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Abstract

Introduction: Trials may be neutral when they do not appropriately target the experimental intervention. We speculated multimodality assessment of

early hypoxic-ischemic brain injury would identify phenotypes likely to benefit from therapeutic interventions.

Methods: We performed a retrospective study including comatose patients resuscitated from out-of-hospital cardiac arrest (OHCA) by one of 126

emergency medical services or in-hospital arrest at one of 26 hospitals from 2011 to 2019. All patients were ultimately transported to a single tertiary

center for care including standardized initial neurological examination, brain imaging and electroencephalography; targeted temperature management

(TTM); hemodynamic optimization targeting mean arterial pressure (MAP) >80 mmHg; and, coronary angiography for clinical suspicion for acute

coronary syndrome. We used unsupervised learning to identify brain injury phenotypes defined by admission neurodiagnostics. We tested for

interactions between phenotype and TTM, hemodynamic management and cardiac catheterization in models predicting recovery.

Results: We included 1086 patients with mean (SD) age 58 (17) years of whom 955 (88%) were resuscitated from OHCA. Survival to hospital discharge

was 27%, and 248 (23%) were discharged with Cerebral Performance Category (CPC) 1�3. We identified 5 clusters defining distinct brain injury

phenotypes, each comprising 14% to 30% of the cohort with discharge CPC 1�3 in 59% to <1%. We found significant interactions between cluster and

TTM strategy (P = 0.01), MAP (P < 0.001) and coronary angiography (P = 0.04) in models predicting outcomes.

Conclusions: We identified patterns of early hypoxic-ischemic injury based on multiple diagnostic modalities that predict responsiveness to several

therapeutic interventions recently tested in neutral clinical trials.
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Introduction

A dearth of positive trials in critical care medicine, including those
testing interventions intended to improve recovery after resuscitation
from cardiac arrest, reflects in part a failure to appropriately target or
titrate the experimental intervention.1 At best, failure to personalize
care based on individual need leads to enrollment of subjects likely to
die or recover regardless of treatment allocation. This limits the
proportion of subjects able to benefit from interventions, reduces
statistical power and obscures true treatment effects. At worst,
untargeted interventions may harm some subjects, resulting in a
neutral or negative study result despite the intervention's potential for
benefit when targeted to the correct subgroup.2,3

Principle goals of post-arrest care are minimization of secondary
brain injury and correction of treatable inciting causes of arrest.
Targeted temperature management (TTM) is a cornerstone of post-
arrest neuroprotection.4�6 However, multiple investigations compar-
ing hypothermia depths, durations and induction strategies have been
neutral.7�9 Optimizing cerebral perfusion is another principle of post-
arrest care, but a recent trial comparing two blood pressure targets to
optimize cerebral perfusion pressure found no outcome differences
across arms.10 Correcting underlying cardiovascular causes of
cardiac arrest is also associated with improved functional outcome,
but another trial comparing timing of cardiac catheterization for
patients with shockable initial arrest rhythms and absent ST-segment
elevation was also neutral.11

All of these studies relied on historical characteristics associated
with illness severity to identify subgroups predicted to benefit � for
example excluding patients with unwitnessed asystolic out-of-hospital
cardiac arrest (OHCA) as likely to have brain injury too severe to allow
detection of a treatment effect. Furthermore, these trials defined
“comatose patients” as those unable to follow verbal commands, a
definition that includes a huge range of neurological conditions and
severities. We speculate that a more rigorous characterization of
acute brain dysfunction might reveal patterns of anoxic injury likely to
benefit from neuroprotection or other therapeutic interventions. We
used unsupervised learning to identify distinct phenotypes of post-
arrest brain injury defined by multimodality baseline testing of
neurological structure and function on hospital arrival. We then
tested the hypothesis that the associations of TTM, hemodynamic
management and cardiac catheterization with outcome differ between
phenotypic clusters.

