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A B S T R A C T

This paper presents a review on the application of neural networks for the estimation, forecasting, monitoring,
and classification of exogenous environmental variables that affect the performance, salubrity, and security of
cities, buildings, and infrastructures. The forecast of these variables allows to explore renewable energy and
water resources, to prevent potentially hazardous construction locations, and to find the healthiest places, thus
promoting a more sustainable future. Five research themes are covered—solar, atmospheric, hydrologic, geo-
logic, and climate change. The solar section comprises solar radiation, direct and diffuse radiation, infrared and
ultraviolet radiation, clearness index, and sky luminance and luminous efficacy. The atmospheric section reviews
wind, temperature, humidity, cloud classification, and storm prediction. The hydrologic section focuses on
precipitation, rainfall-runoff, hail, snow, drought, flood, tides, water levels, and other variables. The geologic
section covers works on landslides, earthquakes, liquefaction, erosion, soil classification, soil mechanics, and
other properties. Finally, climate change forecasting and downscaling of climate models are reviewed. This work
demonstrates the wide range of applications of these methods in different research fields. Some research gaps
and interdisciplinary research opportunities are identified for future development of comprehensive forecast and
evaluation approaches regarding the estimation of renewable energy and built environment-related variables.

1. Introduction

This paper presents a review on the application of neural networks
for the estimation, forecasting, monitoring, and classification of re-
newable energy and other environment-related variables that affect the
built environment. Contrarily to other reviews on these methods, the
purpose of this work was not to complete an in-depth literature review
of a particular application topic (e.g. HVAC systems, building energy
consumption, or solar radiation) but rather to carry out a transversal
review on their application in different fields that are relevant to a
sustainable built environment. The main purpose of this approach is to
interrelate topics that are naturally connected, such as solar and at-
mospheric, or hydrologic and geologic, but that are typically addressed
in literature as isolated subjects.

Besides the estimation of energy-related variables allowing to plan
and explore renewable energy resources—i.e., by predicting the solar
potential of a region, prevailing winds and speed, stream flows, re-
servoir levels, tide levels, biomass distribution on land, and geothermal
potential—and the forecast of water-related variables that allow to
manage the water resources—i.e., by estimating future precipitation,

reservoir levels, groundwater levels, snow depth and land cover, and
droughts—, a sustainable built environment is dependent, among other
factors, on guaranteeing the safety and quality of the natural resources
and land use. Therefore, other environment-related variables were also
covered, such as the occurrence of storms and their severity, flash
floods, seashore water levels, water quality (sediments concentration
and salinity levels), stability of soils (landslide susceptibility, liquefac-
tion of soils, subsurface cavities, soil mechanics), soil erosion process
estimation, soil classification, and determination of organic matter.

Some variables have an impact on the sustainability of the built
environment and should not be analyzed autonomously. For instance,
estimating the solar radiation on buildings surfaces and simultaneously
predicting cloud cover and classification allows an accurate di-
mensioning of renewable solar devices (i.e., photovoltaics and thermal
collectors) and the development of smart energy management systems.
Whenever wind speed and direction profiles are added to the estimation
process, hybrid systems can be considered as well. The accurate pre-
diction of sky clearness and luminance allows the satisfaction of indoor
visual comfort in buildings, thus reducing the consumption of electric
energy by artificial lighting. Other atmospheric variables, such as
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ambient temperature and relative humidity, have impact on the
thermal comfort in buildings, thus their accurate forecast may help in
designing more energy efficient buildings and managing renewable
energy according to the occurrence of heat waves or other extreme
weather events. Additionally, the prediction of future climate change
scenarios allows the design of more robust buildings and cities.
Therefore, the objectives of this study were: to analyze and review the
most important works that cover a wide range of environment-related
variables that are exogenous to the built-environment but affect the
performance, safety, and salubrity of cities, buildings, energy systems
and infrastructures; to identify future opportunities and gaps for in-
terdisciplinary research for the development of comprehensive forecast
and evaluation approaches that take into account the various inter-
related elements of the environment.

As expected, the number of articles published is vast. For this
reason, a document selection methodology was used. The first step
entailed the exhaustive collection of papers published in international
journals and/or conference proceedings. From these, a total of 1658
documents (including review papers) were selected and classified into
distinct groups according to the learning algorithm output variables.
For each document, the number of citations was determined and in
each group the documents were ranked by citations. The articles with
the highest number of citations published after 1999 were selected.

After this introductory section, the Section 2 section provides the
reader with the basic information on the modeling, terminology, and
estimation accuracy indicators of the models. In the Section 3 section,
five main themes are analyzed. The first four themes are related to solar
(covers 14% of total documents), atmospheric (14%), hydrologic
(53%), and geologic (17%) problems. The fifth is related to the forecast
of climate changes (2%). Each theme is divided into groups according
to the estimated variables. The number of documents and percentage
per group are listed in Table 1. Evidently, some groups emerge as the
main research topic within each theme, such as solar radiation, wind
speed, precipitation and runoff, and soil mechanics for solar, atmo-
spheric, hydrologic, and geologic-related themes, respectively. Even
though the topic division may seem clearly delineated, assigning some
of the groups within each theme was not as easy, as their boundaries are
not clearly defined (e.g. should precipitation prediction be included in
the hydrologic or the atmospheric subsection?). Ultimately, the docu-
ments were assigned according to the estimated phenomena. Lastly, a
discussion on the articles analyzed is presented, followed by the con-
clusions.

2. Neural network

Since the 1950s, when Turing [1] idealized that machines could
learn, learning algorithms have been developed and applied in several
problems. One of those is the artificial neural network, which consists
of interconnected units called neurons, nodes, or perceptrons [2]. The
perceptrons were formulated by Rosenblatt [3] as being capable of
containing information in the connections and, therefore, possess the
capability to memorize and recognize patterns. In a network, the
neuron has as input the output values of the preceding neurons. The
incoming weighted values are summed and an activation function is
applied to the total—logistic sigmoid, hyperbolic tangent, tan-sigmoid,
wavelet, Gaussian, softmax, threshold, and identity functions, just to
mention a few—to limit the amplitude of the neuron output.

There are several types of neural networks [4]. For instance, the
simplest one is the linear network (LN), which comprises just two layers
for input and output variables, or more complex and popular multi-
layer perceptron network (MLP), which may have one or more hidden
layers with different number of neurons. The selection of the activation
function depends on the kind of modeling data and scale of values.

However, for the neural network to work properly, the network
weights must be optimized. This process is called calibration or
training. Two of the most common training algorithms are the standard

back-propagation [5] and the Levenberg-Marquardt [6], which change
the network weights in the direction of minimizing the differences
between the model's predicted values and the aimed values. Recently,
population-based evolutionary algorithms have also been used, such as
genetic algorithms (GA), differential evolution, and particle swarm
optimization (PSO) techniques. After the training phase, the models
must be validated and tested against unseen data—usually a part of the
original dataset. To assess their accuracy, statistical performance in-
dicators are used. However, different analysis is required depending on
the type of model, whether it is a regression—it fits a set of estimated
values with observed ones—or if it is a classification

Table 1
Number of documents per group.

n %
Solar-related 218 13.81%

Solar radiation 173 79.36%
Solar radiation on tilted surface 11 5.05%
Direct and diffuse radiation 18 8.26%
Infrared and ultraviolet radiation 8 3.67%
Clearness index 6 2.75%
Sky luminance 2 0.92%
Luminous efficacy 1 0.46%

Atmospheric-related 223 14.12%
Wind speed 122 54.71%
Wind speed profile 3 1.35%
Wind direction 7 3.14%
Dry bulb temperature 33 14.80%
Wet-bulb temperature 3 1.35%
Dew point temperature 4 1.79%
Relative humidity 3 1.35%
Water vapor and cloud liquid water path 1 0.45%
Cloud classification 30 13.45%
Fog prediction 7 3.14%
Thunderstorm prediction 10 4.48%

Hyrdologic-related 830 52.56%
Precipitation 191 23.01%
Rainfall-runoff 148 17.83%
Hail 3 0.36%
Snowfall 7 0.84%
Snow cover 11 1.33%
Snow depth and snow water equivalent 13 1.57%
Evapotranspiration 79 9.52%
Drought severity index 25 3.01%
River flow 82 9.88%
Flood 59 7.11%
Wave height 7 0.84%
Tide level 27 3.25%
Groundwater level 64 7.71%
Lake level 16 1.93%
Reservoir inflow 36 4.34%
Sediments concentration 54 6.51%
Salinity 4 0.48%
Water temperature 4 0.48%

Geologic-related 272 17.23%
Landslide susceptibility 35 12.87%
Earthquake classification 58 21.32%
Liquefaction prediction 31 11.40%
Erosion estimation 3 1.10%
Soil classification 4 1.47%
Subsurface cavities 9 3.31%
Soil mechanics 74 27.21%
Soil organic matter 4 1.47%
Soil organic carbon 2 0.74%
Ground temperature 5 1.84%
Thermal resistivity 2 0.74%
Thermal conductivity 1 0.37%
Electric resistivity 7 2.57%
Hydraulic properties 37 13.60%

Climate change 36 2.28%
n – number of documents; % – group percentage
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problem—identifying the class the input fits into. For regression pro-
blems, the indicators are usually the correlation coefficient, coefficient
of determination, residual sum of squares, mean square error, root
mean square error, coefficient of variation, mean bias error, mean
percent error, mean absolute error, and mean absolute percentage
error. If time series are estimated, the indicator may be the auto-
correlation coefficient. When dealing with classification problems, the
common performance indicators are the probability of detection,
probability of false detection, false alarm rate, Kuipers skill score, and
Odds ratio. For further details on statistical performance indicators,
please see Haykin [4] and Wilks [7].

Other neural network types are the radial basis function network
(RBF) [8], general regression neural network (GRNN) [9], recurrent
neural networks (RNN), adaptive neuro-fuzzy inference system (ANFIS)
[10], support vector machine (SVM) [11], probabilistic neural network
(PNN) [12], self-organizing feature maps (SOFM) [13], neural network
ensembles [14], and extreme learning machines (ELM) [15]. Neural
networks acronyms and abbreviations are presented in Table 2.

3. Applications

3.1. Solar-related

Solar-related estimations allow engineers, architects, urban plan-
ners, and other decision makers to plan, design, and create systems to
explore and manage renewable resources, design more energy efficient
buildings, and to build cities with better environmental quality. Global
solar radiation estimation, as also its direct and diffuse components,
allows to determine the solar energy potential of a specific region and
to predict the upcoming solar energy production variation. This is also
important to determine the solar availability in buildings and how the
energy consumption for heating and cooling will vary in the near fu-
ture. When estimated over tilted surfaces, renewable energy systems
can be accurately dimensioned to match the energy demand. Lastly, sky
clearness, sky luminance and luminous efficacy forecasts contribute to
design passive measures in buildings to prevent the unnecessary use of
artificial light or prevent indoor visual discomfort, thus promoting en-
ergy efficiency in buildings.

