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ARTICLE INFO ABSTRACT

Keywords: The U.S. electrical grid, the largest and most complex man-made system in the world, is highly vulnerable to
National security three types of external threats: 1) natural disasters, 2) intentional physical attacks, and 3) cyber-attacks. The
PhoF?"OltaiC technical community has recommended hardening the grid to make it more resilient to attack by using
R?511len?e distributed generation and microgrids. Solar photovoltaic (PV) systems are an ideal distributed generation
B];I;(f:gf:d technology to provide power for such microgrids. However, both the deployment velocity and the policy of how

to implement such technical solutions have been given far less attention than would be normally considered
adequate for a national security risk. To address this threat, this paper reviews the technical and economic
viability of utilizing defense contracting for the beginning of a national transition to distributed generation in
the U.S. First, the technical scale of electrical demand and the solar PV system necessary is analyzed in detail to
meet the first level of strategic importance: the U.S. military. The results found that about 17 GW of PV would
be needed to fortify the U.S. military domestically. The current domestic geographic deployment of microgrid
installations in the critical U.S. defense infrastructure were reviewed and compared to historical grid failures
and existing and planned PV installations to mitigate that risk. The results showed a minimal number of
military bases have introduced solar PV systems, leaving large parts of the Department of Defense electrical
infrastructure vulnerable to attack. To rectify this situation, the technical skills of the top 20 U.S. defense
contractors is reviewed and analyzed for a potential contracting transition to grid fortification. Overall the
results indicate that a fortified U.S. military grid made up of PV-powered microgrids is technically feasible,
within current contractors skill sets and economically viable. Policy recommendations are made to accelerate
U.S. military grid fortification.

Distributed generation

1. Introduction

The U.S. electrical grid, the largest and most complex man-made
system in the world today [1], is an interconnected network for
delivering electricity from generally centralized suppliers to distributed
consumers. This electrical system architecture is comprised of substa-
tions with variable carrying capacities of electrical load, which are
susceptible to widespread cascading failures [1-3]. Every U.S. sector
(military, economy, government, health care, education, etc.) depends
on the grid to deliver essential electrical services. Due to its highly
interconnected and interdependent nature, electric grid failure has the
potential to impair economic and social functions in the event of a
power outage [4—6]. The interdependencies of the power grid and other
critical infrastructures are illustrated in Fig. 1. The general consensus
in the energy community is that the electrical grid is highly vulnerable

to three types of external threats: 1) natural disasters [7-9], 2)
intentional physical attacks [5,10-13], and 3) cyber-attacks [14—20].

The first threat of natural disasters caused by severe weather is
responsible for $18 to $33 billion every year in power outages and
damages to U.S. infrastructure [23]. These major power outage
disasters tend to be widespread, with an average of 700,000 consumers
impacted per weather-induced power outage annually [5]. The impacts
of past major U.S. power outages are summarized in Table 1. The
majority of economic costs result from spoiled inventory, delayed
production, and damage to grid infrastructure [23].

The second threat of physical attacks includes traditional acts of
terrorism such as bombing or sabotage [14] (e.g. an electromagnetic
pulse attack [24-26]). The traditional power grid infrastructure is
incapable of withstanding intentional physical attacks [27]. Damage
resulting in physical attack could be long lasting, as power plants
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Fig. 1. Interdependency of infrastructure systems and electrical grid. Data compiled
from literature on critical infrastructure industries [7,9,12,14,21,22].
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Table 1
Recent Major U.S. Power Blackouts. Compiled from [72,73].

Year Number of Affected Costs (US  Cause Days
States Population $ Billion) without
Affected (Millions) Power

2003 8 50 6 Tree 4

Trimming
Early Snow

2011 13 3 15 Storm 10

2012 14 8.2 65 Hurricane 14

2012 7 4.2 2.9 Wind 10

operate with large transformers that are difficult to move and source.
Custom rebuilt transformers require time for replacement ranging
from months and even up to years [27]. For example, a 2013 sniper
attack on California's Pacific Gas and Electric (PG &E) substation
disabled 17 transformers supplying power to Silicon Valley. Repairs
and improvements cost PG & E roughly $100 million and lasted 27
days [28-30].

