short-
uration VF cardiac arrest results in increased survival.3,4

linical trials by Cobb et al. examined 90 s of CPR prior
o countershock while Wik et al. examined 180 s of CPR
rior to countershock.5,6 Clinical studies have demonstrated
hat providing continuous chest compressions (CCC) may
mprove outcomes in selected cohorts.7,8 Each of these stud-
es note improvement in cohorts experiencing short-duration
F arrest. We sought to determine the optimum duration of
PR prior to the first defibrillation attempt. We also sought
o determine whether this optimum amount of CPR varied
epending on the duration of VF. In this porcine model of
asic life support (BLS), our outcomes were rates of return
f spontaneous circulation (ROSC), survival, and coronary
erfusion pressure (CPP). This BLS model simulates an out-
f-hospital cardiac arrest being treated by minimally trained
rst responders and/or basic emergency medical techni-
ians, equipped with an automated external defibrillator
AED). These caregivers do not have the capability to admin-
ster drugs.

ethods

he University of Pittsburgh Institutional Animal Care and
se Committee approved this study.

nimal preparation

ll animals were prepared in a standardized fashion.
e sedated the animals with intramuscular ketamine

10.0 mg/kg) and xylazine (4.0 mg/kg). We gained intra-
enous (IV) access via a peripheral ear vein. We established
surgical plane of anesthesia using a rapid IV infusion of

lpha-chloralose (50 mg/kg), and maintained this with a con-
inuous infusion of the same (10 mg/kg/h).

We intubated the swine with a 5-0 cuffed endotracheal
ube via direct laryngoscopy, and ventilated them with a
iO2 of 21% using an Ohmeda 7000 ventilator (Ohmeda,
OC Health Care, Madison, WI). Ventilation was begun
t a tidal volume of 15—18 cm3/kg, a ventilatory rate of
2 breaths/min, and an inspiration: expiration ratio of
0%. Ventilation was adjusted to maintain eucapnea (end-
idal carbon dioxide 35—45 Torr), which we measured with

side-steam capnometer (LifePak 12, Medtronic Physio-
ontrol, Inc., Redmond, Washington). We measured core
ody temperature by placing an esophageal probe (Bi-Temp

emperature Monitor, Respiratory Supply Products, Inc.,
rvine, California) into the animals’ esophagus. We placed
hree surface electrodes configured to correspond to a stan-
ard Lead II electrocardiogram (ECG), and monitored this
ontinuously. After establishing a surgical depth plane anes-
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hesia, we paralyzed the animals with pancuronium (4 mg
nitial bolus IV with additional 2 mg boluses as needed).

We then placed arterial and venous introducers (9 Fr) in
he right femoral artery and vein and passed 7 Fr micro-
anometer tipped pressure catheters (Mikro-Tip Catheter

ransducers SPR-471A and SPC-370-S, Millar Instruments,
ouston, Texas) into the ascending aorta and right atrium.
rterial and venous pressures were monitored continuously
ith the same data acquisition system used to record the
CG. These data were acquired digitally at a sampling rate of
000 points/s with a commercially available software pack-
ge (Chart, v.5.3, AD Instruments, Castle Hill, Australia).
PP was calculated as the aortic pressure minus the right
trial pressure, measured at the end of the relaxation phase
f the duty cycle. We analyzed an arterial blood gas (ABG)
s soon as arterial access was established (i-STAT Portable
linical Analyzer, Heska Corporation, Waukesha, WI). We
epeated this any time ventilator settings were changed. We
nduced VF by delivering a three second, 60 Hz, 100 mA AC
urrent externally across the thorax. We recorded the anes-
hesia time, which we defined as the time from the induction
f anesthesia to the time VF was induced.

xperimental design

fter we induced VF, all animals were randomized to either
or 8 min without treatment of any kind. After 5 or 8 min,

esuscitation was begun using a programmable oxygen-
owered mechanical resuscitation device (Thumper, Model
007, Michigan Instruments, Grand Rapids, MI). We random-
zed the swine to mechanical CPR for 90, 180, or 300 s. We
elivered chest compressions with the animals supine in a
lexiglass v-board, in the antero-posterior direction, at a
epth of 38 mm, a rate of 100 compressions/min. The duty
ycle was 50%, and we used a compression to ventilation
atio of 15:1 (this was the maximum available from this
achine at the time). All ventilations were delivered by

ne investigator (DS) using a conventional bag-valve tech-
ique to simulate BLS resuscitation. All animals had their
bdomens bound with one frontal and two lateral pads, a
echnique we have long employed in this model. Adjustment
f the chest compressions to the proper depth took approx-
mately 15 s. The device was not adjusted at any time after
his initial adjustment.