The accurate prediction of solar radiation for a specific location is
dependent on several factors, such as the sky conditions and time of the
day. As locally measured data is not always available, forecasting and
estimation models are the most cost-effective solutions. These can be
empirical models, statistical methods, satellite-based methods, and ar-
tificial intelligence models.

The Ångström approach, and its variations, is the most used

empirical model and correlates the global radiation to the clear-sky
radiation, or to the extraterrestrial radiation on the horizontal surface,
and the sunshine duration fraction. However, these models are depen-
dent on location, thus limiting their applicability in other regions [16].
When the sunshine duration is not available, the models can use the
ambient temperature and the relative humidity instead, which is
especially useful in humid and coastal regions. The statistical methods
use past local information to predict the future solar radiation. Despite
being easy to model and presenting good short-term accuracy, the
statistical methods fail as the prediction period increases. The satellite-
based methods use regression equations to correlate information, such
as the cloud cover, obtained from the satellite imagery with the clear
sky index. The benefit of satellite-based approaches is that they cover
large areas at different wavelengths and provide more accurate in-
formation than interpolation techniques [17].

Artificial intelligence models are particularly suitable for local scale
and short-term predictions due to their nonlinear mapping capability
between input and output variables. However, for these models to work
properly, and in order to be applicable in practice, the model type and
structure, as well as the type of input variables, have to be correctly
determined. For instance, Yadav et al. [18] studied the selection of the
most relevant meteorological and geographical parameters to be used
as input variables by testing three neural networks. The work focused
on 26 Indian locations with different climatic conditions and the most
relevant input variables were altitude above mean sea level, tempera-
ture, maximum and minimum temperature, and sunshine hours. Lati-
tude and longitude had minimum influence on solar radiation predic-
tion. Amrouche and Le Pivert [19] developed a neural network
approach to forecast the global horizontal irradiance for locations with
no available measured data on records. This type of approach was de-
veloped taking into consideration the applicability of the method; thus
the input variables, which were tested at the same time, were the global
horizontal radiations and forecasted ambient temperatures. The authors
tested several model structure topologies, with the same computation
burden in training, and concluded that ambient temperatures, contra-
rily to what was previously assumed, do not bring much more addi-
tional information. According to the authors, the uniqueness of the
approach is the ability to continuously learn and acquire knowledge
from the measurements of neighboring locations, despite the weak in-
itial training.

As the topology of the models affect the accuracy performance,
several authors are currently studying new approaches, for example by
hybridizing SVM with a radial basis function [20], a firefly algorithm
[21], or a wavelet transform algorithm [22]. Mohammadi et al. [22]
combined a wavelet transform algorithm to decompose time series into
different components thus enhancing the capacity of the model to
capture the information at different levels. Despite the importance of
the topology, the authors refer that the right choice of input variables
was important, thus they selected relative sunshine duration, difference
between air temperatures, relative humidity, average temperature, and
extraterrestrial solar radiation. For the long-term forecast in a parti-
cular day of the year, Mohammadi et al. [23] implemented an ANFIS
approach that had a single input variable and a single output variable
(the day's horizontal global solar radiation). The advantage of this ap-
proach was that no meteorological data or pre-calculation analysis was
required. Lately, ELM have been used to predict horizontal global solar
radiation [24], as these require lesser time to train and have shown to
have better accuracy prediction than SVM and Artificial Neural Net-
works (ANN).

Neural networks have been used since the 1990s to estimate solar-
related variables [25–27], and the growing interest has led several re-
searchers to review past contributions [28–38].

In this first subsection, forecasting/estimation of global solar ra-
diation, solar radiation on tilted surface, diffuse and direct radiation,
infrared and ultraviolet radiation, clearness index, and sky luminance
and luminous efficacy are addressed in detail. Table 3 summarize the

Table 2
Neural networks acronyms and abbreviations.

Description

ADALINE adaptive linear element
ANFIS adaptive neuro-fuzzy inference system
ANN artificial neural network
BNN Bayesian neural network
ELM extreme learning machine
FNN feedforward neural network
GRNN general regression neural network
HN Hopfield network
LAF-MLN local activation feedback multi-layer network
LN linear neural network
MLP multi-layer perceptron network
NARNN non-linear autoregressive neural network
NLN neural logic network
PNN probabilistic neural network
RBF radial basis function network
RNN recurrent neural network
SOFM self-organizing feature map
SVM support vector machine
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papers analyzed in this subsection by listing the authors, model type,
input variables, output variables, location, and statistical accuracy of
the models.

3.1.1. Solar radiation
Mellit and Pavan [39] modeled an MLP to forecast next day 24-hour

solar irradiance in Trieste, Italy. The input variables were the day of the
year, mean air temperature, and mean solar irradiance of that day. The
MLP had two hidden layers with 11 and 17 neurons. The output vari-
ables were 24, each corresponding to one hour of the next day. The
model was trained using the Levenberg-Marquardt algorithm with K-
fold cross-validation (K=10). The training dataset consisted of the
hourly data from July 1st 2008 to May 23rd 2009 and from November
23rd 2009 to January 24th 2010. The authors concluded that the model
predicts well for short-term sunny days but only presents acceptable
results for cloudy ones.

Sfetsos and Coonick [40] modeled and compared different neural
networks and traditional linear methods for a single step ahead fore-
casting of hourly solar radiation for the island of Corsica, France. The
neural networks were the LN, two MLP networks trained with different
algorithms, the RBF network, Elman RNN, and an ANFIS. The training
data consisted of 984 h and the testing data of 312 h of measured me-
teorological information. The learning algorithm with the best perfor-
mance was the MLP trained by the Levenberg-Marquardt algorithm.
The activation function was a logistic function. The MLP consisted of 5
input variables—time, wind direction, and the values −t 1, −t 2, and

−t 24. A single hidden layer was used with 4 neurons. As the prediction
included night time, thus incorporating non-continuity in the data, the
authors concluded that MLP dealt better with these problems. They also
stated that the MLP and ANFIS forecasting methods benefit from having
the wind direction in the input variables.

Tymvios et al. [41] compared the capability of seven MLPs and
three Ångström regressions in estimating the global solar radiation in
Cyprus. The MLP models differed in the number of hidden layers (one
or two) and in the number and type of variables in the input layer. The
MLP with the best result had three input variables—theoretical daily
sunshine duration, measured daily sunshine duration, and daily max-
imum temperature—and consisted of two hidden layers with 46 and 23
neurons. The neurons were activated with the hyperbolic tangent
function. The training data consisted of 1858 days of a total of 2090
days of measured solar radiation and the training algorithm was the
back-propagation. Cross-validation was used to determine the model
convergence with 232 days of the remaining data. The authors then
concluded that the MLP performance was comparable to the best
Ångström models, thus could easily substitute the latter ones, which
were more demanding of input data and difficult to use by non-experts.

Reddy and Ranjan [42] built an MLP for estimation of monthly
mean daily and hourly values of solar global radiation in New Delhi and
Mangalore, India. The model structure had 9 input variables—latitude,
longitude, altitude, month, hour, air temperature, relative humidity,
wind speed, and rainfall. Two hidden layers were used with 8 and 7
neurons, while the output variable was the hourly global radiation. The
training algorithm was the back-propagation with the weight of the
neurons optimized using the generalized delta rule. The activation
function was the sigmoid function. The data consisted of the measured
meteorological information of 11 locations, from which two locations
were used for testing the model. The authors compared this with other
regression models, such as the Ångström, Hargreeves, and Supit
models, and the MLP outperformed all. The authors then concluded that
the neural network was more suitable for solar radiation prediction.

Mellit et al. [43] modeled a wavelet-network (WN) with an impulse
infinite-response filter to predict the daily total solar-radiation from
time series data in Algeria. Several model structures were tested and
compared. The structure that presented the best performance had an
input layer with 5 variables, one hidden layer with 10 neurons, and a
single output variable. The five input variables were the 5 preceding

values of total solar radiation of the one being estimated, which makes
it suitable for short-term prediction. The Morlet's function was used as
the activation function. The steepest descent algorithm was used in the
training process. The training data was 19 years of measured data,
extending from 1981 to 2000, gathered from a meteorological station in
Algeria. Measured data from 2001 was used to test the performance of
the model. The structure found in second place consisted of 25 input
variables, one hidden layer with 10 neurons, and 5 output variables in
the output layer. The input variables were the first 25 total daily ra-
diation values and the output variables were the following 5 values. The
authors concluded that the model was suitable to fill missing data and
the main advantage in comparison to other neural networks was the
speed of convergence of the technique.

Paoli et al. [44] developed an MLP network to predict time-series of
daily solar radiation for Ajaccio in the Corsica Island, France. The au-
thors pre-processed the meteorological data before using it to model the
neural network. According to the authors, this strategy helps to improve
the accuracy of the model. The ad hoc time series pre-processing had 3
steps. In the first step, the dataset had removed the measuring errors
(substituted by the hourly average of the 19 years for the given day),
and in steps two and three the clear sky was corrected and the extra-
terrestrial values were normalized, respectively. The training dataset
was measured from the year 1971 to 1987. The testing data were col-
lected between 1988 and 1989. The structure of the MLP was 8 input
variables—the 8 previous values of solar radiation
( − … −t t1, , 8)—and one hidden layer with 2 neurons. The activation
function for the hidden layers was the Gaussian function. When com-
pared with other methods, such as Naive predictor, the Markov Chain,
Bayes, and other autoregressive methods, the model outperformed
them all. The authors concluded that pre-processing of the data im-
proved the neural network accuracy by reducing the error margin by
5% to 6%.

Rehman and Mohandes [45] modeled three MLPs with different
input variables for the estimation of global solar radiation. The com-
parison of the three models showed that the best one had three input
variables—time, day of the year, daily mean air temperature, and re-
lative humidity. A single hidden layer was used with 24 neurons. A
single output variable was used for the estimation of global solar ra-
diation, and the activation function was the sigmoid function. The
training algorithm was the back-propagation algorithm. The training
dataset was 1462 days (from year 1998 to 2001) and testing dataset
was 240 days (2002) of measured information from the Abha city in
Saudi Arabia. The authors stated that the model could be used in lo-
cations where only temperature and humidity were available.

Sözen et al. [46] developed nine feedforward neural networks
(FNN) with biases trained by different algorithms to generate monthly
solar maps of Turkey. To achieve this, the authors used the same 6 input
variables—latitude, longitude, altitude, month, mean sunshine dura-
tion, and mean temperature—and a single output variable corre-
sponding to the estimated solar radiation. However, the number of
hidden layers and neurons in each layer varied. The activation function
was a sigmoid function. The training algorithms used were Scale Con-
jugate Gradient, Levenberg-Marquardt, and Pola-Ribiere Conjugate
Gradient. The training and testing datasets consisted of meteorological
data measured between the years 2000 and 2002 obtained from 17
stations (11 stations for training and 6 for testing). The authors con-
cluded that the models had enough accuracy for scientists to locate and
design solar energy systems in Turkey.