In addition to physical attacks, the electrical grid is also exposed to
cyber-attacks. The Pentagon reports spending roughly $100 million to
repair cyber-related damages to the electric grid in 2009 [31]. The U.S.
electric grid, along with other critical infrastructure systems, is growing
increasingly dependent upon the Internet and other network connec-
tions for data communication and monitoring systems [16,32-35].
While this allows electrical suppliers convenient operation and man-
agement of systems, it increases the grid's susceptibility to cyber-
attack, which exploit critical infrastructure systems, causing denial of
webpage services to consumers, disruption to supervisory control and
data acquisition (SCADA) operating systems, or sustained widespread
power outages [16,18,36,37]. Unlike a physical attack, cyber attackers
are capable of penetrating critical electric infrastructure from remote
regions of the world, requiring only an Internet connection to gain
pathways and install malware into the electric power grid's control
systems. Many efforts are underway to harden the grid from such
attacks [17,21,35]. However, the integrated nature of the grid, which is
based on centralized generation, but diffuse transmission, makes the
entire system vulnerable to a concentrated attack, in contrast to a
natural disaster that may have local or regional impacts. The U.S.
Department of Homeland Security reports responding to approxi-
mately 200 cyber incidents in 2012 across critical infrastructure
sectors, of which 41% involved the electrical grid [38]. Economic
impacts of a successful breach are estimated to cost $243 billion
mounting to roughly $1 trillion in an extreme case [39]. According to
senior intelligence officials, various nation states (e.g. China, Russia,
North Korea) have made attempts to map current critical infrastructure
for future navigation and control of the U.S. electrical system [31]. Due
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to such offensive efforts, several other countries, including the U.S.,
have added cyber-attacks into their current military defense prepara-
tions [33].

As cyber-attacks are becoming increasingly prevalent, it is neces-
sary to recognize the unpreparedness of critical infrastructure opera-
tors. In 2008, the Federal Energy Regulatory Commission (FERC)
alongside the North American Electric Reliability Corporation (NERC)
implemented a mandatory Critical Infrastructure Protection (CIP)
Reliability Standards program [40]. Then an Executive Order (EO
13636) was implemented in 2013, in effort to address additional
protection measures not listed in the CIP Standards program [41].
Other proposed policy solutions to electric grid cyber vulnerability
include better assessment of vulnerabilities and increased cyber
security control through strong firewalls and monitoring systems
[1,35,40].

The technical community has recommended a more direct solution
to all of these threats for some time: distributed generation and
microgrids [42—44]. Microgrids allow the generation system to sepa-
rate from distribution during disturbance events. The system maintains
a high level of service and performance while decreasing the chances of
cascading failures and enables distributed generation without grid
redesign [45,46], thereby making the entire grid more resilient. Solar
photovoltaic (PV) systems, which generate electricity directly from
sunlight [47], are an ideal distributed generation technology to provide
power for such microgrids [48]. PV costs have dropped significantly
[49,50], due to technical evolution, large-scale manufacturing [51] and
a substantial learning curve [52-55]. Coupled with current decreasing
battery costs [56,57], the transition to solar PV distributed generation
microgrid systems can be highly economical [58-60].

The policy dimensions of how to implement such technical solu-
tions has been given far less attention than would be normally
considered adequate for a national security risk as demonstrated by
the dearth in the literature as compared to more conventional national
security threats. To address this threat, this paper reviews the technical
and economic viability of utilizing defense contracting for a start of a
national transition to distributed generation in the U.S. The objective of
this review is to provide a foundation for thinking of the electrical grid
in terms of a security issue and how to use renewable energy sources to
increase national security. First, the technical scale of electrical
demand and the necessary solar PV system is analyzed in detail to
meet the first level of strategic importance: the U.S. military. The
current domestic geographic deployment of microgrid installations in
the critical U.S. defense infrastructure is reviewed and compared to
historical grid failures and existing and planned PV installations to
mitigate that risk. Then the technical skills of the top 20 U.S. defense
contractors is reviewed and analyzed for a potential contracting
transition to grid fortification. Three case studies are presented
(Lockheed Martin, Bechtel, and GE) to demonstrate how this transition
could take place. A cost sensitivity is performed and the potential
revenue increase for the current defense contracts of the top 20 U.S.
contractors for 2014 is presented. Then, each of the remaining levels
the current grid vulnerabilities is summarized and policy recommen-
dations are made to demonstrate a path to a secure and hardened U.S.
electric system made up of PV-powered microgrids.

2. Methods and calculations
2.1. Methods

Electric load data for fiscal year 2014 was obtained from the U.S.
Energy Information Administration (EIA) for: (1) military, (2) govern-
ment, (3) critical infrastructure (systems defined as electric power,
natural gas/oil production, telecommunications, transportation, water
supply, banking and finance, transportation, emergency and govern-
ment services, and agriculture [61], (4) industrial, (5) commercial, and
(6) residential [62] to determine the scale of PV-powered microgrid
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fortification needed at each level of strategic importance. For level 1
(military) facilities, the Department of Defense (DOD) Title 10 USC
2911 requires military operations to obtain 25% of energy generation
from renewable energy resources by 2025 [63]. Along with the DOD
Title 10 USC 2911, the DOD implemented a secondary initiative of
3 GW of renewable capacity by 2025 [64].