Methods

Patients and setting

The University of Pittsburgh Office of Human Research Protection
approved all aspects of this study. We identified patients from a
prospective registry of consecutive patients resuscitated from in-
hospital (IHCA) or OHCA treated from August 2011 to August 2019.
We excluded patients who awakened within 6 h of hospital arrival,
defined as following verbal commands or exhibiting purposeful
spontaneous motor activity; patients who arrested due to trauma or a
primary neurological event; and, patients with a delay of >24 h from
arrest to arrival at our facility. Finally, we excluded patients with fewer
than two of the following three modalities assessed within 6 h of
hospital arrival: neurological examination in the absence of

neuromuscular blockade, brain computerized tomography (CT)
imaging, and electroencephalography (EEG). We did not consider
assessments of brain injury not acquired on presentation (e.g.
magnetic resonance imaging and somatosensory evoked potentials,
both acquired after 3�5 days in the subset of patients with prognostic
uncertainty). All included patients received initial care by a member of
the University of Pittsburgh Post-Cardiac Arrest Service (PCAS). We
previously described the details of this service line in detail.12

As part of initial resuscitation and evaluation, patients undergo a
baseline post-arrest neurological examination by the PCAS attending
physician before induction of TTM. It is our standard practice to obtain
brain CT imaging prior to intensive care unit (ICU) admission (for
OHCA) or as soon as feasible after initial stabilization (for IHCA).
Imaging may be deferred in cases where it may delay a time-sensitive
intervention (for example, coronary angiography for ST-elevation
myocardial infarction) or a patient is deemed too unstable to travel to
CT scan. We monitor all comatose post-arrest patients with
continuous EEG which is available at all times and is typically initiated
upon ICU arrival. We have previously described the details of our EEG
monitoring protocol,13,14 which uses 20�22 gold-plated electrodes
placed in standard 10�20 international system of electrode placement
positions and includes protocolized simulation for reactivity assess-
ment at monitoring initiation and daily thereafter. We do not routinely
monitor EEG in cases where initial imaging confirms diffuse cerebral
edema and herniation, there is anticipation of a rapid transition toward
comfort-oriented care based on pre-existing advanced directives, or
rearrest occurs prior to EEG initiation.14

We provide TTM to 33 �C or 36 �C for 24 h to comatose post-
arrest patients using endovascular or gel-adhesive pad surface
cooling. Thereafter, we rewarm patients at 0.25 �C per hour to
normothermia, which we actively maintain until 72 h post-arrest or
awakening. Choice of target temperature is at the discretion of the
treating PCAS physician, and in the exception of cases of
hemorrhage where providers consistently favor 36 �C, we have
observed considerable between- and within-provider variability in
selection of target temperature. We typically provide sedation with
propofol or dexmedetomidine, analgesia with fentanyl, and titrate
these infusions to patient comfort and suppression of shivering while
avoiding deep sedation when possible. We use invasive hemody-
namic monitoring and target a mean arterial pressure �80 mmHg for
at least the first 24 h and achieve this target via infusion of isotonic
crystalloids in preload responsive patients and use of vasoactive
infusions for persistent hypotension after volume resuscitation. It is
our standard practice to perform multimodality neuroprognostic
testing, which generally follows recent consensus guidelines,15,16

except in cases where families are comfortable making decisions
based on patient values and preferences despite some uncertainty
in overall prognosis.

Clinical covariates and outcomes

We abstracted patient demographics, arrest characteristics, TTM
strategy, initial brain injury assessments and functional outcome from
our prospective registry. Neurological exam findings included:
assessment of pupillary light reflex (both reactive, one reactive or
both nonreactive); eye opening (eyelids open spontaneously but not
tracking, eyes open to loud voice, eyes open to pain or eyes remain
closed to pain); respiratory drive (not intubated, intubated and over-
breathing the set ventilator rate, intubated and not over-breathing the
ventilator); corneal reflex (both present, one side present or neither
present); presence or absence of gag reflex; presence or absence of
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cough reflex; and motor response to pain (localizing to pain, flexion or
withdrawal to pain, extension to pain, no response or myoclonus).17

We considered three initial brain CT characteristics: ratio of gray-
to white matter density in Hounsfield unit (GWR), measured at the
level of the basal ganglia18; presence or absence of sulcal effacement;
and presence or absence of effacement of the basal cisterns.