3.1.2. Solar radiation on tilted surface
Mehleri et al. [47] built an RBF model for the prediction of the mean

solar irradiance on inclined surfaces in Athens, Greece. Meteorological
information from a weather station for the full year of 2004 was used as
a dataset. The input variables were the tilt angle and orientation. The
model was trained using a fuzzy-means algorithm (10 fuzzy sets showed
the best results) to minimize the deviation between the measured and
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predicted values by automatically optimizing the number of neurons in
the hidden layer, their center, and output weights. The meteorological
data was divided into 75% for training and 25% for testing. The authors
observed that the RBF showed better accuracy than the linear model
that was also tested.

3.1.3. Direct and diffuse radiation
Marquez and Coimbra [48] developed four FNNs to estimate the

direct solar irradiance in California's Central Valley, USA. Eleven input
variables were employed—maximum temperature, temperature,
minimum temperature, dew point temperature, relative humidity, sky
cover, wind speed, wind direction, probability of precipitation, cosine
of the solar zenith angle, and the normalized hour angle. A GA was used
to select which variables to use in each FNN model. The first model
(FNN3) consisted of three input variables—sky cover, minimum tem-
perature, and normalized hour angle. The second model (FNN6) had
three additional input variables—maximum temperature, dew point
temperature, and probability of precipitation. The third model (FNN8)
had two more—temperature and wind speed. The last model (FNN11)
had all variables. The output variables were the direct normal irra-
diance for the same-day, 1, 3, and 5-days ahead. The training algorithm
was the Levenberg-Marquardt algorithm. The modeling dataset con-
sisted of collected data between November 1, 2008, and November 30,
2009, from the National Digital Forecast Database and measured data
from the solar observatory of the University of California Merced. The
training dataset consisted of 80% randomly selected points and the
remaining ones were used for testing. The authors concluded that the
prediction of direct solar irradiance was more difficult to obtain than
global solar radiance and that the models' accuracy decreased with the
increase of the forecasting horizon. However, the accuracy in summer
months did not decrease so sharply. The inclusion of normalized hour
angles improved the models' accuracy.

Soares et al. [49] modeled and compared three MLP networks to
predict hourly diffuse solar radiation in São Paulo city, Brazil. The
model was trained and tested using meteorological data—global solar
radiation, diffuse solar radiation, long-wave atmospheric emission, air
temperature, relative humidity, and atmospheric pressure—measured
between 1998 and 2002. The difference between the models consisted
in having the long-wave atmospheric emission as input variable and a
pattern selection mechanism to pre-process the data. Every hourly in-
terval vector of input variables was a pattern. The sigmoid function was
used as the activation function. The MLP was trained by the back-
propagation algorithm, and the testing phase used data from the year
2002. The best model had the long-wave atmospheric emission in the
input variables—the remaining inputs were the theoretical solar ra-
diation at the atmosphere top, global solar radiation, relative humidity,
partial pressure of the water vapor, theoretical solar azimuth angle, and
theoretical zenith angle. According to the authors, the fact that this
model incorporated the long-wave radiation improved its accuracy and
may be used as surrogate for the cloud cover variable.

López et al. [50] developed an MLP, with a Bayesian framework of
automatic relevance determination, to predict the direct solar radiation
at Desert Rock, USA, between 1998 and 1999. The Bayesian approach
allows determining the relevance of every input variable and controls
the weights connecting each input variable to the hidden layer. Thus,
this approach can turn off variables that are not relevant for the esti-
mation. The input layer had 9 variables to be studied—cosine of solar
zenith angle, relative optical air mass, clearness index, air temperature,
dew point temperature, relative humidity, precipitable water, wind
speed, and pressure. A single hidden layer was used and two models
were built, one with two neurons and the other with ten. The neurons in
the hidden layer were activated by the hyperbolic tangent function and
the output layer by the identity function. The authors observed that
from all input variables, the clearness index was the most relevant one,
followed by the relative optical air mass. Relative humidity showed to
be a minor input variable. Wind speed, pressure, precipitable water,

and dew point temperature were irrelevant when compared to the
clearness index. The authors concluded that the model with less hidden
neurons was more suitable to identify the relevant variables.

Elminir et al. [51] developed two MLP networks for the prediction
of the hourly diffuse radiation—for Aswan, South-Valley, and Cairo in
Egypt—and the daily diffuse radiation—for Aswan only. The hourly
prediction model was trained with measured data from between 1999
and 2002 and evaluated with data from 2003. The daily prediction
model was trained with data from the years 1999 to 2001 and tested
with data from 2002. The data was preprocessed to remove inconsistent
measurements or unverified pyrometer data. The hourly MLP had 5
input variables—normalized values of month of the year, day of the
month, hour of the day, hourly value of global radiation, and hourly
value of the extraterrestrial irradiation. The structure of the second
model, the daily MLP model, only had 3 input variables—daily global
radiation, daily extraterrestrial irradiation, and sunshine fraction. Both
models had a single hidden layer with 40 neurons that were activated
by a logistic sigmoid function. The models were trained using back-
propagation algorithm. The authors compared these results with others
obtained from regression models for diffuse solar radiation and con-
cluded these were more accurate and faster in the prediction.

Mellit et al. [52] developed and compared an FNN and an adaptive
model for predicting global, direct, and diffuse hourly solar irradiance
in Jeddah, Saudi Arabia. The neural network had four input varia-
bles—air temperature, sunshine duration, relative humidity, and the
previously estimated output variable—single output value. Three ver-
sions were created; each version estimated a different variable—the
global irradiance, direct irradiance, or diffuse irradiance—and had a
different number of hidden neurons—17, 12, and 15 neurons in a single
layer, respectively. The neurons were activated by the sigmoid function.
The FNN was trained by the Levenberg-Marquardt algorithm using
8000 points of measured data and tested using 765 points for each
parameter obtained between 1998 and 2002 (sunshine duration was
synthesized by the authors). The adaptive model (α-model) was based
on techniques used in finance and stock exchange applications. The
authors concluded that despite obtaining better results from the FNN
models, the α-model was easier and more flexible if there was a need to
add or remove parameters.

3.1.4. Infrared and ultraviolet radiation
Elminir et al. [53] built an ANN for the prediction of the solar ra-

diation components—infrared radiation, ultraviolet radiation, and
global insolation—for the region of Helwan and Aswan, Egypt. The six
variables in the input layer were the wind speed, wind direction, am-
bient air temperature, relative humidity, cloud cover, and water vapor.
The activation function in the single hidden layer with 10 hidden
neurons was a logistic sigmoid function. The output layer had 3 vari-
ables. The ANN was trained using the back-propagation algorithm. The
training set was recorded at the Helwan site during 2001 (full year) and
2002. The evaluation of the performance was carried out for the mea-
sured data for Aswan from January to November 2002. The authors
concluded that the model had high accuracy in unseen data; however,
they recognized the necessity to extend the model to other regions.

Jacovides et al. [54] developed and compared several FNN models
to estimate the spectral global ultraviolet, global photosynthetic photon
flux density, and broadband global radiant flux. The input variables
resulted from the combination of several parameters—sunshine frac-
tion, air temperature, predictable water, extraterrestrial radiation, re-
lative humidity, air mass, and ozone amount. All models had only one
hidden layer. The training and testing data were collected for the semi-
urban Athalassa site, Cyprus, between 2004 and 2006. Two-year data
were used for training and one-year data for testing. The training al-
gorithm was the Levenberg-Marquardt algorithm. The authors con-
cluded that sunshine duration played an important role in the models'
accuracy and some other parameters were able to negatively influence
the performance of the model.
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3.1.5. Clearness index
Dorvlo et al. [55] modeled and compared an MLP and an RBF

network to predict the clearness index in Oman. Both models had the
same input variables—month of the year, latitude, longitude, altitude,
and sunshine ratio. The number of hidden layers in the MLP models
varied between 1 and 3. The single output variable was the clearness
index, which is the ratio between the total solar radiation on the surface
and the extraterrestrial solar radiation. The training and testing of the
models were carried out with average data from eight stations collected
in ten years (1986-1998). Data from two of those stations were used in
testing. The MLP used the logistic sigmoid function as the activation
function while the RBF used the Gaussian function. The MLP was
trained using the Bayesian regulation back-propagation algorithm. The
RBF was trained by optimizing the Gaussian function nodes center,
width, and weight. These were initially calculated and computed using
multiple linear regression techniques. Despite not having significant
differences between the two models, the authors recommend the RBF as
it requires less computation power.

Mellit et al. [56] developed an ANFIS for the estimation of se-
quences of mean monthly clearness index data in Algeria. The input
variables were the geographical coordinates of the site—altitude,
longitude, and latitude. The output variables were the 12-month values
of clearness index. The database used in the ANFIS system consisted of
12 sets of monthly solar radiation collected in 60 sites. The training
method was a combination of back-propagation, gradient-descent, and
a least-squares algorithm in a two-pass process over a number of
epochs. The ANFIS had better accuracy than prediction maps from B-
spline function. The authors concluded that the main advantages of this
model were the capability to predict the clearness index just from
geographical parameters, while requiring a lower computation time in
the training process.

3.1.6. Sky luminance
Janjai and Plaon [57] developed an MLP model to predict the sky

luminance in the tropical climate of Thailand. The input variables were
solar zenith angle, zenith angle of the sky element, and angular distance
between the sky element and the sun. The output variable was the re-
lative sky luminance. The training and testing of the model were carried
out using scanned sky data from Nakhon Pathom and Songkhla solar
stations, Thailand. The training set corresponded to two years of mea-
surements (2007 to 2008) at Nakhon Pathom. The model was tested to
predict one year of measurements (2009) at Nakhon Pathom and at
Songkhla. The training was carried out using the back-propagation al-
gorithm. Three sky types were tested for the two locations—clear sky,
partly cloudy, and overcast. When comparing the results with the ones
from the Centre International d'Eclairage model, the authors concluded
that the MLP outperformed in all cases except in the partly cloudy sky
type.

3.1.7. Luminous efficacy
López and Gueymard [58] developed several MLP models for the

estimation of luminous efficacy of direct, diffused, and global solar
radiation under cloudless conditions. The input layer included a com-
bination of several parameters—diffuse fraction, direct transmittance,
precipitable water, and solar zenith angle. The number of neurons in
the hidden layer varied between 3 and 22. The output layer had 3
variables for the corresponding luminous efficacy components. The
activation function for the hidden layer was the hyperbolic tangent
transform while for the output layer it was the identity function. A
synthetic dataset was used to train and test the model using a spectral
radiative transfer model for cloudless atmospheres. The training algo-
rithm was a Gauss-Newton based Levenberg-Marquartd algorithm.
From all the modeled neural networks, the one with the best perfor-
mance had 22 hidden neurons; however, the authors preferred the
model with 10 hidden neurons to reduce model complexity without
significant loss of accuracy. The authors observed that relative errors

were larger than 5% when solar elevation, irradiance, and illuminance
were very low.