To determine the percentage of military facilities meeting national
security thresholds, operational military bases (Army, Air Force, Navy,
and Marine) were identified from military databases [65-67] and
cross-referenced with current Department of Defense solar renewable
energy existing installations and upcoming projects [65-67].
Information was tabulated to provide base location, PV installation
capacity, and base population.

Next, data on past major U.S. power blackouts were collected [5]
and geolocated with the following data: cost in damages, amount of
states and customers affected, and the cause of blackout. Two
shapefiles were obtained to analyze the national solar electrical security
for strategic level 1 facilities: 1) a shapefile of the United States was
obtained from the ArcGIS database [68], 2) a point shapefile of 2015
military bases was obtained from the DOD [69]. Power outage locations
military bases were then transcribed to a map utilizing ArcMap version
10.3.1, and this geographic information systems (GIS) data was then
overlaid with current military solar-PV installations to provide a map of
national solar electrical security for strategic level 1 facilities.

In order to gauge the difficulty in obtaining 25% (required by 2025),
50%, and 100% compliance with hardening of electrical security at
these strategic level 1 facilities, FY 2014 Federal spending budget was
collected to determine funds allocated towards DOD federal contract-
ing services. A list of the top 25 federal contractors was obtained from
the Federal Procurement Data System and is arranged by the total
federal contracting spending (and percentage) on services for each
company for fiscal year 2014 [70]. Technical skills of three of the top 25
U.S. defense contractors (Lockheed Martin, GE and the Bechtel Group)
is reviewed and analyzed for a potential contracting transition to grid
fortification and case studies are presented. A cost sensitivity is
performed and the potential revenue increase for the current defense
contracts of the top 20 U.S. contractors for 2013 is presented. Then,
reviewing policy relevant to military deployment of PV, policy recom-
mendations are summarized to demonstrate a path to PV-powered
microgrids for the necessary national security measures made possible
by grid fortification.

2.2. Calculations

Nameplate capacity (N;,) in GW for p=25%, 50%, and 100% solar
PV generation is given by:

N, = (L)*IO—G[GW”{W] - (@)*mfﬁmwmm
365%f 3657,

®
Where the percent capacity (Pc) [MWH/day], is given by p is the
percent calculated here for 25%, 50%, and 100% of the total capacity
(C, in kWh/day from Table 2). The average solar flux for the state is f;.
In the U.S. f is approximately 4.5kWh/m?/day for non-tracking flat
plate PV tilted south at the latitude to optimize yearly energy produc-
tion, but states vary from 3.34 to 7.5 kWh/m?/day and this was taken
into account for bases within each state [71].

Data on average solar flux per state was obtained and geolocated
with location of U.S. domestic military bases. Two shapefiles were
obtained to analyze the national solar electrical security for strategic
level 1 facilities: 1) a shapefile of outlined the United States was
obtained from the ArcGIS database [68], 2) a point shapefile of 2015
military bases was obtained from the Department of Defense data
catalogue [69] were then transcribed to a map utilizing ArcMap version
10.3.1, and this geographic Information Systems (GIS) data was then
overlaid with current military solar-PV installations to provide a map of
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Table 2
Electrical use size and calculated PV capacity for six levels of strategic importance in the
U.S. for Fiscal Year 2013.

Calculated PV to
Meet Demand [GW]

Level Electrical Load Total Electricity

Used [MWH/day]

1 Military 81,399.4 16.3
2 Government ?
3 Critical “

Infrastructure
4 Industrial 2,620,000 524
5 Commercial 3,720,000 744
6 Residential 3,840,000 768

Military electrical use was obtained from the 2014 DOD Annual Energy Report [64],
Electrical consumption for Industry, Commercial, and Residential sectors was obtained
from [62].

@ Electrical consumption alone is not available for the Federal Government and
Critical Infrastructure, but divisions of each are included in industrial and commercial
values.

national solar PV potential for strategic level 1 facilities.
The investment (I) sensitivity for 25%, 50%, and 100% solar PV
generation was given by:

I= N, w[USS] @

Where N is given by Eq. (1), and w is the cost per Watt, which ranges
from $2.50/W to $0.25/W in $0.25/W increments.

