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Abstract

Background: The recently developed deep learning (DL)-based early warning score (DEWS) has shown potential in predicting deteriorating patients.

We aimed to validate DEWS in multiple centres and compare the prediction, alarming and timeliness performance with the modified early warning score

(MEWS) to identify patients at risk for in-hospital cardiac arrest (IHCA).

Method/research design: This retrospective cohort study included adult patients admitted to the general wards of five hospitals during a 12-month

period. The occurrence of IHCA within 24 h of vital sign observation was the outcome of interest. We assessed the discrimination using the area under

the receiver operating characteristic curve (AUROC).

Results: The study population consists of 173,368 patients (224 IHCAs). The predictive performance of DEWS was superior to that of MEWS in both the

internal (AUROC: 0.860 vs. 0.754, respectively) and external (AUROC: 0.905 vs. 0.785, respectively) validation cohorts. At the same specificity, DEWS

had a higher sensitivity than MEWS, and at the same sensitivity, DEWS reduced the mean alarm count by nearly half of MEWS. Additionally, DEWS was

able to predict more IHCA patients in the 24�0.5 h before the outcome, and DEWS was reasonably calibrated.

Conclusion: Our study showed that DEWS was superior to MEWS in three key aspects (IHCA predictive, alarming, and timeliness performance). This

study demonstrates the potential of DEWS as an effective, efficient screening tool in rapid response systems (RRSs) to identify high-risk patients.
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Introduction

A rapid response system (RRS) is a strategy for preventing cardiac
arrest (CA) or deterioration in the general ward by providing immediate
and efficient interventions by monitoring patients’ conditions.1,2 To
effectively identify these at-risk patients, several early warning scores
(EWSs) have been developed. Because of the limited RRS resources,
an ideal EWS should have high specificity and sensitivity, ensuring the
correct identification of the at-risk patients while avoiding excessive
alarm, which can increase RRS staff desensitization and decrease
quality of care.3,4

However, a representative EWSs, such as the modified EWS
(MEWS) and national EWS (NEWS),5�9 have shown unstable
accuracies which is not satisfactory for the sole use of triggering
RRS activation.10�12 In 2018, a DL-based early warning score, called
DEWS, was developed which considers only 4 basic vital signs:
systolic blood pressure (SBP), heart rate (HR), respiratory rate (RR),
and body temperature (BT).13 We have extended from this version of
DEWS by adding diastolic blood pressure (DBP), age, and the
recorded time of each vital sign.

DEWS measures the risk of CA within 24 h from vital sign
observation. DEWS showed potential in predicting in-hospital CA
(IHCA) by showing higher sensitivity, and a lower false alarm rate than
MEWS in the original development.13 The original study was
performed in 2 hospitals with approximately 300 beds each; one
was a cardiovascular-specific hospital, and the other was a
community general hospital. Therefore, we aimed to validate DEWS
in a large multicentre cohort and compare the IHCA predictive
performance of DEWS with that of MEWS.

Methods

Study population and design

A retrospective cohort study was performed in 5 hospitals located in
South Korea: Mediplex Sejong Hospital (323 beds), Sejong Hospital
(301 beds), Inha University Hospital (925 beds), Seoul National
University Bundang Hospital (1324 beds) and Samsung Medical
Center (1989 beds). The two hospitals (A: Sejong Hospital and B:
Mediplex Sejong Hospital), where the original DEWS was devel-
oped,13 were included for internal validation, and the other three
hospitals (C: Inha University Hospital, D: Seoul National University
Bundang Hospital, and E: Samsung Medical Center) were included for
external validation. All hospitals had a mature RRS except hospital A.
The structure of the RRS in each hospital are described in supplement
Table 1.