Our laboratory uses an impedance-compensating, trun-
ated exponential biphasic defibrillation waveform (LifePak
2, Medtronic-Physio-Control, Redmond, Washington) with
fixed dose of energy of 150 J. All countershocks were
anually administered by one investigator (JJM) to elimi-

ate intra-user variability. If the rescue shock resulted in
OSC (defined here as a systolic blood pressure of 80 mmHg
ustained for at least 1 min continuously), the animal was
entilated and survived for 20 min, simulating arrival at the
ospital. If this shock failed, 2 min of mechanical CPR were
ompleted prior to the next rescue shock. This study was
esigned to represent a BLS crew with AED. Therefore, no

rugs were administered.

Figure 1 depicts the experimental timeline. Animals in
hich a pulse was not restored and maintained had resusci-

ative interventions continued for 20 min beyond the start of
he resuscitation (i.e. 25—28 min after the induction of VF).
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Figure 1 Exp

Any animal surviving for the 20-min endpoint was euthanized
with a rapid IV injection of 40 mEq of KCl. Thus, the experi-
mental endpoints were either 20-min survival after attaining
ROSC, or 20 min of failed resuscitation. If the animal refib-
rillated, CPR was continued for 2 min and rescue shock was
delivered if rhythm-appropriate (i.e. the ECG rhythm was
VT or VF).

The primary dependent variables for this study were CPP,
ROSC, and 20-min survival. We also measured the peak aortic
and venous pressures during CPR as a surrogate for vascu-
lar tone. CPP, peak aortic and peak venous pressures were
calculated using compressions 6—10 in each 30 s epoch. We
measured the middle 5 compressions of the cycles because
we have observed that they most accurately represent the
average for the epoch.

Statistical analyses

We calculated descriptive statistics (reported as means
and standard deviations, and proportion) for all baseline

characteristics. We compared dichotomous variables with
two-tailed Fisher’s exact test. We analyzed continuous vari-
ables with repeated measures ANOVA. We used an alpha
error rate of 0.05 as a criterion for determining statisti-
cal significance. We performed statistical analyses using a
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Table 1 Baseline characteristics of 5 and 8 min VF groups

5 min VF

pH 7.47 (
pCO2 37.1 (3
pO2 99.4 (5
Glucose 117 (22)
Anesthesia time (min) 35.0 (6
Hb 9.3 (1
Hct 27.5 (4
Ketamine (mg) 300 (0)
Weight (kg) 26.2 (2
% male 38

Reported as number (S.D.), except as noted below.
ntal timeline.

ommercially available software package (Stata version 9.0,
ollege Station, Texas).

esults

he baseline characteristics for the two groups were similar
Table 1).

In the 5 min VF group, the rate of ROSC did not differ
etween the three groups (90 s: 25%; 180 s: 38%; 300 s: 38%,
> 0.05). Survival rates did not differ (90 s: 25%; 180 s: 25%;
00 s: 25%, p > 0.05). In the 8 min VF group, no animals expe-
ienced ROSC or survival. CPPs are presented by 30 s epoch
n Figure 2 and did not differ between the three groups
p > 0.05). CPPs declined after 180 s of CPR. Peak aortic pres-
ure and peak venous pressure are depicted in Figure 3A and
. Peak aortic pressure increased during the first 210 s of CPR
nd then began to decrease. Peak venous pressures gener-
lly increased throughout the duration of CPR and closely
pproximated peak aortic pressure after 300 s of CPR.
iscussion

n this swine model of prolonged VF, increasing the duration
f CPR prior to rescue countershock did not improve ROSC or
urvival. Of note, in the 8 min VF cohort, no animal achieved

(N = 24) 8 min VF (N = 21)

0.04) 7.47 (0.04)
.56) 38.0 (2.36)
0) 85.9 (13)

108 (20.7)
.5) 32.4 (9.1)
.42) 9.8 (0.94)
.2) 28.8 (2.6)

329 (99)
.55) 27.4 (2.15)

52
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igure 2 Coronary perfusion pressure by VF duration and by
uration of CPR.