3. Results

3.1. Historic Effects of U.S. Blackouts and Scale of Strategic
Components

Table 1 illustrates the impact of four major U.S. grid failures along
with the number of states effected, economic damages, population
affected, cause of grid failure, and average number of days without
power.

Table 2 illustrates the electrical use for six levels of strategic
importance. Data were obtained from the EIA for Fiscal Year (FY)
2013. Table 2 shows solar-PV capacity (in GW) required to provide
100% of the electrical needs by each military branch. Overall, to meet
the electrical needs of all six levels over 2000 GW is needed. To put
these values in perspective, the U.S. solar industry has installed a total
22.7 GW of solar capacity across the U.S [74]. There are currently 216
microgrid deployments across the U.S. with 1.948 GW renewable
energy capacity [75]. This represents 0.09% of the U.S. total installed
solar capacity.

The technical solutions to obtain compliance with hardening of
electrical security at critical facilities is discussed below. For this review
study, only level 1 (military base) loads are analyzed in more depth.

3.2. Department of Defense

The DOD operates over 400 military installations (not including air
strips, outlying airfields, and training ranges) within the continental
U.S. Of these, 27 active bases (9%) have implemented or have current
plans to implement solar-PV systems for onsite renewable energy
generation (Table 3).

Following the renewable energy production mandates noted above,
each branch generated individual renewable energy generation goals to
improve efficiency and national security. For example, the Department
of the Navy plans to generate 50% of their electricity needs from
renewable energy by 2020 [76] and the Army's goal is 1 GW by 2025
[77]. By 2013, the DOD had 0.13 GW of solar power up and running
[78] and by 2015, the DOD deployed 0.583 GW of renewable energy
with microgrids [75]. Current solar energy generations for each
military branch are as follows: Navy with 0.058 GW, Army with
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Table 3
Current Military Bases Solar-PV Systems.

Power (MW)* Populaltionh (Thousands)
Army
Fort Benning 30 110
Fort Campbell 5 84
Fort Carson 2 124
Fort Detrick 15 10
Fort Dix 0.8 7
Fort Gordon 30 94
Fort Hood 1 322
Fort Huachuca 17.2 33
Fort Rucker 0.051 24
Fort Stewart 30 54
Presidio 0.37 5
West Point 0.56 10
Navy
China Lake 13.78 5
Coronado 0.924 27
Kings Bay 30 16
Pearl Harbor 2.4 58
Saufley Field- Pensacola 50 14
Holley Field- Whiting 40 16
Air Force
U.S. AFA 6 7
Davis-Monthan 16.4 16
Edwards AFB 3.39 22
Eglin AFB 30 17
Hill AFB 0.22 24
LA AFB 0.36 5
Luke AFB 15 12
Nellis AFB 14.2 29
Marine Corps
Albany MC Logistics 46 23
Twenty-Nine Palms 4.5 58
MC Air Station Miramar 0.204 12
Barstow MCLB 1.2 2

? Data obtained from respective division databases for existing and near term planned
[65-67].

b Data obtained from DOD Military Installations data bank represents proposals for
upcoming solar PV generation capacities.

0.036 GW, Air Force with 0.036 GW, and Marine Corps with 0.05194
[78]. With the addition of 0.12 GW in upcoming solar projects [65-67],
the U.S. DOD solar capacity accounts for only a small fraction, 1.1%, of
the current total U.S. solar capacity. This accounts for only a fraction
(10%) of the 3 GW solar capacity goal for 2025.

3.2.1. Current defense vulnerabilities to grid failure

The DOD is heavily reliant on the electrical grid; DOD operations
and facilities’ electrical consumption is approximately 80% of total
Federal energy consumption [64]. Along with high energy costs, the
DOD obtains a majority of its energy from foreign fossil fuels with
vulnerable supply lines. Nearly all current bases are vulnerable to
electricity generation disruption. Many bases are located within regions
that have already experienced major power outages, as can be seen in
Fig. 2. Extended power outages affect military operations: Failure in
the electric grid renders equipment, weapons, and personnel defense-
less to external attacks [65—67].