The study population included adult patients (�18 years old)
admitted to the general ward over a 12-month period. We excluded
patients with data recorded less than 30 min of admission duration, no
vital signs measured 24 h before the CA event, and erroneous patient
demographics. The specific details on the participant selection
process is reported in supplemental Fig. 1. Since there exists no
established method in determining sample size for prognostic models
using DL methods, we have chosen the sample size appropriate for
our experiments.14

The primary outcome of interest was IHCA (defined as lack of a
palpable pulse with attempted resuscitation). All vital signs used to
predict the outcome of interest were collected for every patient. As the

vital signs were measured multiple times per patient, the DEWS and
MEWS were calculated at each point of measurement. Finally,
performances of DEWS and MEWS were compared by the predictive
performance of IHCA within 24 h of vital sign measurement.

Data collection and preprocessing

We collected data including age, sex, occurrence of events, time and
location of event occurrences, and five time-stamped vital signs (SBP,
DBP, HR, RR, and BT) recorded during hospitalization of the patients
abstracted from the electronic medical records (EMRs). From the
initial data collected, erroneous values with extreme deviations from
the vital specific normal ranges and non-numeric values were treated
as missing values. The missing values were imputed to the most
recent previous value and the missing rates of each variable are
presented in supplemental Table 2.

Deep learning-based early warning system

The DEWS architecture includes three long short-term memory
(LSTM) layers and three fully connected (FC) layers with the rectified
linear unit. To reflect the trend of the vital signs for each patient, 20
consecutive series of vital signs are used as inputs of the LSTM
layers.15 As a regularization technique, dropouts are applied on each
FC layer of the model.16 The DEWS model was trained using 80% of
the derivation data and hyperparameter was tuned on the other
20%.17 To address the class imbalance problem, we adjusted the ratio
of nonevent/event data in the training process by duplicating the event
data. From the original DEWS model, we have extended the model by
adding DBP along with age and the recorded time of each vital sign.

Performance evaluation and statistical analysis

We have compared the performance of DEWS and MEWS in terms of
the following three main key questions:
� Key question 1: How accurate is DEWS in terms of predicting IHCA

compared with MEWS (predictive performance)?

The predictive performance was measured by comparing the area
under the receiver operating characteristic curve (AUROC) and the
area under the precision-recall curve (AUPRC).18,19 The AUROC is
one of the most commonly used metrics and represents the area under
the sensitivity-false positive rate curve. Compared with the AUROC,
the AUPRC accounts for the class imbalance in data by measuring the
area under the plot of the precision-sensitivity curve. Additionally, we
compared DEWS with MEWS in terms of the positive predictive value
(PPV = true positive/(true positive + false positive)), the negative
predictive value (NPV = true negative/(true negative + false nega-
tive)), F measure (2 � (precision � recall)/(precision + recall)), the net
reclassification index (NRI), the mean alarm count per day per 1000
beds (MACPD), and the number needed to examine (NNE) at the
same specificity as MEWS.19,20 The study concept is demonstrated
graphically in supplemental Fig. 2.
� Key question 2: Does DEWS produce a lower false alarm rate than

MEWS with the same sensitivity level (alarming performance)?

The alarm rate is an important criterion for validating the feasibility
upon implementation of EWS because excessive false alarms can
cause alarm fatigue.21 Excessive false alarms and alarm fatigue can
result to staff desensitization and missed responses to alerts of clinical
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significance, putting patient safety and quality of care at substantial
risk.22 Therefore, an ideal EWS should have high sensitivity and a low
false alarm rate, so we compared the alarming rate of DEWS and
MEWS using the MACPD at the same sensitivity level.
� Key question 3: Does DEWS predict IHCA earlier than MEWS at

the same specificity level (timeliness performance)?

It is already well known that a delayed RRS response is associated
with a poor patient outcome.23�25 Recently, in the study “Quality
metrics for the evaluation of RRS” defined predictable IHCA as CAs
occurring in hospitalized ward patients who met the hospital's

escalation threshold at least 30 min prior to and within 24 h of the
event.26 In this statement paper, it is hypothesized that the period
between 24 h and 30 min prior to IHCA is enough time for RRS to
prevent the event.26 However, compared to intensive care units
(ICUs) where vital signs are measured continuously, vital signs are
usually measured only 3�4 times a day (every 6 or 8 h) in the general
wards. Therefore, it is important that the RRS staff are aware of the at-
risk patients as early as possible so that they can prepare in advance
and perform suitable action in enough time before the event. In this
respect, we compared the cumulative prediction percentage of IHCA
at the same time point within 24 h of the event (supplemental Fig. 2).