We categorized three domains of EEG features present during the
first 60 minutes of monitoring, using definitions consistent with
American Clinical Neurophysiology Society standard definitions:19

background continuity (continuous background activity; suppression-
burst; or generalized suppression); presence or absence of super-
imposed epileptiform activity; and presence or absence of reactivity.
We reviewed all EEG records for research purposes rather than
relying on clinical interpretation, as we have previously described.20

Our primary outcome of interest was non-vegetative survival to
hospital discharge, defined as discharge with a Cerebral Performance
Category (CPC) of 1�3.

We obtained an automated data extraction from our electronic
medical record to obtain all vital signs and laboratory test results for
each patient. For the present analysis, we summarized initial markers
of end organ injury or dysfunction including presenting lactate,
creatinine, alanine transaminase (ALT), aspartate transaminase
(AST), pH and partial pressure of arterial oxygen (PaO2). Finally,
we considered presenting systolic and diastolic blood pressures, and
the time-weighted average mean arterial pressure over the first 24 h
after ICU admission.

Clustering and statistical analysis

We used k-prototypes to define clusters of post-arrest brain injury
phenotypes based on results of neurological examination, EEG and
brain CT imaging. K-prototypes is a methodological extension of
k-means that allows partitional clustering of mixed data types (i.e.
continuous and categorical features) with robust handling of missing
data.21 Similar to k-means, k-prototypes first initializes its algorithm by
randomly identifying cluster centers (i.e. prototypical individual
cases). The algorithm then iteratively calculates the distance from
each case to the nearest prototype, assigns individual observations to
a cluster defined by the nearest prototype, then updates cluster
prototypes to the new centermost cases.22 The overall distance metric
used is a weighted combination of Euclidean distances between
continuous variables and the count of mismatches for categorical
variables. Approaches to optimize the weight used to calculate this
distance metric have been described in detail.22 In this framework,
different modalities of categorical data are weighted equally as an
overall mismatch count, as are continuous data by overall Euclidean
distance. We calculated C-indices and Dunn indices to validate
clustering and select the optimal number of clusters.23 We summa-
rized baseline patient clinical characteristics and outcomes of the
overall cohort and within-cluster using descriptive statistics of patient
and arrest-specific variables. We used Firth's penalized logistic
regression to build models predicting patient outcome given treatment
(TTM strategy, cardiac catheterization and average mean arterial
blood pressure) and cluster membership, with and without an
interaction between the two. We used likelihood ratio tests comparing
full and reduced models to test the global significance of the interaction
between treatment and cluster. We then calculated cluster-specific
associations between treatment and outcome. We used R
(R Foundation for Statistical Computing, Vienna, Austria) for
clustering and statistical analysis, completing clustering using the
kproto function of the clustMixType package.22

Results

There were 2019 patients in our registry during the study period, of
whom 55 were deemed not to have had a cardiac arrest after full
evaluation, 36 arrested due to a primary neurological event, 55
arrested due to trauma, 160 arrived to our facility >24 h after their initial
arrest and 339 were awake. Of the remaining 1374 another 288 did not
undergo multiple modalities of brain injury assessment within 6 h of
arrival leaving 1086 patients included in the final analysis. Cases of
OHCA by one of 126 emergency medical services and cases of IHCA
occurred at one of 26 hospitals. Mean (SD) age of the included cohort
was 58 (17) years, 437 (40%) were female, and 955 (88%) were
resuscitated from OHCA (Table 1). Overall survival to hospital

Table 1 – Overall patient characteristics and
outcomes.

Characteristic Overall cohort
(n = 1086)

Age, years 58 � 17
Female sex 437 (40)
Arrested out-of-hospital 955 (88)
Interfacility transfer 720 (66)
Initial arrest rhythm

VT/VF 306 (28)
PEA 364 (34)
Asystole 337 (31)
Unknown 79 (7)

Witnessed arrest

Layperson witnessed 427 (43)
EMS-witnessed 154 (15)

Bystander CPR

Layperson 262 (26)
Professional 348 (35)

Arrest duration, min 20 [11�31]
Epinephrine doses 3 [2�5]
Arrest to initial assessment, hours 2.6 [1.0�3.6]
Target temperature

33 �C 438 (40)
36 �C 470 (43)
Other target temperature 63 (6)
No TTM 115 (11)

Cardiac catheterization 205 (19)
Awakened from coma 283 (26)
Survived to discharge 289 (27)
Discharge CPC