3.2.2. Projected solar PV requirements for military grid fortification

Fig. 3 shows a map of the United States military bases geolocated
with average solar flux. As can be seen from Fig. 3, there is a slight bias
towards higher solar flux locations along with civilian population.
Nameplate solar capacity was calculated utilizing previous DOD
electrical demand (FY 2014). The varying percent capacities, 25%
(required by 2025), 50%, and 100%, represent the solar capacity
necessary for the DOD to transition to grid fortification. The solar PV
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nameplate capacities and

N100:16.9 GW

are: No5=4.21 GW, N5p=8.42 GW,

3.2.3. U.S. military microgrid cost sensitivity

A cost-sensitivity analysis was performed to illustrate the expected
costs of implementing a renewable energy policy or program for the
U.S. DOD. Cost-sensitivities were performed as a function of dollar per
watt at each % capacity (25%, 50%, and 100%). The linear curve begins
at $2.50/W and decreases by $0.25/W until it reaches $0.25/W to
reflect potential future market costs of a microgrid system [70]. It
should be noted here that these are projects as the cost of a large scale
purchase of PV-powered microgrids on the order of tens of GW would
benefit from considerable economics of scale both for the PV, storage
system and any electronics or backup systems.

3.3. Potential microgrid transition DOD contractors

A list of funds allocated to the top twenty-five DOD contractors was
compiled to gauge the potentiality of transitioning to a solar PV
microgrid system. In FY 2014, the DOD awarded $286.41 billion, of
total $526.6 billion (FY 2014) budget, in funds to 100 contractors [70].
The top 25 are listed in Table 4, with the top awardee, Lockheed Martin
Corporation, receiving over US$25 billion. Bechtel Group Inc. was
awarded almost US$2.5 billion, followed by General Electric Company
with US$2.2 billion [70]. These three contractors were selected due to
their existing penetration in renewable energy development programs
and to illustrate existing specialized skills developed by defense
contractors needed to aid the ease of transition to military grid
fortification.

Many current DOD contractors already have a proven capacity for
designing, building and commissioning PV-powered microgrids. Here,
three cases studies of companies that currently contract with the U.S.
military on renewable energy projects and thus have demonstrated
capacity for these projects are reviewed in order to clarify the ability of
defense contractors to provide these services to the U.S. military. These
companies were selected only to demonstrate the vast array of all
defense contractor's potential to bid on U.S. military solar PV research
and development projects. To be clear this paper is not advocating for
specific defense contractor companies, rather providing examples that
demonstrate technical skills necessary for this transition.

3.3.1. Lockheed Martin corporation

Lockheed Martin, a global security and aerospace company that
provides a plethora of services to the DOD, has a Microgrid
Development Center to improve efficiency, reliability, and security of
microgrid systems. A demonstration project was implemented at Fort
Bliss with expectations to decrease energy consumption by 20%
[79,80]. Along with microgrid systems, Lockheed Martin has launched
several solar power projects, including a back-up generation and
storage unit for Fort Bliss. Lockheed Martin currently receives 8.7%
funding of the total DOD Federal contracting budget. This amount of
funding is significant when compared to the costs of U.S. military grid
fortification. Even if this amount is held constant and shifted to
microgrid deployment, as can be seen in Fig. 4, Lockheed could fortify
the entire U.S. military electrical infrastructure in a single year of
expenditures if the system costs can be reduced to US$1.50 or less.

3.3.2. General Electric company

GE provides, among its diverse portfolio of electric energy technol-
ogies, clean energy technology and solutions, and has been involved in
solar PV research for decades. More recently, GE has evolved to provide
funding for solar projects as well as partnering with solar manufac-
turers to bring realized solar projects to customers. GE worked with
DOD to develop a demonstration microgrid project at the Twentynine
Palms Marine Corps Base. GE has opened the door to DOD installa-
tions, partnering with SunPower to build a 14.2 MW solar-PV system
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Fig. 2. Map of United States Military Bases with Solar-PV systems in historically vulnerable blackout zones.

on the Nellis Air Force Base [81,82]. General Electric currently receives
0.8% funding from the DOD Federal contracting budget.

3.3.3. Bechtel Group Inc

Bechtel Group is a worldwide engineering, construction, and
project management company, with expertise in infrastructure, defense
and security, and power. A leader in nuclear fuel for over 70 years,
Bechtel has introduced renewable technologies into their engineering
profile. Bechtel has completed three major solar generating facilities
across California, each above 100 MW capacity, delivering power to a
collective 275,000 homes [83]. Bechtel currently receives 0.9% funding
from the DOD Federal contracting budget.