Table 1 – Baseline characteristics.

Characteristics Overall cohort
(hospital A,B,C,D,E)

Internal validation
(hospital A,B)

External validation
(hospital C,D,E)

P-value

Number of total admissions, n 173,368 14,365 159,003
Number of observation sets, n 5,875,253 342,854 5,532,399
Number of admissions on telemetrya, No. (%) 59,567 (34.3%) 694 (4.8%) 58,873 (37.0%)
Number of observation sets on telemetry, n 1,178,270 5310 1,172,960
Age, y, mean � SD 57.50 � 15.82 59.93 � 16.43 57.30 � 15.76 <0.001
Length of stay, median (IQR) 3.01 (1.61�6.74) 3.08 (1.54�7.60) 3.01 (1.63�6.72) <0.001
Male, sex, n (%) 86,198 (49.7%) 7260 (50.5%) 78,938 (49.6%) 0.040

Initial vital signs, mean � SD

SBP (mmHg) 126.60 � 19.92 126.71 � 18.94 126.60 � 20.00 0.521
DBP (mmHg) 74.50 � 12.39 76.15 � 12.59 74.36 � 12.36 <0.001
HR (/min) 77.94 � 14.50 76.21 � 15.01 78.22 � 14.39 <0.001
RR (/min) 18.11 � 2.07 17.93 � 2.01 18.13 � 2.07 <0.001
BT (�C) 36.64 � 0.57 36.72 � 0.46 36.64 � 0.87 <0.001

Vital signs within 24 h before cardiac arrest in cardiac arrest patients, mean � SD

SBP (mmHg) 113.82 � 26.02 111.03 � 24.55 114.39 � 26.28 0.180
DBP (mmHg) 66.27 � 17.24 72.51 � 17.27 65.05 � 16.98 <0.001
HR (/min) 101.24 � 22.94 100.15 � 23.36 101.40 � 22.87 0.569
RR (/min) 21.53 � 5.44 21.15 � 5.99 21.63 � 5.29 0.424
BT (�C) 36.76 � 0.85 37.03 � 0.55 36.72 � 0.87 <0.001

Initial mental status, No. (%)

Alert 36,294 (96.4%) 463 (82.5%) 35,831 (96.6%) <0.001
Reacting to Voice 796 (2.1%) 22 (3.9%) 774 (2.0%)
Reacting to Pain 189 (0.5%) 14 (2.4%) 175 (0.4%)
Unresponsive 159 (0.4%) 62 (11.0%) 97 (0.2%)
Not alert 1341 (3.5%) 98 (17.4%) 1243 (3.3%)

Mental status within 24 h before cardiac arrest, No. (%)

Alert 129 (71.2%) 7 (100.0%) 122 (70.1%)
Reacting to Voice 8 (4.4%) 0 (0.0%) 8 (4.5%)
Reacting to Pain 1 (0.5%) 0 (0.0%) 1 (0.5%)
Unresponsive 5 (2.7%) 0 (0.0%) 5 (2.8%)
Not alert 52 (28.7%) 0 (0.0%) 52 (29.8%)

Number of admissions with outcomes, n

IHCA 224 23 201 0.329
IHCA/1000 admission 1.29 1.60 1.26

Number of observation sets with outcomes, n 3190 124 3066
Number of admissions with outcome on telemetry, No. (%) 25 (11.1%) 1 (0.8%) 24 (11.9%)
Number of observation sets with outcomes with telemetry, n 186 4 182

SD standard deviation, IQR interquartile range, SBP systolic blood pressure, DBP diastolic blood pressure, HR heart rate, RR respiratory rate, BT body
temperature, IHCA in-hospital cardiac arrest, ICU intensive care unit.
a We assumed admissions on telemetry with less than 5 min of vital sign measurement interval.
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We assessed the calibration of DEWS using a calibration plot and
the average absolute error between the actual outcome and the
estimated probabilities.27,28 The x-axis of the calibration plot is the
means of decile-binned predictions, and the y-axis is the means of the
observed outcomes in each bin so that well calibrated model will fall
close to the diagonal. Additionally, to mitigate the black-box prediction
problem, we applied a Shapley additive explanations (SHAP)
algorithm to our prediction model to obtain interpretability of the
features that drive predictions.29 SHAP is a game theoretic approach
designed to explain the output of a machine learning model where the
influence of each feature on a prediction is described using Shapley
values.