3.2. Atmospheric-related

The prediction of atmospheric-related phenomena is important not
only to plan and design renewable energy systems but also to predict
outdoor environment conditions that affect the buildings performance,
thus allowing to design passive and active mechanisms to control in-
door environment. The wind variables—speed and direction—and the
temperature/humidity-related variables—dry bulb temperature, wet-
bulb temperature, and relative humidity—indicate some of the outside
conditions that affect the buildings performance and, consequently,
influence the occupants' behavior. Knowing how these factors will vary
in the near future helps to predict the increase in the energy demand.
However, this information can also be used to predict the amount of
renewable energy that can be produced from wind energy, which is
relevant in the context of integrated management of energy resources in
the realm of smart grids, namely to deal with the intermittency of this
energy source. The cloud cover classification, fog and storm prediction
allow to determine the impact on the solar availability in buildings,
thus anticipating the increase of energy consumption. However,
weather exhibits strong variations and fluctuations that make fore-
casting very difficult and uncertain with large deviations from the real
values.

In addition to artificial intelligence models, there are other predic-
tion models, such as the persistence method, physical methods, statis-
tical methods, and spatial correlation models [59–62]. In the persis-
tence method, the future wind speed is assumed to remain the same,
thus being simple and prone to error approach, as time span increases.
Usually, this method only works for ultra-short-term forecasts (from
minutes to 1-hour ahead). The physical methods were developed for
large scale weather prediction areas, which use ambient temperature,
air pressure, surface roughness and landscape obstacles information to
have a detailed description of the atmosphere phenomena. Statistical
methods use the historical data of a site to perform short-term predic-
tions. Some common techniques are the autoregressive (AR), auto-
regressive moving average (ARMA), and Bayesian approaches. The
spatial correlation models predict a variable behavior at a specific site
from the measurements on the surrounding locations.

However, to overcome the difficulties in dealing with non-linearity
and complexity of atmospheric prediction, researchers studied the use
of artificial intelligence models, such as neural networks, as surrogate
methods to traditional methods. Early studies applied these soft tech-
niques to cloud classification [63–66], wind speed forecast [67–69],
and storm prediction [70,71].

Researchers are now focusing their work on hybridizing the pre-
diction models [72–77], which may combine one or several methods at
different stages of the forecast process to select the best input variables,
to filter or to identify data with the right information, and to optimize
the parameters of the model.

As in all kinds of prediction problems, the model type, topology, and
input variables contribute significantly to the accuracy of the model.
For instance, recently, Ren et al. [78] developed an approach to find the
optimal input parameters in back-propagation neural network model
optimized by a particle swarm optimization technique. The input
variables were selected using the lateral data selection method and the
longitudinal data selection. By selecting the appropriate input para-
meters, the proposed approach clearly outperformed common back-
propagation neural networks. Instead of decomposing the data, Azad
et al. [79] incorporated a pattern recognition mechanism into a hybrid
ensemble of ANNs and statistical models to predict a year ahead over
the identified patterns of the previous years. Another approach is to
prepare data using an image recognition algorithm. Liu et al. [80] ap-
plied an adaptive boosting algorithm before the forecast was carried out
with an ensemble of MLPs.
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The use of optimization techniques to enhance the forecast perfor-
mance of the neural networks were tested by Liu et al. [81], who used a
GA to improve an SVM to ensure the generalization capabilities of the
model. The authors also used selection methods for the input data by
using deep quantitative analysis and wavelet transformation to de-
compose the input data signal into the required components. Instead of
GA, Meng et al. [82] used a crisscross optimization algorithm to im-
prove ANN capabilities. Liu et al. [83] applied a secondary decom-
position algorithm to the original wind data before using an Elman RNN
model that already used a wavelet packet and a fast ensemble empirical
mode decomposition. Chen and Yu [84] combined an SVM and an
unscented Kalman filter to predict short-term capabilities. The SVM was
used to formulate a nonlinear state-space model before the Kalman
filter was used to perform dynamic state estimation. According to the
authors, the proposed method has much better performance than other
tested approaches.

Past reviews on atmospheric forecast models using artificial in-
telligence can be found in refs. [35,36,59–62,85–89].

In this second subsection, the review on the atmospheric-related
variables is divided into wind speed, wind direction, dry bulb tem-
perature, wet-bulb temperature, dew point temperature, relative hu-
midity, water vapor, cloud classification, fog prediction, and the fore-
casting of thunderstorms. Table 4, summarize the analyzed works.

3.2.1. Wind speed
Mohandes et al. [90] modeled one SVM and one MLP to predict the

wind speed in Medina city, Saudi Arabia. The input variables were a set
of values of wind speed from previous days. The values tested varied
between 1 and 11. For the MLP model, the number of hidden neurons
ranged between 2 and 100 and neurons were activated by the tan-sig-
moid function. The training and testing data of wind speed measure-
ments covers a period of 12 years between 1970 and 1982. Two
thousand days were used for training, 1500 days for cross-validation,
and 728 days for testing. The MLP was trained using the Levenberg-
Marquardt algorithm. For both models, the number of input variables
was the same, corresponding to the 11 previous days of wind speed. The
authors concluded that SVM outperforms MLP in all cases.

Sfetsos [91] built and compared the performance of eight neural
networks—LN, two MLPs trained by different algorithms, RBF, Elman
RNN, ANFIS, and two neural logic networks (NLN) with and without
logic rules—for the prediction of time-series of mean hourly wind speed
in Odigitria, Greece. The models used the measured data from March
1996 (a total of 744 h). The LN was trained using Widrow-Hoff rule.
The MLP models were trained by the back-propagation (MLP-BP) or by
the Levenberg-Marquardt algorithm (MLP-LM). The MLP-BP had 6
hidden neurons and the MLP-LM had 4. The RBF used the Gaussian
density function to activate the 35 hidden neurons. The ANFIS had five
layers and nine rules. The NLN had no hidden neurons, and the RNN
had three hidden neurons as well as the remaining NLN with logic rules
(NLN-LR). Despite the MLP-LM and NLN-LR having similar accuracy,
the MLP-LM only required 5 s of computation time, as opposed to the
141 s verified for the NLN-LR model.

Barbounis et al. [92] developed three neural networks, with internal
feedback paths, to produce four nodes—North (N), East (E), South (S),
and West (W)—for online 72-hours ahead time-series of wind forecast
in Crete, Greece. The first model was an infinite impulse response MLP
(IIR-MLP), the second a local activation feedback multi-layer network
(LAF-MLN), and the final one was a diagonal RNN. The seven input
variables were wind speed and direction, for the N, E, and W nodes, and
an input index. The IIR-MLP and LAF-MLN models had two hidden
layers with 7 and 8 neurons, respectively. The diagonal RNN had only
one hidden layer with 32 self-recurrent neurons. The activation func-
tion was the hyperbolic tangent. The neural networks were trained by a
proposed algorithm called global recursive prediction error. The
training and testing data were arranged in batches of 72-hour node
predictions for wind speed measurements composed of 3264 patterns

and 960 patterns, respectively. When compared to other models, such
as the static MLP and finite impulse neural network, the authors con-
cluded that the three models outperformed the static ones and had a
good forecast capability.

More and Deo [93] built two neural network types to forecast time-
series of wind speed in the Colaba coastal region, Mumbai, India. The
first type was an FNN trained by two methods—the back-propagation
(FNN-BP) and cascade correlation algorithms (FNN-CC). The second
type was a Jordan RNN. Each network type was modeled three times,
each per time period—monthly (FNN-BPm, −FNN CCm, and RNNm),
weekly ( −FNN BPw, −FNN CCw, and RNNw), and daily ( −FNN BPd,

−FNN CCd, and RNNd). The models had past wind speed values as
input variables ( − … −t t n1, , ) and for the output variable the wind
speed at time t. A dataset for training and testing of daily average values
of wind speeds measured over 12 years between 1989 and 2000 was
used. The first 10 years served to train the models and the last 2 years to
test. The best model for monthly prediction was the RNNm with a
structure of 4 input variables, three hidden layers with 6, 7, and 6
neurons. The authors concluded that the proposed models were able to
capture the rising and falling trends of the observed wind speed time-
series.

Li and Shi [94] modeled and compared the performance of three
neural networks for time-series forecast of wind speed in Hannaford
and Kulm, North Dakota, USA. The first model was an MLP, the second
one was an RBF, and the last one was an adaptive linear element
(ADALINE) neural networks. A different number of input variables and
training rates were tested to determine the best models. The output of
all the models was the next hourly average wind speed. The training
and testing data was measured with some anemometers at fixed posi-
tions having different heights. One-year (2002) of data was collected
and the hourly values were averaged. The authors concluded that de-
termining the best-performance model was difficult, as the structure
and learning rates produced differences in accuracy. Therefore, they
recommend the development of a more robust method of combining
forecasts from different ANN models.

3.2.2. Wind speed profile
Mohandes et al. [95] developed an ANFIS model to estimate the

wind speed profile up to 100m, based on 10, 20, 30, and 40m, in
Juaymah city, Saudi Arabia. The model had lower altitude wind speed
values as inputs, 10 Gaussian membership functions, 5 fuzzy rules, and
a single output variable—wind speed. The training and testing dataset
was comprised of measurements taken at 10, 20, 30, and 40m above
ground level for a period of 17 months between July 1, 2006 and No-
vember 30, 2007. The model was trained using wind speed values at
three heights and asked to estimate the following height. For example,
the model used 10, 20, and 30m wind speed values to predict the wind
speed at 40m. Three scenarios were built; for each, a 10min wind
speed average value, a 10min average over 1 month, and daily average
values over the entire data collection were used. The authors concluded
that the model was capable of estimating wind speeds at higher alti-
tudes using values from the lower ones.

3.2.3. Wind direction
Potter and Negnevitsky [96] implemented an ANFIS for the forecast

of 2.5min ahead time-series of wind vectors in Tasmania, Australia.
The membership function was the Gaussian function. The learning al-
gorithms were the least-squares estimator and the gradient descent
method. The training and testing used data from a 21-month time series
in steps of 2.5min. When compared with a persistence model, which
was used by the wind power generation industry for short-term pre-
diction, the ANFIS obtained a much better result.

Tagliaferri et al. [97] developed an SVM and an MLP model for the
prediction of wind direction for very short-time periods. Both models
had a wind direction vector (in degrees) of past data as input variables.
As output variables, the models used a vector of wind directions
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averaged over 1min ahead and averaged between 1min and 2min
ahead. The input vector length, number of hidden layers, and number
of hidden neurons were optimized to find the best structure. The MLP
was activated by the hyperbolic tangent function. The dataset used to
train and test the models were registered during the 34th America's Cup
in 2013, San Francisco, for 34 days. Wind speed and direction were
measured from moving and fixed positions at a frequency of 5 Hz. The
models were tested using the last 100min of recorded data. The authors
concluded that the SVM allowed for a better accuracy in forecast and
computation time. However, if more computation power was available,
the MLP model could have obtained better results.

3.2.4. Dry bulb temperature
Tasadduq and Rehman [98] developed an MLP model to predict the

hourly ambient temperature of the next day at a determined time for
the coastal region of Jeddah, Saudi Arabia. The input variable was a
single ambient temperature value at a specific time. The output variable
was the ambient temperature in the following day at the same time. A
single hidden layer with four neurons was used. The back-propagation
algorithm trained the model with one year of hourly temperature va-
lues. The testing dataset corresponded to three years of measured data
different from the one used in training. The authors concluded that the
model was a valuable tool for hourly temperature prediction.