The DOD awards approximately $30 billion (10.4%) of the DOD
Federal contracting budget to these three companies annually. Even
using an unreasonably conservative cost figure of US$4.00/W for an
installed system of approximately 17 GW, these three companies
working together could complete 100% U.S. military grid fortification
in less than 2.5 years of current funding allotments. More realistically,
such a massive infrastructure project would need to be spaced out over
several years to control costs. To illustrate, consider a hypothetical
model to fund compliance with 100% solar PV generation microgrids
for U.S. military installations over 10 years. Total financial obligation
spread across 10 years to design and deploy 100% solar PV capacity
system is US$42.0 billion as a function of US$2.50/W, Fig. 4. Projected
DOD allocations include: US$3.61 billion to Lockheed Martin, US$336
million to General Electric Co., and US$378 million to Bechtel Inc.
each for ten years. It should be noted the careful balance that must be
determined between limiting costs by extending the installation period

Alaska

and maintaining military grid vulnerability for an extended time and
the effects on national security interests is left for future work. The
model demonstrates projected financial obligations necessary to design
and deploy renewable energy installations (utilizing Lockheed Martin,
GE, and Bechtel Inc. as an example) to meet 100% solar PV capacity by
2025.

4. Discussion

This study found the lack of electrical grid security poses significant
risk to critical infrastructure systems. This section will discuss results
that point to a need for increasing the U.S. military's electrical system
resilience. The limitations of the study are included along with
proposals for necessary future studies. Policy suggestions are included
to assist the U.S. military's transition to aggressive solar PV generation.
This review unveils one potential avenue to the military could take to
improve components of national security, energy security, and energy
costs.

4.1. Expanding U.S. military electrical system resilience

There are significant threats of natural disaster, physical attack, and
cyberattack to the U.S. electrical grid, as previously noted. Failures in
the power system can result in detrimental supply shortages, economic
impacts [84] and social costs [85]. It is important to design resilient
infrastructure systems to recover service levels in a timely manner [86]
and address mitigation of these extreme events [87]. Resilient techno-
logical systems are flexible, robust, prepared for change, and are

Average kWh/m?/day

<1
=1.0-3.0
[=3.0-3.5
[3.5-4.0
[4.0-45
[ 4.5-5.0
Il 5.0-5.5
I 5.5-6.0
I >60

Military Bases without solar

' .

Military Bases with solar
Hawaii '

Fig. 3. Map of United States Military Bases geolocated with solar flux.
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Table 4

Top 25 Federal Defense Contractors by funding.

DOD Contractor

Financial Obligation

Number of

(USD) Projects

Lockheed Martin Corporation $25,065,461,247.84 18,634

The Boeing Company $18,005,350,332.68 12,663

General Dynamics $13,630,604,800.84 16,329
Corporation

Raytheon Company $11,816,577,883.63 10,275

Northrop Grumman $9,213,821,365.01 10,194
Corporation

United Technologies $6,117,086,747.69 9296
Corporation

L-3 Communications $5,288,631,065.98 8499
Holdings INC.

Bae Systems PLC $4,876,213,940.43 9340

Huntington Ingalls Industries $4,025,292,235.52 3116
INC.

Humana INC. $3,527,209,086.24 231

United Health Group $3,203,771,598.01 243
Incorporated

Health Net INC. $3,086,459,475.28 129

Saic INC. $2,988,612,860.95 13,789

United Launch Alliance L. $2,519,158,433.33 89
[70]

Bechtel Group INC. $2,476,019,275.51 153

General Electric Company $2,200,317,806.74 4649

Booz Allen Hamilton Holding $2,166,187,575.84 4507
Corporation

Exelis INC. $2,105,471,497.30 2583

Bell Boeing Joint Project $2,018,971,983.94 2859
Office

Hewlett-Packard Company $1,766,447,587.13 42,041

Mckesson Corporation $1,663,708,861.81 16,139

Royal Dutch Shell PLC $1,606,631,098.63 489

Textron INC. $1,584,800,612.37 3717

General Atomic Technologies $1,577,207,888.26 707
Corporation

Data was collected from the FY 2014 Federal Procurement data system [65]. The report
includes the Top 100 DOD contractors.

PV-Installation Cost(Billion Dollars)

0.25 0.5 0.75

1.25 15

Price of PV (Dollar per Watt)

225 25

Fig. 4. Total installation cost sensitivity as a function of installed cost and percent PV
capacity on U.S. domestic military bases. Estimated solar PV costs were calculated as a
function of cost per watt from $2.50-$0.25 reflecting current and expected market values
for each percent capacity: a=25%, b=50%, c=100%.

essential to prosperous development of society [88]. Electrical system
technology must improve, to provide increased energy security by
preventing cascading grid failures [89].