1�3 264 (24)
4 or 5 838 (77)

Proximate cause of death

Rearrest or intractable shock 205 (19)
Brain death 90 (8)
Withdrawal for prior advanced directives 94 (9)
Neurological withdrawal 408 (38)

Hospital length of stay, days

Survived to discharge 16 [10�24]
Died in-hospital (all-cause) 3 [1�5]
Died after neurological withdrawal 3 [2�5]

Data are presented as number with corresponding percentage, mean
� standard deviation or median [interquartile range]. Abbreviations: VT/VF,
ventricular tachycardia or fibrillation; CPR, cardiopulmonary resuscitation;
CPC, Cerebral Performance Category.
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discharge was 27%, and 248 (23%) were discharged with CPC 1�3
(Table 1). Initial neurological assessment occurred a median of 2.6
[IQR 1.0�3.6] hours after initial collapse, while brain CT occurred 4.2
[IQR 2.8�5.8] hours and EEG was acquired a median of 9.3 [IQR
7.3�11] hours after collapse.

We identified 5 clusters summarizing distinct early post-arrest
brain injury phenotypes based on brain imaging, EEG and
neurological examination acquired on patient presentation. Each
cluster comprised between 14% and 30% of the overall cohort. Clinical

characteristics of clusters prototypes and outcomes of clusters are
summarized in Table 2. Rates of survival with CPC 1�3 varied from
59% to <1% across clusters (Table 2) while proximate cause of death
also varied among non-survivors (Table 3). For example, progression
to brain death ranged from 1% to 37% across clusters. In addition to
brain injury characteristics (Supplemental Table 1), baseline labora-
tory results that reflect systemic hypoxic-ischemic injury (e.g. serum
lactate, pH and liver function tests) varied across groups, but initial
hemodynamic profiles did not (Table 3).

Table 2 – Clustering based on neurological assessment, initial brain imaging and initial electroencephalographic
findings yields 5 distinct clusters. Reported outcome is for discharge Cerebral Performance Category 1�3. Italics
denote abnormal findings observed in each cluster. K-prototypes identifies a single prototypical patient for each
cluster; this prototype is akin to the center of clusters identified using other unsupervised approaches.

Cluster�Size (n (%)) Prototype
characteristics and #
(%)
with discharge CPC
1-3 in cluster

Detailed description of cluster prototype patient

1�330 (30) Light brain injury; exam,
CT and EEG all
acceptable

Exam
� Eyes closed to pain

� Flexing or localizing to pain
� Intact pupillary light reflex
� Intact corneal reflex
� Intact gag
� Intact cough
� Over-breathing the ventilator

Electroencephalography
�Continuous background
�Nothing epileptiform
�Reactive
CT imaging
�Gray white ratio 1.37
�Sulci preserved
�Basal cisterns patent

193 (59)

2�181 (17) Poor exam, acceptable
CT/EEG

Exam
�Eyes closed to pain

�No motor to pain

�Intact pupillary light reflex
�Absent corneal reflex

�No motor to pain

�Absent gag

�Absent cough

�Over-breathing the ventilator

Electroencephalography
�Continuous to SB background
�Nothing epileptiform
�Not reactive

CT imaging
�Gray white ratio 1.31
�Sulci preserved
�Basal cisterns patent

35 (19)

3�216 (20) Very poor exam and
EEG, CT acceptable

Exam
�Eyes closed to pain

�No motor to pain

�Absent pupillary light reflex

�Absent corneal reflex

�Absent gag

�Absent cough

�Not over-breathing the ventilator

Electroencephalography
�Suppressed background

�Nothing epileptiform
�Not reactive

CT imaging
�Gray white ratio 1.28
�Sulci preserved
�Basal cisterns patent

13 (6)

4�209 (19) Myoclonus and/or
identical bursts

Exam
�Eyes closed to pain

�Myoclonus to pain

�Intact pupillary light reflex
�Absent corneal reflex

�Absent gag

�Absent cough

�Over-breathing the ventilator

Electroencephalography
�SB background

�Ictal bursts

�Not reactive

CT imaging
�Gray white ratio 1.35
�Sulci preserved
�Basal cisterns patent

6 (3)