Hayati and Mohebi [99] built an MLP model to forecast short-term
dry temperature for Kermanshah city, Iran. The input variables were
wet bulb temperature, dry bulb temperature, wind speed, relative hu-
midity, pressure, sunshine, and solar radiation. The output was the next
day dry bulb temperature. A single hidden layer was used with 6
neurons. The tan-sigmoid transfer function was used for the hidden
neurons and the linear function for the output variables. The training
method was the scaled conjugate gradient algorithm. The model was
trained and tested using 10 years of meteorological data (1996 to
2006). The authors concluded that the model presented good perfor-
mance and reasonable prediction accuracy.

Smith et al. [100] modeled several ANNs for the prediction of air
temperature 1 to 12-hours ahead in Georgia, USA. The training dataset
was collected from 9 meteorological sites between the years 1997 and
2000 (1.25 million patterns). The selection dataset was gathered from
2001 to 2003 (1.25 million patterns) from 13 other locations to de-
termine the best ANN structure. The evaluation dataset corresponded to
the years 2004 and 2005 (800 thousand patterns). The models’ struc-
ture consisted of three layers having only a single hidden layer with 120
neurons organized in three equally sized slabs activated by different
functions. The training algorithm was the back-propagation. The input
vector, which reached 258 variables, ranged from past previous air
temperature, solar radiation, wind speed, humidity, and rainfall. The
authors concluded that a 4, 8, and 12-hours horizon displayed un-
anticipated cooling events, which were the greatest obstacle. Thus, the
authors recognized that accurate cloud-cover predictions might aid the
associated cooling effect, especially during summer.

Altan Dombaycı and Gölcü [101] developed an MLP model for the
estimation of daily mean temperature in Denizli, Turkey. The authors
tested different model structures, transfer functions, and training al-
gorithms. The models were trained using measured values between the
years 2003 and 2005, and the testing used the measured data from
2006. The best model had 3 input variables—month of the year, day of
the month, and mean temperature of the previous day ( −t 1). A single
hidden layer with 6 neurons was activated by the hyperbolic tangent
sigmoid function. The output was a single variable, and the MLP was
trained by the Levenberg-Marquardt algorithm.

3.2.5. Wet-bulb temperature
Mittal and Zhang [102] developed two ANNs to predict psychro-

metric variables in real-time. For the first model five versions were built
to determine the number of hidden neurons in each of the three slabs in
the hidden layer—15, 20, 25, 30, and 35. Each slab was activated withTa
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different transfer functions—Gaussian, Gaussian complement, and hy-
perbolic tangent functions. All versions had two input variables—dry
bulb temperature and relative humidity—and predicted 5 varia-
bles—wet-bulb temperature, dew point temperature, enthalpy, hu-
midity ratio, and specific volume. For the second model four versions
were built. All models had two input variables—dry bulb temperature
and dew point temperature—and wet-bulb temperature, relative hu-
midity, enthalpy, humidity ratio, and specific volume as output vari-
ables. The difference was in the number of neurons in each of the three
slabs—25, 30, 35, and 40. The activation functions in each slab were
the same as in the previous models. The training and testing datasets
were generated (totaling 12544 sets) from psychrometric equations.
From those, 80% were used to train the models and 20% to test. The
authors considered these models to have reasonable accuracy in real-
time use and practical applications such as agricultural drying of food
materials and ventilation of farm buildings.

3.2.6. Dew point temperature
Shank et al. [103] developed several ANN models for the short-term

forecast of dew point temperature from previous values in Georgia,
USA. In addition to dew point temperature values ranging from 6 to 30-
hours, the input variables were also relative humidity, solar radiation,
air temperature, wind speed, and vapor pressure. The hidden layer had
60 neurons that were activated with different functions—Gaussian,
Gaussian complement, and hyperbolic tangent. The output variables
were 1, 4, 8, and 12-hour predictions activated by a logistic function.
The training and testing dataset combined three years of measured
meteorological data from 40 weather stations. Twenty of those stations
were used to test the model. The models were trained using a back-
propagation algorithm. Despite being possible to use these models
elsewhere, the authors concluded that these models might prove in-
accurate as these were not trained with the data of other regions.

Kişi et al. [104] built a GRNN, SOFM, ANFIS with sub-clustering
identification (ANFIS-SCI), and an ANFIS with grid partitioning iden-
tification (ANFIS-GPI) for the estimation of daily dew point tempera-
ture in three locations in South Korea—Daego, Phang, and Ulsan. The
input variables and their best combination were mean air temperature,
sunshine duration, relative humidity, saturation vapor pressure, and
wind speed. The output was a single variable for dew point tempera-
ture. The GRNN had a structure of four layers. The first hidden layer
had 5 neurons and the following hidden layer had two nodes—one for
summation and another for division. The SOFM had four layers with the
first hidden layer, the Kohonen layer, with a 5 by 5 matrix. The second
hidden layer had 5 nodes. The models were trained using meteor-
ological data from weather stations from those three locations. Data
collected between 1985 and 1990 were used to train and test the
models (4384 and 2192 patterns, respectively). The models were vali-
dated using data measured between 1991 and 1992 (2192 patterns).
The results showed that two input variables sufficed—mean air tem-
perature and relative humidity. Even though, the models with a greater
number of input variables had a slightly better performance, the au-
thors considered that such improvement did not justify the increase of
the models’ complexity.

3.2.7. Relative humidity
Maqsood et al. [105] developed an ensemble of neural networks to

forecast 24-hour ahead relative humidity, temperature, and wind speed
in Saskatchewan, Canada. The ensemble model was built from four
networks—an MLP, Elman RNN, RBF, and Hopfield network (HN). The
ensemble weights were dynamically determined and proportional to
the certainty of the network output. The input variables for each net-
work were 24 values of the weather parameters. A single hidden layer
was used in the MLP and RNN with 72 neurons while the RBF network
had two hidden layers with 180 neurons. The hidden neurons were
activated by a logistic sigmoid function in the MLP model. In the RNN
model, the hidden neurons were activated by the hyperbolic tangent

function. The RBF network used the Gaussian activation function for
the hidden units. Meteorological data, collected at the Regina Airport
during 2001, was used for training and testing, and was split into four
parts—winter, spring, summer, and fall. Typical days of the data-
set—February 26, May 6, August 7, and November 10—were selected
for testing. In comparison to the networks’ independent prediction ac-
curacy, the authors concluded that the ensemble model learned and
generalized better.

Biaobrzewski [106] implemented an MLP model to predict time-
series of relative humidity in the city of Olztyn, Poland. The MLP had
10 input variables— − … −t t1, , 10—corresponding to 10 past relative
humidity values. The interval step was 3 h. A single output variable was
chosen. Two hidden layers were used—the first with 3 neurons and the
second only 1 neuron. In the first hidden layer the neurons were acti-
vated by a non-linear function and the second one by a linear function.
The model was trained by a Bayesian regularization back-propagation
algorithm. The training and testing data were collected over 100 days,
in the year 1988, totaling 823 measurements. From these, 807 were
used in the training process and the remaining ones for evaluation.

3.2.8. Water vapor and cloud liquid water path
Aires et al. [107] developed two MLP, which used first-guess, to

retrieve integrated water vapor content, cloud liquid water path, sur-
face temperature, and microwave surface emissivity over land (ranging
between 19 Hz and 85 Hz) from satellite imagery. The first network was
used to estimate in clear sky (MLP-1) and the remaining one in cloudy
conditions (MLP-2). The MLP-1 model had 17 input variables—7 sa-
tellite observations and first-guess vector (surface temperature, tem-
perature of the lowest layer of the atmosphere, water vapor content,
and 7 surface emissivity values). The MLP-2 had the cloud top tem-
perature as additional input. Both models had 30 neurons in a single
hidden layer activated using logistic sigmoid function. Both models had
the surface temperature, the water vapor content, and the 7 surface
emissivity values as the output variables. The MLP-2 model had the
liquid water path value as an additional output variable. The models
were trained using the back-propagation algorithm. The training da-
taset was synthesized from a radiative transfer model, a global collec-
tion of coincident surface and atmospheric parameters, and emissivity
atlases. The authors concluded that the results of the models were en-
couraging, especially for the microwave land surface temperature re-
trieval as a complement to infra-red estimations in cloudy conditions.

3.2.9. Cloud classification
Cazorla et al. [108] developed an imager system with the analysis of

an MLP for the estimation and characterization of the sky dome cloud
cover in Granada, Spain. A GA was used to optimize the MLP by
pruning the unnecessary input variables. The initial input variables of
the MLP were the pixels’ parameters extracted from the image by using
1 and 9-pixel windows. Over one pixel, the 9-pixel window was cen-
tered and the surrounding eight pixels were measured. The parameters
were the RGB (red, green, and blue) and gray signals, mean and var-
iance of the RGB and gray values of the surrounding pixels, and the
center pixel R/G, R/B, G/R, G/B, B/R, and B/G ratios. Thus, the MLP
had 18 input variables, and the output ones were three cloud cover
classifications—opaque cloud, thin cloud, and clear sky. A single
hidden layer with 18 neurons was used. The hidden and output layers
were activated by the logistic sigmoid transfer function. The MLP was
trained by the resilient back-propagation algorithm. After the GA op-
timization process, the MLP input variables were reduced to three—-
mean of the pixel and the surrounding pixels in the red and blue
channels and the variance of the pixel and its surrounding pixels in the
red channel. The MLP was tested in a pixel and image-based evaluation.
In the first case, the training and testing data were 50 captured images,
which resulted in a total of 1000 samples. This set was equally and
randomly divided for training and testing. The authors concluded that
the use of an MLP permitted the removal of the observers’ subjectivity
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in the cloud classification evaluation and presented good results in light
of the measured records. The main weakness of the system was in the
circumsolar area of the captured images due to the ultraviolet en-
hancement effect.

Instead of ground-based estimations, Christodoulou et al. [109]
used a satellite imagery-based neural network SOFM to classify cloud
images. The data was the thermal infrared channel collected from the
METEOSAT7 geostationary satellite, orbiting at 36,000 km. A total of
366 samples from 98 images were classified by expert meteorologists
into six cloud types—altocumulus-altostratus, cumulonimbus, cirrus-
cirrostratus, cumulus-stratocumulus, stratus, and clear conditions.
Fifty-two features were then extracted from these samples using nine
types of methods—statistical features, spatial gray-level dependence
matrices, gray-level difference statistics, neighborhood gray tone dif-
ference matrix, statistical feature matrix, laws texture energy measures,
fractal dimension texture analysis, and Fourier power spectrum. The
SOFM was trained unsupervised—the classification labels were not
revealed—with the 366 samples. After the training, each known pattern
was assigned to the output nodes of the 12 × 12 matrix based on the
similarity of the pattern. The Euclidean distance was used. Similar
patterns were assigned to the same or surrounding nodes, which had
lower weight. The SOFM ran three times and the tested results aver-
aged. The SOFM underperformed when compared with k-nearest
neighbor (kNN) classifier. The authors concluded that these models
might facilitate the automated objective interpretation of satellite
image classification.