Ethics statement

The Institutional Review Board of each hospital approved the study
protocol and waived the requirement of informed consent because
of the retrospective study design. The IRB number of each
participating hospital is as follows: B-1806-477-002 (Seoul National
University Bundang Hospital), 2018-054 (Mediplex Sejong
Hospital), 2018-0689 (Sejong General Hospital), 2019-09-001-
000 (Inha University Hospital), and SMC-2019-09-129 (Samsung
Medical Center).

Results

Baseline characteristics

During the study period of 12 months, 173,368 patients from the five
hospitals was examined. The internal validation cohort contained
14,365 patients with 23 IHCAs, and the external validation cohort
contained 159,003 patients with 201 IHCAs. The incidence rate of
IHCAs in the overall cohort was 1.29 per 1000 admissions. We plotted
the DEWS and MEWS distributions in the IHCA cases (supplemental
Fig. 3) using the average DEWS or MEWS within 24 h of the event.
Among the event cases, only 19 cases had a MEWS greater than five
points, which was quite a low number. When the number of event cases
is compared, more cases are distributed at higher score ranges for
DEWS than for MEWS, especially in the external validation cohort. The
baseline characteristics of the overall cohort are depicted in Table 1.

Key Question 1. Predictive performance of IHCA

As shown in Fig. 1, the performance of DEWS for predicting IHCA was
superior to that of MEWS in both the internal (AUROC: 0.860 vs.

0.754, respectively) and external (AUROC: 0.905 vs. 0.785,

Fig. 1 – Performance of the early warning scores for predicting in-hospital cardiac arrest. DEWS indicates the deep
learning-based early warning score, MEWS indicates the modified early warning score, AUROC indicates the area
under the receiver operating characteristic curve, AUPRC indicates the area under precision-recall curve, and CI
indicates the confidence interval. P-value was calculated using Delong test. Power was calculated according to the
formula by Obuchowski and McClish, 1997.
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respectively) validation cohorts. Additionally, the AUPRC for DEWS
was higher than that of MEWS in both the internal (0.012 vs. 0.003,
respectively) and external (0.017 vs. 0.005, respectively) validation
cohorts. We validated MEWS at the most commonly used cut-off
scores of 3, 4, 5, and 6 in terms of the sensitivity, specificity, PPV, F
measure, NPV, NNE, NRI and compared these values to those of
DEWS at the same specificity.26,30 As shown in Table 2, DEWS
achieved higher sensitivity for all the cut-off scores and achieved at
most 228.3% and 63.2% higher sensitivity than MEWS in the internal
validation and external validation cohorts, respectively. The predictive
performance of each hospital is shown in supplemental Fig. 4, and
DEWS outperformed MEWS in each of five hospitals.

Key Question 2. Alarming performance

We compared DEWS and MEWS by the MACPD at the same
sensitivity level. As shown in Fig. 2, DEWS achieved a lower MACPD
than MEWS. This result indicates that DEWS can detect the same
number of deteriorating patients with a much lower false alarm rate
than MEWS. For example, at MEWS cut-offs of 3, DEWS produced
62.5% and 44.2% fewer alarms than MEWS in the internal and
external validation cohorts, respectively.

Key Question 3: Timeliness performance

We validated DEWS and MEWS by enrolling IHCA patients at the time
point where the early warning score first triggered the alarm from 24 to
0.5 h before the CA occurred. As shown in Fig. 3, DEWS detected
more patients with CA in this period than MEWS. Especially in the
external validation cohort, DEWS detected 10 and 20 more IHCA
patients 20 and 15 h before the event, respectively. This finding
indicates that DEWS can not only predict more IHCA patients within
24 h but can also detect more patients in advance and thus save time
for the medical team to effectively manage patients at risk.