5�150 (14) Cerebral edema Exam
�Eyes closed to pain

�No motor to pain

�Absent pupillary light reflex

�Absent corneal reflex

�Absent gag

�Absent cough

�Not over-breathing the ventilator

Electroencephalography
�Suppressed background

�Nothing epileptiform
�Not reactive

CT imaging
�Gray white ratio 1.00

�Sulci effaced

�Basal cisterns effaced

1 (1)

Abbreviations: EEG, electroencephalography; CT, computerized tomographic; SB, suppression burst. Numeric data are reported as raw number with
corresponding percentages.
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Overall, 438 (40%) patients received TTM with goal temperature
36 �C and 470 (43%) received TTM with goal temperature 33 �C
(Table 1). Across clusters, 35�53% received TTM to 33 �C, 28�53%
received TTM to 36 �C and there was no consistent association
between cluster-level outcomes and distribution of TTM target. We
found a significant interaction between cluster membership and TTM
strategy in a model predicting survival with CPC 1�3 (P = 0.01). For
cluster 3 patients, TTM to 36 �C was associated with a 3.66-fold
increase in the odds of non-vegetative survival at hospital discharge
(95% confidence interval (CI) 1.04�13.0, P = 0.04). Patient character-
istics in this cluster, stratified by target temperature, were well
balanced (Supplemental Table 2). Controlling for year of presentation
did not significantly affect results, but recovery in this cluster was
sufficiently rare to preclude full multivariable adjustment.

Time-weighted average MAP was 85 [IQR 78�91] mmHg over
the first 24 h after admission and did not substantially differ across
clusters. We found a significant interaction between cluster
membership and mean MAP in a model predicting survival with
CPC 1�3 (P < 0.001). For Cluster 1 patients, higher mean MAP was
positively associated with outcome (OR 1.35 (95% CI 1.11�1.65,
P = 0.002)) but mean MAP did not predict outcome in other clusters
(Table 4).

Proportion receiving cardiac catheterization differed significantly
across clusters (35�5%). We found a significant interaction between
cluster membership and cardiac catheterization in a model predicting
survival with CPC 1�3 (P = 0.04). Cardiac catheterization was
positively associated with non-vegetative survival to discharge in all
groups, but the strength of this association varied (Table 4).

Table 3 – Non-neurological clinical characteristics stratified by cluster.

Characteristic Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Age, years 59 � 16 59 � 14 60 � 17 59 � 17 51 � 17
Female sex 22 (37) 64 (36) 91 (42) 78 (55) 82 (37)
Arrested out-of-hospital 272 (82) 155 (86) 191 (88) 189 (90) 148 (99)
Interfacility transfer 187 (57) 118 (65) 113 (62) 151 (72) 131 (87)
Initial arrest rhythm

VT/VF 156 (47) 43 (24) 40 (19) 55 (26) 12 (8)
PEA 104 (32) 77 (43) 82 (38) 66 (32) 35 (23)
Asystole 50 (15) 47 (26) 77 (36) 72 (34) 91 (61)
Unknown 20 (6) 14 (8) 17 (9) 16 (8) 12 (8)

Witnessed arrest

Layperson witnessed 131 (40) 56 (31) 75 (35) 115 (55) 50 (33)
EMS-witnessed 48 (15) 31 (17) 38 (18) 21 (11) 14 (9)

Bystander CPR

Layperson 78 (24) 35 (19) 53 (25) 50 (24) 46 (31)
Professional 94 (28) 49 (27) 74 (34) 68 (33) 62 (42)

Arrest duration, min 13 [7�22] 17 [10�29] 25 [15�36] 21 [14�28] 32 [23�48]
Epinephrine doses 2 [1�3] 3 [2�4] 4 [2�6] 3 [2�5] 5 [3�7]
Target temperature

33 �C 113 (34) 96 (53) 99 (46) 105 (50) 57 (38)
36 �C 174 (53) 61 (34) 80 (37) 81 (39) 42 (28)
Other target temperature 17 (5) 7 (4) 24 (11) 12 (6) 37 (25)
No TTM 26 (8) 17 (9) 11 (5) 11 (5) 12 (9)