3.2.10. Fog prediction
Pasini et al. [110] developed two MLP models to predict (MLP-p)

and classify (MLP-c) the fog visibility in a 1 and 2-h range in Milan,
Italy. A model-independent bivariate and pruning analysis was carried
out to determine the most important variables. The ten selected input
variables were hour of the day (in the form of two variables), visibility,
visibility time derivative with respect to the previous hour, sky cov-
ering, height of the lowest cloud layer, air temperature, dew point
temperature, pressure, and horizontal wind speed. A single hidden layer
with 10 neurons activated by a sigmoid function was used. The output
variable for MLP-p was visibility in a 1 and 2-h horizon measured in
meters. The MLP-c classified the existence, or not, of a fog event at
1000m distance visibility threshold. The training method consisted of a
moving window of two months updated every hour. According to the
authors, this approach allowed better results than traditional train and
test approaches. The MLP-p model presented good accuracy with a
weighted generalization coefficient WGC=0.9706 and 0.9592 for 1-h
and 2-h horizons, respectively. The authors compared these results with
persistence and climatology scores and their models outperformed
them.

Fabbian et al. [111] built an MLP model for the prediction of the
occurrence of fog in 3, 6, 12, and 18-h horizon in Sydney, Australia. The
model had 8 input variables—dry bulb temperature, dew point tem-
perature, wind speed, wind direction, mean sea pressure, cloud cover,
surface visibility, and rainfall. Two hidden layers with the number of
neurons varying between 3 and 20 nodes, activated by a tan-sigmoid
function, were tested. The binary output variable was employed to
detect the existence, or not, of fog. The data for training and testing
were collected from two databases. The first corresponded to 43 years
of 3-hourly observations between 1960 and 2003. The second meteor-
ological dataset referred to the period 1985–2003. The authors con-
cluded that their model had good forecast capability in any of the time
horizon predictions studied.

3.2.11. Thunderstorm prediction
Manzato [112] described two sound-derived ANNs, in operation

since 2001, to estimate the probability and intensity of thunderstorms
in the Friuli Venezia Giulia region, Italy. The training data were ob-
tained between 1995 and 2002 and the test data between 2003 and

2004. After initial weather conditions were confirmed and the World
Meteorological code 16044 was given, the first model (ANN-c) classi-
fied the thunderstorm after three confirmed cloud-to-ground lighting
strikes. The ANN-c had two output classes—event with convective ac-
tivity and event without. From 55 potential variables, the author se-
lected the proper ones by using a forward selection algorithm. The best
ANN-c structure had 9 input variables—activity of the previous case,
bulk Richardson number, maximum cap, temperature difference at
500 hPa, synoptic hour of the sounding, low-level wind V component,
mean relative humidity, mean water vapor v horizontal flux, and
standard deviation of radiosonde vertical velocity—a single hidden
layer with 6 neurons, and one output variable. The hidden neurons
were activated by a logistic function. After confirmation of the event by
the previous model, a second model (ANN-r) determined the intensity
of the thunderstorm. This model estimated the calculated convective
activity in 6 h, which takes into account the number of lightning strikes,
rainfall, and maximum wind gust. There were seven input variables:
activity of the previous case, mean buoyancy acceleration of the lowest
250 hPa, convective inhibition, synoptic hour of the sounding, mean
relative humidity, maximum buoyancy, and wind shear in the lowest
3 km. The activation function was linear. The author concluded that the
results can be strongly related to the region's orography, thus further
testing in other regions is required.

Wang et al. [113] developed an MLP optimized by a cuckoo search
algorithm to forecast lightning strikes from sounding-derived indices in
Nanjing, China. The sound-derived indices were preprocessed using
singular spectrum analysis. Four input variables were determined from
several indices—convective available potential energy, K index, Jef-
ferson index, and severe weather threat index. The hidden layer had 2
neurons. The output was a single variable that represented fair weather
(0) and thunderstorms (1) classes. Both hidden and output layers were
activated by a sigmoid function. The training data were obtained from
measured data between 2007 and 2010 and the testing data between
2011 and 2012. After comparison with other models, the authors stated
that the proposed approach was the most efficient and a useful tool to
predict lightning.

3.3. Hydrologic-related

The forecast of hydrologic resources and processes allows to ade-
quately manage water resources and predict the potential of renewable
energy production from the river flows, waves, and tides. These allow
to plan and to manage the renewable energy generation and to prevent
hazardous events to the built environment from extreme weather con-
ditions, such as the ones that may result from flash floods, storms (fall
of snow, hail, and precipitation), sea rise, and droughts. From a sus-
tainable environment perspective, the water quality monitoring and
estimation is fundamental to determine the amount of available
drinking water (lake level, groundwater level, and reservoir inflow) and
to prevent undrinkable water events (salinity and sediments con-
centration). Also, the proliferation of micro-organisms (due to water
temperature variation) that disturb the watercourses ecosystem, which,
ultimately, may affect the human health when consumed untreated, can
be avoided.

The hydrological forecasting is distinguished by the dynamics of
water patterns and complexity. As the physical models are laborious,
statistical models and artificial intelligence models are showing po-
tential and becoming promising solutions. These seek to find relations
between the input and desired output variables, independently of
knowing the physical process that describes the phenomena. Contrary
to the statistical models, artificial intelligence is particularly suitable for
hydrologic forecasting, as they are able to deal with the non-statio-
narity, non-linearity, and data noise in the forecast problems.
Therefore, the quantity of information in the modeling process is im-
portant in order to have an accurate model. Valipour [114] studied the
impact of the time length of the training dataset and observed that, in
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temperate and semi-arid climates, 60 data observations were sufficient
for the model to predict next year rainfall forecasting. However, in arid
and humid climates, the accuracy increased at the same rate that the
size of the observation data increased.

The neural networks, and these have been applied in hydrology
forecast since the 1990s. As an example, some authors focused on
precipitation forecasting [115], rainfall-runoff prediction [116–122],
river flow estimation [123–125], flood prediction [126], reservoir in-
flow [127], and river sediments estimation [128]. Due to the non-lin-
earity of the hydrological forecasts, Valipour [129] used a non-linear
autoregressive neural network (NARNN), non-linear input-output, and
NARNN with exogenous input. However, according to the author, the
number of hidden neurons needed to be optimized in order to improve
the network accuracy to detect drought and wet years. The selection of
input variables is also a critical part of the modeling process and for
that, Taormina and Chau [130] developed an input variable selection
scheme with binary-coded discrete fully informed particle swarm op-
timization (FIPS) and ELM model. The results of the proposed model
have proven to be particularly accurate in rainfall-runoff applications.
The same authors [131] also trained the neural network using a cross-
validation multi-objective optimization using a FIPS algorithm, as the
use of global search methods in the training process of the learning
algorithm is important to prevent the model from being stuck in local
optima. Another approach consists in pre-determining the impact in the
forecast variable. For instance, Tehrany et al. [132] implemented a
weights-of-evidence model to firstly determine the impact of classes of
input variables on an SVM model to predict flood occurrences. The
authors tested several kernels (linear, polynomial, radial basis function,
and sigmoid) and found that the radial basis function kernel was the
most suitable. The hybridization of the traditional methods has en-
hanced the predictability of the models and these are now capable of
better capturing the hydrological patterns [133–135].

Other literature reviews on water resources, hydrologic processes,
and applied methods may be found in refs. [35,134–145]. This sub-
section covers research works on precipitation, rainfall-runoff process,
hail, snowfall, snow cover, snow depth and snow water equivalent,
evapotranspiration, drought, streamflow, flood, waves, tides, ground-
water level, lake level, reservoir inflow, sediments, salinity, and water
temperature. Table 5, summarize these analyzed works.

3.3.1. Precipitation
Toth et al. [146] compared an ANN, a linear stochastic auto-

regressive moving-average (ARMA), and a kNN for 1 h to 6 h short-term
rainfall forecast in the Apennines mountains, Italy. The ANN had 3
input variables from t to −t 2 and a single hidden layer with 3 neurons.
The number of output variables varied between +t 1 to +t 6. The
model was trained using the Levenberg-Marquardt algorithm. For the
same model, two variations were created during training. In the first
training, ANNs, the measured data was divided into two parts, with the
training set having two-thirds of the sample. In the second training,
ANNa, the model was adaptive and trained in an online fashion. The
dataset comprised hourly rainfall depths at 12 rain gauges in the basin
of the site between 1992 and 1996. The authors concluded that the
ANNs was more suitable for longer lead-time periods predictions and
that neural networks underperformed in low rainfall scenarios.

Hong et al. [147] developed a satellite-based rainfall estimation
algorithm by extracting cloud infrared features (10.7 μm) imagery with
a resolution of 0.04° every 30min in Las Vegas, Nevada, USA. The al-
gorithm identified cloud patches, extracted cloud features, clustered the
cloud patches, and calibrated cloud-top temperature and rainfall for the
classification of clouds. The classification model was a SOFM with 23
input variables—cloud patch coldness, geometry, and five brightness
temperature texture features. The training of the SOFM was carried out
in two stages: in the first stage, an unsupervised clustering was carried
out that resulted in 400 groups; in the second stage, an unsupervised
clustering was carried out, which resulted in 400 groups. In the second

stage, the rainfall was assigned to the classified groups, thus adding an
extra linear output layer. The authors concluded that they successfully
dealt with the problem of previous works, which only considered local
features, when incorporating cloud patch scales.

3.3.2. Rainfall-runoff
Sudheer et al. [148] developed an RBF model for the rainfall-runoff

estimation of the Baitarani river basin in India, with a statistical pre-
processing to determine the appropriate input variables vector. The
statistical analysis using a cross-correlation and autocorrelation func-
tion, allowed to find the lags of data that had a significant influence on
the predicted flow. Nine input variables were determined for the input
vector—a 4-day lag runoff and a 5-day lag rainfall. The model was
trained using the minimum description length algorithm to determine
the significant basis functions and connection weights. The data was
collected over 23 years, between 1972 to 1994, the daily values of
rainfall and runoff for the monsoon season. When compared with
ARMA and MLR, the RBF outperformed all. The authors affirmed that
the statistical pre-processing allowed to reduce the computation time
by using smaller networks and it also reduced the model's development
effort.

Tokar and Markus [149] developed three ANN models for the es-
timation of the daily rainfall-runoff in the basins of the Fraser river in
Colorado (ANNf), Raccoon Creek in Iowa (ANNr), and Little Patuxent
river in Maryland (ANNl), USA. The ANNf had five input varia-
bles—streamflow at time −t 1, precipitation at time −t 1, snow water
equivalent at time −t 1 and −t 2, and air temperature at time −t 1.
The time step was one month. A single layer with two neurons was
activated by a sigmoid transfer function. The training and testing da-
tasets comprised the measured data from the Fraser river watershed in
the periods between 1951-83 and 1987-93. The training dataset cor-
responded to the months of May, June, and July for the years 1951 to
1980. The remaining years were used for testing. The ANNr had 5 input
variables—precipitation at time −t 1, −t 2, and −t 3, air temperature
at time t, and streamflow at time −t 1. The time step was in days. The
hyperbolic tangent activation function was used for the hidden layer
with 24 neurons. The calibration dataset was obtained from measure-
ments between 1978 and 1993. ANNl had 3 input variable-
s—precipitation at time t and −t 1, and air temperature at time t. A
single hidden layer with 10 neurons activated by a hyperbolic tangent
function was implemented. The training dataset was obtained from
measured data in 1979, 1980, and 1984. The testing dataset was col-
lected from 1989, 1991, and 1992. All models were trained using the
back-propagation algorithm. Not only did the authors concluded that
the models were more accurate than conceptual models, but they also
stated that those models allowed a systematic approach and shortened
the time spent on training.