OSC or survival. The results in the 8 min cohort are similar
o our prior work where animals were randomized to a scal-
ng exponent value of 1.3 prior to immediate countershock.9

his scaling exponent value correlates to 8 min of untreated
F. In other studies of prolonged VF, we achieved higher rates
f ROSC and survival through the use of a drug cocktail that
ncludes vasopressors during resuscitation.9—15 Similar mod-
ls used by Berg et al. and Niemann et al. also note higher
ates of ROSC in a 7.5—8 min VF cohort.16,17
The 5 min VF cohort demonstrated improved results,
owever, rates of ROSC and survival are lower than our prior
ata where animals received immediate countershock fol-
owing 5 min of untreated VF.9 Our survival rate is lower

igure 3 (A) Peak aortic pressure during resuscitation. (B)
eak venous pressure during resuscitation.
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han noted by Berg et al. who incorporated vasopressors
n a model with similar VF duration and noted rates of
OSC > 50%.16 However, our rates of ROSC are within the 95%
I cited by Niemann et al. in a similar 5 min VF model.18 Our
tudy supports the present ECC recommendations of 2 min
f CPR prior to defibrillation. However, these results suggest
hat increasing the duration of CPR prior to defibrillation
lone will not improve rates of ROSC or survival in prolonged
F.

The low rate of ROSC reported in this experiment is not
ithout precedent. We recently reported a meta-analysis
n the rates of ROSC during experiments in our lab.19 In
his analysis of 271 swine, a regression model was used to
etermine expected rates of ROSC based on time to first
ntervention. Based on this model, we would anticipate an
1% rate of ROSC in the 8 min VF cohort that received 90 s of
PR prior to first defibrillation, 7% ROSC in the 180 s cohort
nd 3% ROSC in the 300 s cohort.

Our results are also similar to those expected in the 5 min
F cohort. Based on our prior work, we would anticipate a
7% rate of ROSC in the 90 s group, 18% ROSC in the 180 s
roup and 10% ROSC in the 300 s group.

One possible reason for the low rates of ROSC and survival
s the low CPPs generated in these animals. Prior research
n a series of 100 humans has demonstrated that a mini-
al threshold of 15 mmHg is necessary for ROSC to occur,

hough this did not guarantee ROSC.20 It is postulated that
his level of CPP is necessary to perfuse the myocardium
nd reverse the metabolic abnormalities that accompany
F (such as high-energy phosphates depletion and extra-
ellular potassium release). Prior work demonstrated higher
PP values with late vasopressor administration when CPR

s initiated earlier.4,21—23 Our results demonstrate that after
—8 min of untreated VF, a loss of vascular tone has occurred
hat does not respond well to CPR alone. This is shown by the
ecrease in aortic peak pressure and equilibration of venous
nd arterial pressures.

These results support the value of early bystander CPR.
hey also have significant implications for our municipal-

ty, as time to arrival of emergency medical services is
min.24 Given these results, we do not recommend 300 s of
PR prior to countershock in prolonged VF unless a defib-
illator is unavailable. There are two major reasons for
his recommendation. First, as depicted in Figure 2, CPP
arkedly decreases after 180 s of CPR. In the 8 min cohort,

he CPPs generated at 300 s are 2 mmHg and well below
hose necessary to generate ROSC. Second, prior research
as demonstrated rescuer fatigue after 1 min of CPR.25,26

imitations

his study has several limitations. First, the animals used
ere young and sexually immature animals. The cardiovas-
ular physiology of these animals may be different than
hat of many people who experience out-of-hospital car-
iac arrest. Second, VF was electrically induced and not

receded by an ischemic insult. Thus, this model may
epresent VF of a dysrhythmic nature, but not ischemi-
ally induced VF. Third, the outcomes assessed are ROSC
nd short-term survival. Most animal studies do not pro-
ide information on neurologically intact survival, which
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is the most relevant outcome from the perspective of the
patient. We note that previous studies showing short-term
benefits have frequently failed to translate to long-term
survival. Fourth, we did chest compressions with a mechan-
ical device. Performing chest compressions is strenuous
and rescuers may fatigue during longer bouts of CPR in
the clinical setting. The chest compressions done here
would have been consistent in force and depth through-
out the entire episode of CPR, regardless of duration.
This may not happen in the clinical setting with manual
CPR. However, this would again favor one of the shorter
durations (90 or 180 s) of CPR if rates of ROSC are the
same.

Conclusions

Increasing the duration of CPR prior to rescue countershock
does not result in increased rates of ROSC or survival in a
swine model of prolonged VF. We do not recommend 300 s
of CPR prior to countershock unless a defibrillator is not
available. Vasopressors may be required to augment CPP in
prolonged VF cardiac arrest.
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