Cardiac catheterization 114 (35) 30 (17) 27 (13) 27 (13) 7 (5)
Awakened from coma 216 (65) 42 (23) 18 (8) 6 (3) 1 (1)
Survived to discharge 214 (65) 43 (24) 18 (8) 13 (6) 1 (1)
Discharge CPC

1�3 205 (62) 39 (22) 14 (6) 5 (2) 1 (1)
4 or 5 125 (38) 142 (78) 202 (94) 204 (98) 149 (99)

Proximate cause of death

Rearrest or intractable shock 45 (14) 33 (18) 58 (27) 30 (14) 39 (26)
Brain death 3 (1) 7 (4) 22 (10) 3 (1) 55 (37)
Prior advanced directives 25 (8) 19 (11) 28 (13) 17 (8) 5 (3)
Neurological withdrawal 43 (13) 79 (44) 90 (42) 146 (70) 50 (33)

Hospital length of stay, days

Survived to discharge 15 [9�23] 17 [12�26] 19 [11�32] 19 [15�27] 23 [23�23]
Died in-hospital (all-cause) 4 [2�9] 3 [1�5] 2 [1�4] 3 [2�5] 1 [1�2]
Died after neurological withdrawal 5 [3�9] 4 [2�6] 3 [1�5] 3 [2�5] 1 [1�2]

Clinical details on presentation

Initial systolic blood pressure, mmHg 127 [106�147] 126 [104�150] 118 [93�142] 126 [108�144] 118 [92�141]
Initial diastolic blood pressure, mmHg 75 [60�91] 74 [57�93] 72 [53�94] 79 [64�91] 72 [51�90]
Mean MAP over 24 h, mmHg 85 [80�93] 85 [77�91] 82 [73�89] 86 [79�91] 82 [74�91]
Lactate, mmol/dL 2.7 [1.4�5.6] 4.9 [2.8�8.3] 6.7 [3.2�12] 3.5 [2.1�6.0] 7.9 [4.7�11]
Creatinine, mg/dL 1.3 [1.0�1.8] 1.5 [1.2�2.3] 1.6 [1.2�2.4] 1.3 [1.0�1.8] 1.4 [1.2�2.0]
Alanine transaminase, U/L 86 [38�171] 77 [36�189] 113 [54�258] 75 [38�144] 251 [113�573]
Aspartate transaminase, U/L 127 [54�231] 128 [57�320] 199 [86�458] 109 [62�236] 387 [198�927]
pH 7.29 [7.12�7.30] 7.23 [7.12�7.30] 7.21 [7.09�7.30] 7.27 [7.21�7.35] 7.16 [7.07�7.24]
PaO2, mmHg 156 [104�252] 134 [89�261] 160 [93�276] 163 [95�289] 124 [93�291]
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Discussion

We used unsupervised learning to define patterns of early post-arrest
brain injuryassessedusingmultiplediagnosticmodalitiesofstructureand
function. Brain injury severity is the dominant determinant of outcome
among patients resuscitated from cardiac arrest24 and ongoing multi-
modality assessment is at the core of neurological prognostication.25

Despite this, multimodality characterization of baseline post-arrest brain
injury has not been previously described. We demonstrate that there are
distinct patterns of post-arrest brain injury quantifiable on patient
presentation that reflect clinically important between-patient heteroge-
neity not captured by a simple diagnosis of “coma.” Outcomes widely vary
across clusters, but we do not suggest that these data be used to support
early limitations of life-sustaining therapy. Rather, the important finding in
this proof-of-concept work is that initial patterns of neurological injury may
beuseful topersonalizeearly resuscitativestrategiessuchasTTMchoice
or hemodynamic targets.

Our agnostic approach identified clusters with characteristics that prior
literature has reported as important for clinical practice: cerebral edema,
highlymalignantEEG,myoclonus, lightcoma.Estimatesof theincidenceof
significant early post-arrest cerebral edema are variable, ranging from 10%
to 50%.26 Because early cerebral edema reflects severe primary hypoxic-
ischemic injury, it expected that other modalities would also reflect
devastating injury. Burst suppression with identical bursts or other highly
malignant discontinuous EEG patterns are found in approximately 20
�25% of post-arrest patients.27�30 Prior studies have not well described
the exam or imaging features of this subgroup, but limited data parallel our
result here. Myoclonus associated with identical bursts is common.28 A
recent autopsy series suggested the midbrain and pons in these patients
are often spared severe injury, making preservation of these reflexive
functions on exam unsurprising.31 Patterns of lighter injury (e.g. intact
structure and function) are better described in the literature, as is the
potential of patients who exhibit little function as assessed by neurological
examinations or EEG to improve over time.13,32�34