3.3.3. Hail
Marzban and Witt [150] developed two Bayesian neural network

(BNN) models for the prediction and classification of severe hail in the
USA. The input vector had the same nine variables for both mod-
els—cell-based vertically integrated liquid, severe-hail index, storm-top
divergence, mid-altitude rotational velocity, height of the wet-bulb
zero, height of the melting level, vertically integrated wet-bulb tem-
perature, wind speed at the equilibrium level, and storm-relative flow
at -20 °C level. The first model (BNNr) determined the hail size and
therefore had only one output variable. A single hidden layer was
employed and activated by a logistic function. The second model
(BNNc) classified the hail into three classes—coin, golfball, and baseball
sizes. The output layer had three variables, each corresponding to each
class with the probability of occurrence of that hail size. The number of
hidden neurons in both models was determined via bootstrapping with
four sets. The training and testing of both models comprised 386
samples (250 for training and the remaining for testing) collected from
81 storm cases in different regions of the USA. The BNNc presented high
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quality forecasts in term of reliability, refinement, and discrimination
diagrams, with the exception of the second class, which displayed no
statistically significant skill. According to the authors, this was due to
the difficulty in discriminating non-extreme events.

3.3.4. Snowfall
Roebber et al. [151] developed a 10-member ensemble of MLPs to

classify snowfall ratio in the USA. Seven input variables were used—-
month index, low to mid-level temperature and relative humidity, mid
to upper-level temperature, upper-level relative humidity, mid-level
relative humidity, and external compaction. The ensemble predicted
three classes—heavy, average, and light. Two types of neural networks
were used: the first type was a three-layered MLP that corresponded to
half of the ensemble members, with a hidden layer of 40 neurons; the
second type was a four-layered MLP with two hidden layers having
seven neurons in the first hidden layer and four in the second layer. The
hidden neurons in all of the networks were activated by a hyperbolic
tangent function. The output layer in all of the networks had three
variables, each for every class, and these were activated by a softmax
activation function. The modeling data from 28 radiosonde sites were
extracted from the National Climatic Data Center/Forecast Systems
Laboratory and the new-snow amounts were obtained from the United
States Air Force DATSAV2 Surface Climatic database. The total dataset
comprised 1650 events ranging from 1973 to 1994. Sixty percent of the
data were used for training, 20% for cross-validation, and 20% for
testing. When compared to other approaches, the model significantly
outperformed in any of the three snowfall ratio classes.

3.3.5. Snow cover
Simpson and McIntire [152] developed an FNN and a RNN for the

classification of areal extent of snow cover from satellite images. The
FNN classifies individual images and the RNN classifies sequence of
images. Images were preprocessed to ensure data quality prior to tex-
ture modeling and formation of the input vectors. For the FNN model,
the input variables were from the Advanced Very High Resolution
Radiometer channel 2 albedo, channel 4 brightness temperature,
channel 3 data calibrated radiance, ratio between channel 2 and
channel 1 albedos, homogeneity texture of channel 2 albedo, and, fi-
nally, entropy texture of channel 2 albedo. A single hidden layer was
used with 10 neurons. Three output variables for each class—clear,
cloud, and snow—defined the multiband percentage composition of the
map. Both the hidden layer and output layer were activated by the
sigmoid function. For the RNN model, there were nine input varia-
bles—spectral and texture information from the current image (ratio
between channel 2 and channel 1 albedo was substituted by the
homogeneity texture difference of the current and previous image) and
the output result of the previous image −t 1 values. The back-propa-
gation algorithm was used for training in both models. The training set
was created from 20 images covering the western half of the USA. A
total of 3430 samples were classified for training the FNN and 2457 for
the RNN model. The validation of the models was carried out by
ground-based information via snow telemetry data. The authors noted
that the classification bias error was much smaller for the RNN than the
FNN due to cloud shadow and cloud edge pixels and that post-proces-
sing was able to reduce those errors.

3.3.6. Snow depth and snow water equivalent
Tedesco et al. [153] developed an MLP model for the retrieval of

snow depth and snow water equivalent by inverting special sensor
microwave imager brightness temperatures in Finland. Four input
variables were used—19 GHz and 37 GHz vertical and horizontal
brightness temperatures. A single hidden layer was used but the
number of hidden neurons depended on each of the 12 test sites, being
these activated by a sigmoid transfer function. The output variable was
the snow depth or the snow water equivalent. The MLP training was
carried out using simulated or ground measured brightnessTa
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temperatures and it was tested with a dataset of ground measurements
over Finland gathered between 1997 and 1999. When trained with
measured data, the model presented best performance than when using
simulation data; in both cases, still better than the spectral polarization
difference algorithm, HUT model-based iterative inversion, or Chang's
algorithm. The authors concluded that the model was able to retrieve
the spatial or temporal variations of the unknown data, especially when
trained with on test sites data.

3.3.7. Evapotranspiration
Kumar et al. [154] compared several ANN model architectures to

determine the best one to estimate the evapotranspiration in Davis,
California, USA. The best model had six input variables—solar radia-
tion, maximum and minimum temperature, maximum and minimum
relative humidity, and wind speed. The only hidden layer had 4 neurons
activated by a sigmoid function. The output variable was the evapo-
transpiration value. The model was trained using the standard back-
propagation algorithm. The climatic data measured at the Davis Cali-
fornia Irrigation Management Information System station for the period
January 1, 1990 to June 30, 2000 were used for training and testing.
The evapotranspiration values for modeling were calculated using the
Penman-Monteith method. A second set of data were also used in the
modeling process with daily lysimeter measurements of grass evapo-
transpiration from January 1, 1960 to December 31, 1963. These re-
sults were better than the estimations given by the Penman-Monteith
method. The authors then concluded that the ANN was a better model
for estimating evapotranspiration for the Davis site.

3.3.8. Drought severity index
Kim and Valdés [155] developed an MLP combined with dyadic

wavelet transforms to forecast time-series of drought severity index in
the Conchos river basin in Mexico. Different model architectures with
different input variables and neurons in a single hidden layer were
tested to determine which had the best performance. The output vari-
able was the Palmer drought severity index. Four models were used to
forecast +t 1 (MLP1), +t 3 (MLP3), +t 6 (MLP6), and +t 12 (MLP12)
months ahead. The best models for MLP1 and MLP12 had three input
variables and 3 hidden neurons and for MLP3 and MLP6 there were four
input variables and four hidden neurons. The models were trained using
the back-propagation algorithm. The calculated data were used for
training (years ranging from 1955 to 1990) and validation (between
1991 and 2000). When compared with a conventional ANN, the MLP1,
MLP3, and MLP6 displayed better accuracy, but the MLP12 under-
performed. When compared to traditional climatology models, the MLP
models performed better between 7.3% and 60%.

3.3.9. River flow
Nayak et al. [156] developed an ANFIS model to forecast river flow

time-series in the Baitarani river, Orissa state, India. The input variables
were the antecedent river flows −t 1 and −t 2. The model was trained
with four if-then rules that used the fuzzy intersection operator. The
output variable was the river flow. The model was trained using
transformed flow series for the period 1972-1989 and validated with
data from the period 1990-1995, and by using cross-validation tech-
nique with four sets. When compared with conventional ANNs, the
ANFIS had a comparable performance and outperformed the ARMA
model. The ANFIS also presented better errors distribution and simpler
structure.

3.3.10. Flood
Chau [157] developed an MLP model for the prediction of the water

level of the Shing Mun river in Hong Kong, China. A single input
variable was used with the current day water level. The hidden layer
had 3 neurons. The output variable predicted one of the time ahead
values— +t 1 (MLP1), +t 2 (MLP2), or +t 7 (MLP7). The time step was
in days. Instead of using the back-propagation algorithm—according to

the authors, the algorithm converges slowly and can be easily en-
trapped in a local minimum—the model was trained by a particle
swarm optimization method. The modeling dataset comprised mea-
surements from the river tributaries of Fo Tan and Tin Sam for three
years starting in 1999. The two first years were used for training and
the last one for testing. When compared with the same model trained
using back-propagation, the proposed approach presented better re-
sults.

3.3.11. Wave height
Deo et al. [158] implemented a three-layered MLP model for the

forecast of wave height and average period in the Arabian sea in the
west coast of India. The model had wind data as input and wave data as
output. The model was trained using a cascade correlation and con-
jugate gradient algorithms. Three locations were tested; in the first one,
3-hourly values of wave height and average zero cross period data were
collected from a rider buoy offshore of Karwar, India, at 16m deep
water. The wind speed was measured at a shore-based station from
March to July 1988 and from December 1988 to May 1989. This
comprised a total of 900 sets of data. The model for this location had
two input variables—wind speed at time t and −t 1. The hidden layer
had 4 neurons. The authors justify the low prediction accuracy of the
model due to different wave and wind measuring places. In the second
location, the wave and wind data were measured in the same place and
at a lower water depth of 75m. A dataset of 140 patterns was collected
and 20% were used for testing. In this case, the model increased its
accuracy. In the last location, weekly mean wind speed and significant
wave heights measured by a radar altimeter via the TOPEX satellite
were collected from some locations off-shore the coast of India. The
data covered 42 months from October 1992 to March 1996. The model
had 4 input variables—weekly wind speeds in a month. The output had
4 variables—weekly wave height in a month. Authors concluded that
despite satisfactory results, short-term predictions might be difficult
due to the rapid variations of wind measurements.

3.3.12. Tide level
Lee [159] developed an MLP model for the prediction of long-term

tides at Taichung Harbor in Taiwan. The three-layered MLP had 7
hidden neurons activated by the sigmoid function. Five input variables
were defined—luni-solar semi-diurnal, principal solar, larger lunar el-
liptic, luni-solar diurnal, and principal lunar diurnal tidal constituents.
The output was a single variable for the tide level. The back-propaga-
tion training algorithm was used. The modeling dataset was collected
from hourly tide levels measurements during the years 1995 to 1998,
and the training set corresponded to 15 days from 12 to 26 of April
1996. The authors concluded that the results were satisfactory.