Model calibration

We assessed the calibration of DEWS on the entire cohort. As shown
in supplemental Fig. 5, DEWS was reasonably calibrated where the

curve approaches close to the diagonal. Quantitatively, the average
absolute error between the outcome and the estimated probabilities
was 0.046, indicating that the prediction scores and the absolute risk
are close to perfect concordance.

Inspection of model features

In supplemental Fig. 6, the overall importance of the predictor
variables of DEWS shows HR as the most important feature. The
second most important feature was RR, but in the case of other
features, it was found that the importance was relatively low.
Additionally, the feature importance of DEWS according to the order
of consecutive time steps shows a rapid increase in the SHAP value at
the most recent time point.

Discussion

We evaluated the ability of DEWS in predicting IHCA in general ward-
admitted patients of a large multicentre cohort. The results of all three
key questions (predictive performance of IHCA, alarming performance,
timeliness performance) were superior for DEWS compared to those of
MEWS. In both cohorts, DEWS achieved better performance in
predicting IHCAwithin 24 h of vital signobservation thanMEWS:DEWS
achieved14.0% (300%)and 15.2%(240%) higherAUROCs(AUPRCs)
than MEWS, respectively. The number of alarms is an important issue
for RRS teams because they are eventually associated with the team's
workload. In this study, the alarming rate of DEWS was 44.2% of that of
MEWS for a cut-off score of 3, 37.0% of that of MEWS for a cut-off score
of 4, and of 48.7% that of MEWS for a cut-off score of 5 in the external
validation cohort. In summary, DEWS had nearly half of the alarming
rate of MEWS. The third key question was the timeliness of the
prediction. When examined for every time point from 24 h to 30 min
before the event, DEWS detected more IHCA cases than MEWS. As
result of such an advantage, it enables RRSs to evaluate and care for
deteriorating patients with more time to respond. Therefore, better
predictions with fewer alarms and earlier predictions indicate that
DEWS has the potential to be an effective alternative screening tool
than conventional early warning systems.

Table 2 – Comparison of accuracy of in-hospital cardiac arrest prediction model with same specificity point.

Characteristics Sensitivity Specificity PPV NPV F-measure NRI MACPD NNE

Internal validation cohort

MEWS � 3 0.484 0.932 0.0011 1 0.002 104 391
DEWS � 53.1 0.548 0.932 0.0029 1 0.006 0.0011 103 342
MEWS � 4 0.419 0.953 0.0032 1 0.006 71 308
DEWS � 60.5 0.484 0.953 0.0037 1 0.007 0.0015 71 269
MEWS � 5 0.234 0.992 0.0106 1 0.007 12 94
DEWS � 87.5 0.306 0.992 0.0136 1 0.026 0.0032 12 73

External validation cohort

MEWS � 3 0.551 0.908 0.0033 1 0.007 335 302
DEWS � 69.9 0.700 0.908 0.0042 1 0.008 0.0014 334 236
MEWS � 4 0.386 0.958 0.0050 1 0.010 154 191
DEWS � 83.2 0.560 0.958 0.0073 1 0.032 0.0024 154 137
MEWS � 5 0.230 0.989 0.0117 1 0.022 39 85
DEWS � 94.1 0.338 0.989 0.0166 1 0.032 0.0052 41 60

PPV positive predictive value, NPV negative predictive value, NRI net reclassification improvement, MACPD mean alarm count per day per 1000 beds, NNE
number needed to examine, MEWS modified early warning score, DEWS deep learning-based early warning score.
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Various studies have attempted to predict mortality in critically ill
patients (i.e., those in ICUs) using machine learning (ML).31�35 ICUs, in
particular, have many databases for continuous vital sign monitoring and
large numbers of diagnostic tests, including laboratory tests, imaging
tests, microbiologic reports, medical history panels, patient demo-
graphics, ordered fluids, drugs, transfusions, etc. This large database
enables ICUs to be an adequate setting for which to conduct artificial
intelligence (AI)-based studies. Most AI-based ICU studies have studied
mortality or major event prediction (such as hypotension, sepsis,
readmission), and in general, algorithm-based prediction achieved better
performances than conventional prognostic systems.36,37