That the association of various post-arrest interventions with
outcomes (target temperature, post-arrest blood pressure, and cardiac
catheterization) differed across clusters provides additional face
validity. Outcomes of patients with devastating anoxic injury are
unlikely to be improved with coronary revascularization (which may
improve cardiovascular failure but is unlikely to meaningfully affect
anoxic-ischemic encephalopathy),35 and strategies that aim to
minimize secondary brain injury are irrelevant when primary injury is
irrecoverable.36 Cerebrovascular autoregulation is often right-shifted in
patients with anoxic brain injury, making hemodynamic optimization a
potentially intervention to reducesecondary brain injury.37,38After more
severe primary injury, increasing blood pressure to preserve cerebral
perfusion may be insufficient to appreciably alter outcomes, or
autoregulation may be absent altogether.38 Why we observed a
differential association of target temperature with outcome among
patients with moderate brain injury (Cluster 3) is less clear. The

association does not appear to result from measurable between-patient
differences, though might reflect unmeasured confounding. Drug
metabolism is reduced at 33 �C,39 for example, delaying signs of
recovery40 and thus might increase mortality from withdrawal of life-
sustaining therapies based on perceived poor neurological prognosis.

Our study has important limitations. The single center design limits
broad generalizability of our results with regards to the specific incidence of
each brain injury phenotype in the population at large. Because withdrawal
of life-sustaining therapy for perceived poor neurological prognosis was
common and was likely influenced by prognostic factors that contributed to
clustering,subgroup-specificoutcomesmaybeconfoundedbyself-fulfilling
prophecies. Likewise, the selection of diagnostic and evaluative tests in our
center may bias toward identification of phenotypes defined by the worst
findings fromthoseparticular tests: forexample,cerebral edemaandhighly
malignant EEG. Therapies may have been offered based on some findings
that defined clusters. For example, cardiac catheterization in some cases
may have been prompted by signs of neurological recovery, thereby
confounding the observed association of this intervention with outcome.
While this analysis focused on neurological phenotypes as proof in
principle, post-arrest patients also have many non-neurological physiologi-
calderangementsthatmight improvespecificationofclusters.Neurological
examination and EEG findings may also be affected by sedation
administration. Robust medication data were not available for analysis,
so we cannot differentiate the role of medications from underlying anoxic
brain injury in defining phenotypic characteristics. Finally, although we
decided a priori which associations of treatment with outcomes to test
across clusters, this aspect of our work is exploratory and should not
immediately affect clinical care.

In conclusion, we identified subgroups of patients resuscitated
from cardiac arrest with distinct patterns of early anoxic brain injury
based on multiple diagnostic modalities. More importantly, we
demonstrate the association of early injury patterns with a response
to promising therapeutic interventions recently tested in neutral
clinical trials. As a scientific community, we must be mindful to
measure and account for between patient heterogeneity using the
most rigorous approaches available. Even the best treatments are
effective only when targeted to patients likely to benefit.
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Table 4 – Cluster-specific association (odds ratio) of post-arrest therapeutic interventions with outcome.

Cluster TTM (36C vs 33C) Cardiac catheterization Mean MAP (per 10 mmHg)

1: Light brain injury 1.22 (0.76�1.97) 2.40 (1.48�3.90) 1.35 (1.11�1.65)
2: Poor exam, acceptable CT/EEG 0.81 (0.35�1.86) 3.07 (1.32�7.16) 1.02 (0.75�1.38)
3: Ominous exam and EEG, CT acceptable 3.66 (1.04�13.0) 5.22 (1.64�16.6) 1.04 (0.71�1.52)
4: Myoclonus and/or identical burst 3.11 (0.45�21.5) 13.8 (2.78�66.8) 0.92 (0.40�2.13)
5: Cerebral edema 0.44 (0.08�11.1) 66.2 (2.45�1788) 1.27 (0.85�1.90)
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