The majority of military bases are still connected to the U.S.
electrical grid and the vulnerable nature of the grid poses a serious
threat to national security as personnel, daily operations, weapons, and
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essential equipment can be compromised in a power outage [65—67].
The DOD spends billions of dollars in annual energy costs with the
current electrical system model [64]. The DOD can transition to a more
resilient system by installing decentralized automated microgrids
primarily powered with solar PV at a one time, up front cost. This cost
can be spread out over several years of deployment. If this is done, the
cost of implementing solar PV installations will likely decrease because
of the aggressive and protracted PV learning curve [52-55]. It is
important to note that regardless of the deployment schedule these
upfront costs will be recouped within a few years from avoided annual
energy expenditures. The economics of this scale of deployment is left
for future work as the focus of this study in on enhancing national
security. Once disconnected, military base microgrids can provide
sufficient generation by supplying enough energy to meet their
electrical load and remain islanded in the event of grid failure [90].
Additionally, with appropriate planning, military bases can extend grid
protection to surrounding communities. In the event of a power outage,
military solar PV powered microgrids can act as a backup system and
export surplus power to surrounding communities, helping regional
resilience to grid disruption.

During times of low solar insolation, military operations still
require power, and thus military microgrids will require adequate
storage. Battery technology has been advancing rapidly, and now
higher energy density (700 Wh/1) storage with Li-ion is beginning to
dominate. However, theoretical energy densities point to future
improvements with nanostructures and new materials using abundant
materials such as LiS (2600 Wh/kg) and Li-air (11,000 Wh/kg)
technologies [91]. Along with these technological advancements,
battery costs are dropping, with current costs being between $600-
1000/kWh, and the DOE expects them to fall further to reach $225/
kWh in 2020 and $150/kWh in the longer term [56]. Economies of
scale will also factor into future battery prices, especially with Tesla's
increased battery manufacturing plans through its GigaFactory, which
plans to produce 500,000 batteries a year starting 2017 [92]. Shortly,
battery packs (like the Power Wall), which will be ideal modular storage
building blocks, are expected to be available for $350/kWh for home
use [57]. Until Tesla batteries become available at the scale needed for
the U.S. military, one temporary solution is the use of hybrid renewable
energy systems to improve system efficiency and energy supply
reliability [93]. More specifically, military installations can use com-
bined heat and power (CHP) systems. During these low solar influx
times, a CHP system turns on to maintain constant load [94] and these
systems have been modeled with dispatch strategies [95] sufficient to
cover even the most dynamic loads (e.g. a single family residences)
[96,97]. Although the economics of hybrid PV+CHP+battery systems
are attractive [98], CHP systems, are still subject to supply chain
disruptions of the fuel source and should only be considered as
temporary solutions. In addition, it is advisable to reduce loads as
much as possible by instituting energy efficiency measures (as have
been successful in the past at military bases) [99] and look at the
potential for passive solar retrofits, which for example have worked for
the Department of the Navy, creating energy savings [100,101].
Although thermal savings are not directly equivalent to electric load
demand reductions, they do result in savings, for example, from
reduced blower loads.

The DOD mandates 25% renewable generation by 2025, along with
a goal of 3 GW across three branches. In Fiscal Year 2014, the DOD
spent $18.2 billion on all energy expenditures [64]. A significant
fraction of these operating expenses would be offset by the capital
expenditure of a PV-powered microgrid. Roughly 54% of the DOD
budget is allocated to DOD contracting. As can be seen from the results,
utilizing current skills of top defense contractors, the DOD could shift
funds to convert to 100% solar-PV microgrid systems across Army,
Navy/Marine Corps, and Air Force military bases, resulting in
decreased costs. The remaining budget excess could be allocated to
further harden energy security. The DOD can submit request for



E.W. Prehoda et al.

proposals (RFPs) to current DOD contractors that include research into
optimal physical and cyber protection of solar-PV microgrid farms.

4.2. Limits of study and future work

The military is the first line of strategic importance for energy
security. The results in this paper show that the overall expense is
manageable within existing total budgets, but more granular estimates
of costs are needed. A major limitation to this study is lack of data to
calculate, on a case-by-case basis, solar PV generation capacity.
Detailed work is needed at each installation to determine the optimal
solution for each base, which must take into account appropriate
available areas for solar collection, current and future load profiles in
small time steps and potential to reduce loads with energy efficiency
retrofits. More precise and accurate estimates on the cost of PV-
powered microrid system are needed at the GW scale, where, for
example, industrial symbiosis benefits [102] are likely to occur. Careful
ramping up of scale could produce templated (or even open source
[103]) designs that could be replicated in the future at much lower
costs than the first round of demonstration systems. In addition, this
analysis focused only on domestic DOD facilities and thus it should be
expanded to all DOD facilities internationally.