However, only a few studies have focused on deteriorating
patients admitted to general wards. In 2016, Churpek et al.’s study38

showed that a ML (i.e., random forest) algorithm (AUROC 0.80)

predicted clinical deterioration more accurately than MEWS (AUROC
0.70) in general ward patients. Both ML and DL methods analyse data
through self-learning to solve the task or problem. ML requires feature
engineering, whereas DL does not; rather, it learns the representation
of the raw data in multiple levels of abstractions by itself, which is the
essence of why DL methods achieve higher accuracy than most ML
methods.39 Alvin Rajkomar et al. demonstrated the effectiveness of
DL models in a wide variety of predictive problems and settings.40

However, this study did not focus on general ward patients and sudden
CA but rather on the entire length of stay, including both the general
ward and the ICU. The outcomes of interest were inpatient mortality,
readmission, length of stay and discharge diagnoses. Thus, to the
best of our knowledge, our study is the first to apply DL to detect
deteriorating patients in general wards in a large multicentre cohort.

Fig. 2 – Comparison of the mean alarm count per day per 1000 beds at the same sensitivity point for predicting in-
hospital cardiac arrest. MACPD indicates the mean alarm count per day per 1000 beds, DEWS indicates the deep
learning-based early warning score, and MEWS indicates the modified early warning score.
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One of the critical strengths of DEWS is that it consists of a limited
number of predictor variables. In this validation study, DEWS used
only five basic vital signs: SBP, DBP, HR, RR and BT along with age
and recorded time of vital signs. The two previous AI-based
studies38,40 in general ward patients used a variety of predictor
variables, including demographics, vital signs, laboratory values, etc.
Prediction models with more variables would have better predictabili-
ty, but there are significant limitations to the scalability and applicability
of models with many variables. The predictor variables used in DEWS
are basic but essential vital signs that are almost always checked in
admitted patients and with low missing rates. Therefore, DEWS can
be applied worldwide without any difficulties in technical
implementation.

Five hospitals in South Korea participated in this validation study.
The characteristics of each hospital are quite different in terms of the
locations, hospital sizes, admitted patients and operating policies. The
two hospitals involved in the internal validation have more than 300
beds; one is a cardiovascular-specific hospital, and the other is a
community general hospital. The hospitals in the external validation
set have more than 900 beds, and all three hospitals are tertiary
teaching hospitals, which are affiliated with each of the three different
medical universities. Since the original DL model was developed and
trained from the two hospitals with 300 beds, the results on the
external validation cohort are important in terms of generalization. As
a result, DEWS achieved superior performance in the external
validation cohort (AUROC 0.905, 95% CI [0.901 - 0.910]) compared to
the internal validation cohort (AUROC 0.860, 95% CI [0.832�0.888]),
which suggests that DEWS is robust across multiple hospitals.

Our study has several limitations. We consider only the first CA for
each patient admission, although second and third CAs are also
important for the patient's prognosis. Nonetheless, the first CA has the
highest priority because the care level the patient receives after CA will
be maximal. Additionally, since this study was performed in a
retrospective manner, a well-designed prospective clinical trial is
necessary to apply DEWS in clinical practices as an alternative to
other triggering score systems in RRS.

Conclusion

We compared DEWS and MEWS in multiple centres via extensive
experiments. The results showed that DEWS not only predicts IHCA
more accurately than MEWS but also reduces the false alarm rate.
Additionally, DEWS was able to predict more CA patients in the period
from 24 h to 0.5 h before the event than MEWS. These findings
demonstrate the potential of DEWS as an effective screening tool in
RRSs that can be efficiently applied to identify high-risk patients.
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Appendix A. Supplementary data

Supplementary material related to this article can be found, in the
online version, at https://doi.org/10.1016/j.resuscitation.2021.04.013.
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