Future work must address the feasibility of converting energy
generation to a renewable solar source to meet the needs of critical
infrastructures beyond military facilities addressing the other strategic
areas shown in Fig. 1. It is important to note that total Federal
Government and Critical infrastructure electrical use is missing from
the data set (Table 2) and future work is needed to quantify those
values for strategic planning purposes. After this data is acquired, the
additional loads and thus systems sizes for other government facilities
would again increase the total scale of such systems, helping to attract
more competition for contracts and better economies of scale on prices
for both the defense and non-defense wings of the U.S. government.

4.3. Policy

Renewable energy policy in the DOD is still in its infancy, as Title 10
USC 2911 was implemented only in 2011 [63]. The DOD partnered
with the Department of Energy and the National Renewable Energy
Lab to develop renewable energy technology to cut costs, provide
energy security, and comply with DOD mandates [104]. The DOD
provides awards for research through the Strategic Environmental
Research and Development program and energy projects through the
Environmental Security Technology Certificate Program to fund mili-
tary penetration into the renewable energy market [64]. A majority of
current PV at military bases are grid-tied, and the majority of the power
generated leaves DOD facilities through power purchase agreements.
Although the U.S. military has looked at the impact of improving
sustainability with PV [105,106] as well as PV sources for military
microgrids [107] and forward operating bases [108], it is still not
commonly used as shown in this review. PV is well documented to
increase security in a distributed network [109,110], which can be
using a security by design [111] method with PV as a power source.
There are limited policies in place to facilitate a transition to a
dominant renewable energy generation system. Incentives to go off
grid to owning, operating, and generating DOD's own capacity through
distributed microgrid technology would allow the military indepen-
dence, reliability, and energy efficiency. Due to the critical nature of
electrical power for the DOD policies should be examined to 1)
minimize DOD electrical use by increasing efficiency wherever it would
not hamper operations, 2) on the shortest time line possible transition
to distributed PV-powered microgrid systems domestically wherever
technically feasible. Policies to either increase DOD contractor rates to
accomplish these two goals or shift current allotments to these
priorities should be investigated both for DOD infrastructure domes-
tically, but also internationally. Additional funding opportunities could
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be obtained by reforming allocation of funds. Chief of Naval operations,
Admiral Jonathan Greenert and Chief of Staff General, Raymond
Odierno argue the military is required to spend millions on unneces-
sary equipment and machinery [112,113]. The equipment accrues
additional storage and maintenance costs. Suspending earmarked
legislation would also provide funds to use for military solar PV
development and implementation [114,115]. It is well recognized that
prioritization of defense contractor spending is a difficult task, but one
that must occur while considering microgrids for U.S. military installa-
tions in order to achieve a better fortified electrical system.

5. Conclusions

The technical community recognizes the lack of electrical grid
security and risks posed to critical infrastructure systems. Cascading
grid failures elicit threats to national security, economic damages, and
disruption to critical infrastructure systems. This paper compared the
current geographic deployment of military installations to historical
grid failures. This review highlights the need to think about the
electrical grid in terms of security and utilizing renewable energy
resources as a national security measure to counteract those vulner-
abilities. A review of current solar-PV penetration into United States
Military bases illustrates the potential to mitigate future power outages
by (1) maintaining an independent energy source and (2) providing a
backup of surplus energy supply to civilians. The scale of electrical
energy consumption and solar PV system necessary to meet electrical
needs was analyzed for the United States Military. A minimal number
of military bases have introduced solar PV systems to operate military
operations, leaving large room for growth. A cost sensitivity was
performed to estimate costs and potential savings in energy expendi-
tures if the military transitions to 100% solar-PV energy generation.
Three of the top 25 defense contractors were reviewed due to their
penetration in renewable energy generation markets. These companies
represent U.S. defense contractors’ potential to respond to bids to
complete solar PV research and development projects. The DOD can
utilize a number of defense contracting companies technical skills to
facilitate a national transition to renewable distributed generation
microgrid systems. The technical and economic viability of this
transition from the results of this review, indicate the DOD should
investigate allocation of additional funds or shifting funds to utilize top
defense contractors to begin a national transition to distributed solar
PV generation. As the calculated costs of solar PV microgrid systems
are a one-time upfront cost, the DOD can easily allocate funds across
contracting companies, over ten years to meet 100% distributed
renewable generation (rather than 25%) compliance by 2025. The
military can evolve their energy system to protect national security,
provide energy security, and decrease energy costs.
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