3.3.13. Groundwater level
Daliakopoulos et al. [160] developed and compared seven ANN

models to forecast groundwater level up to 18-month ahead in Messara
Valley in Crete, Greece. The input layer had 20 variables—time lag t to

−t 4 for precipitation, temperature, streamflow, and groundwater
level. The output was the well level at time step +t 1. The time step was
in months. The model that presented the best performance was an MLP
trained by the Levenberg-Marquardt algorithm. A single hidden layer
was used with 3 neurons. The modeling dataset consisted of measured
hydrologic and meteorological data ranging from 1988 to 2002. The
training data corresponded to the years between 1988 and 1998, the
calibration data comprised the years 1998 to 2000, and the remaining
data were used for testing. In addition to 1-month ahead, the models
were also analyzed for 6, 12, and 18-month ahead. According to the
authors, the MLP displayed the most accurate predictions of all seven
models.

3.3.14. Lake level
Khan and Coulibaly [161] compared SVM and MLP models to
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predict water level up to 12-month ahead in Erie Lake, Great Lakes,
USA. The input vector for both models was the past 2-month water level
values and the corresponding months identified in 12 binary variables
corresponding to the month the water level input was for. A single
output variable was used to predict +t 1 to +t 12 water level ahead.
The SVM used the radial basis kernel function and the MLP had five
hidden neurons and a single output variable activated by the hyperbolic
tangent function. The training algorithm was the back-propagation for
the MLP model. The training of the models comprised data from 1918
to 1989 and the testing data from 1990 to 2001. The authors noted that
the SVM presented the best accuracy and required the lowest number of
parameters.

3.3.15. Reservoir inflow
Coulibaly et al. [162] implemented an MLP model for real-time

forecasting of reservoir inflow in Chute-du-Diable watershed, Quebec,
Canada. An early stopped training approach was used, which took ad-
vantage of both the Levenberg-Marquardt algorithm and cross-valida-
tion technique. The input had 14 variables—water inflow at time −t 1,
maximum, minimum, and mean temperature at time t, and precipita-
tion and snowmelt at time −t 4 to t. The number of neurons in the
single hidden layer was 24. The output was a single variable for 1 to 7-
days ahead forecasting. The modeling dataset consisted of 32 years of
daily natural inflows, precipitation, estimated snowmelt, and daily
temperature ranging from 1964 to 1995. The years from 1964 to 1980
were used for training and data from 1981 to 1992 for testing. When
compared with conventional models, the proposed model had better
performance for 2 to 7-days ahead. However, the ARMA with an exo-
genous inputs model was the best approach for 1-day ahead. The au-
thors concluded that the MLP with early stopped training provided
better and reliable generalization performance than neural networks
with back-propagation training algorithms and substantially better
predictions than conventional models.

3.3.16. Sediments concentration
Nagy et al. [163] developed an MLP model to predict sediment load

concentration in several rivers in the USA. Six input variables were
defined—tractive shear stress, suspension parameter, water depth ratio,
Froude number, Reynolds number, and stream width ratio. A single
hidden layer with 12 neurons activated by a sigmoid function was used.
The output variable was the sediment concentration. The MLP was
modeled with two datasets; the first one was a group of 161 observa-
tions from the rivers Niobrara, Middle Loup, Hii, and Small Streams.
Two equal sized datasets were randomly created for training and
testing. The second modeling dataset was comprised of 486 observa-
tions for the testing phase, which were collected from the Rio Grande,
Mississippi, and Sacramento rivers. When authors compared their re-
sults with conventional models found in literature, the MLP only dis-
played good accuracy on datasets where observations had similar se-
diment concentrations to the training dataset. Otherwise, it had similar
or better performance.

3.3.17. Salinity
Huang and Foo [164] implemented an MLP model for the estima-

tion of salinity in the Apalachicola river, Florida, USA. The model had
three layers. Models with different number of hidden neurons were
tested. The final model had 16 hidden neurons activated by a logistic
sigmoid function. The input variables were tide level, wind speed and
direction, and river flow. The output was the river salinity concentra-
tion. The model was trained by the conjugate descent algorithm. The
modeling dataset consisted of hourly salinity time-series measured at a
station in the lower portion of the river, river flow from USGS data, and
tidal data from National Ocean Survey. Two datasets were built for
training and testing for measured data in July 1993. The authors con-
sidered the model to be a cost-effective and easy-to-use tool.

3.3.18. Water temperature
Sahoo et al. [165] developed a four-layered MLP model to forecast

3-day time lag of stream water temperature in Incline Creek, Glenbrook
Creek, Upper Truckee river, and Trout Creek streams at Lake Tahoe,
USA. Six input variables were used—air temperatures and short-wave
radiations at time t to −t 3. The output was the water temperature
variable. The model was trained using a micro-GA. Daily time series
data from January 1999 to the end of September 2002 for the four
streams were used for training (2000-2001), validation (1999), and
testing (2002). The proposed model presented higher prediction accu-
racy than a three-layered MLP and an RBF model, also tested by the
authors.

3.4. Geologic-related

The forecasting and estimation of geologic-related variables is im-
portant to adequately plan and design the built environment, to prevent
hazardous events, and to generate renewable energy. Knowing the soil
types and how these are distributed over the land helps to quantify the
amount of available biomass that can be used to produce energy and by
determining the organic matter helps identifying the most suitable
lands for agriculture. Also, knowing the variation of ground tempera-
ture according to the depth assists to determine the potential of using
geothermal energy. Besides renewable energy-related estimations, a
sustainable built environment is also dependent of the safety of its built
structures. This obliges planners and decision-makers to choose the best
places for construction, which also depends on estimating the sus-
ceptibility of landslides and liquefaction due to earthquakes (estimate
and classify according to their magnitude), soil subsurface stability, and
the future erosion of soils, as well as other aspects of soil mechanics.
Therefore, a sustainable built environment is dependent of a compre-
hensive analysis and estimation of the resources and land use.

Traditional techniques involve field and laboratory tests that are
costly, time consuming, and sometimes destructive of the sample ana-
lyzed. For these reasons, indirect estimation methods such as neural
networks gain interest. In the 1990s, the use of neural networks to
predict geologic phenomena and soil properties raised interest in the
research community due to their fast implementation, robustness, and
accuracy. Several approaches laid the background to future contribu-
tions, such as in earthquake prediction [166], soil liquefaction [167],
soil structure estimation [168], soil mechanics [169,170], hydraulic
properties [171], and soil water retention [172]. However, in the last
three years, researchers’ attention has fallen upon the determination of
the best model types and adequate input variables for the prediction of
landslide susceptibility [173–177], specifically in pre-evaluating the
input variables [173,174], determining the accuracy performance of
each model type [175,176], and comparing the alternative models
against common neural networks [177]. The use of optimization algo-
rithms with global search capabilities or the hybridization of the
learning models are not so commonly used as in the atmospheric or
hydrologic fields. However, some papers may be found on the predic-
tion of geologic-related variables [178–180]. As an example, Gordan
et al. [180] used particle swarm intelligence to optimize an ANN to
estimate the seismic slope stability. The reason for the reduced use of
enhanced approaches may be found in the stability and linearity of
most of the geologic-related problems. Past literature reviews, on the
application of neural networks, cover rock parameters estimation
[181], geotechnical engineering [182,183], rock engineering [184],
and earthquake prediction [185].

This subsection covers landslide susceptibility mapping, earthquake
classification, liquefaction prediction, erosion estimation, soil classifi-
cation, structure, soil mechanics, soil organic matter and carbon con-
tent, ground temperature, thermal conductivity and resistivity, electric
resistivity, and hydraulic properties. Table 6 summarize the analyzed
works.
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3.4.1. Landslide susceptibility
Lee et al. [186] developed an ANN to determine the weights of

seven landslide parameters used in a probabilistic method. A weighting
method was then used to produce landslide susceptibility maps from
the Yongin area, Korea. The ANN used topographic (slope and vertical
curvature), soil (texture, thickness, and drainage), and vegetation
(trunk diameter and wood age) as input variables. A single hidden layer
was used with 15 neurons activated by a sigmoid function. The output
layer had two variables to classify the existence or not of a landslide.
The model was trained using the back-propagation algorithm. The in-
formation from topographic, soil, and wood thematic maps, as well
aerial photograph and field surveys of landslides, were used to build the
modeling datasets. The training dataset was made up of 400 random
points. The process was repeated 10 times with random locations and
the results were averaged for each landslide factor. These were then
normalized, according to the topography curvature, and used to cal-
culate the landslide susceptibility index of the region map. The maps
were finally compared and verified. The model presented satisfactory
agreement with the observed data.

Yesilnacar and Topal [187] built an MLP model to determine a
landslide susceptibility map in Hendek region, Turkey. The input layer
had 19 variables—fault density, distance to fault, elevation, slope, slope
length, profile curvature, plan curvature, distance to roads, road den-
sity, drainage density, distance to drainage, land cover, distance to
ridges, geology, surface area ratio, topographic wetness index, stream
power index, sub-watershed basins, and aspect. Thirteen hidden neu-
rons, in a single layer, were activated by a sigmoid function. The output
variable classified the input variables in very low, low, high, and very
high landslide susceptibility. The training was carried out by the back-
propagation algorithm. The training dataset consisted of 12036 samples
(65% of the total data). The validation and testing datasets were 2407
(13%) and 4000 (22%) samples, respectively. The MLP showed better
accuracy than the logistic regression model, also developed by the au-
thors, especially in high and very high zones. The authors concluded
that the MLP was more realistic, as it was more in agreement with field
observations.

3.4.2. Earthquake classification
Adeli and Panakkat [188] implemented a PNN for the prediction of

earthquake magnitude in southern California, USA. Eight input vari-
ables were used—the time elapsed during a particular number of
seismic events in the previous month, the slope and the mean square
deviation of the Gutenberg-Richter inverse power law curve, the
average magnitude, the difference between observed maximum mag-
nitude and the expected from the Gutenberg-Richter relationship, the
rate of square root of seismic energy, the mean time between char-
acteristic events, and the coefficient of variation of the mean time. The
PNN had two hidden layers—the pattern and summation layers. The
first hidden layer had as many nodes as input vectors and the second
hidden layer had the number of classes as neurons—in this case seven
classes of earthquake magnitude with 0.5 Richter range. The Gaussian
function was used as a window function, where each node computed
the Euclidean distance between the input vector and the training input
vector. The training dataset was made up of historical earthquakes
between 1st January 1950 and 13th December 1990 (997 input vec-
tors). For the testing dataset, the historical record between 1st January
1990 and 24th September 2005 was used. The model only showed good
accuracy for earthquakes of magnitude between 4.5 and 6.0. Lastly, the
authors state that in a preceding work [189], an RNN presented better
accuracy for earthquakes with a magnitude higher than 6.0 Richter.

Scarpetta et al. [190] implemented an MLP model for the classifi-
cation of seismic signals at Mount Vesuvius Volcano, Italy. The method
was helpful as it discriminated between natural and artificial signals.
The input variables were extracted from signal spectral features and
waveform that were obtained using linear prediction coding and wa-
veform parameterization techniques. The single hidden layer was

activated by a hyperbolic tangent function and the output variable by a
logistic function. The output variable classified the signal as earthquake
or not. Two alternative models were tested with different training al-
gorithms—quasi-Newton algorithm (MLP-qN) and scaled conjugate
gradient algorithm (MLP-SCG). The training and test datasets consisted
of recorded data from four stations totaling 550 and 331 samples, re-
spectively. Despite similar performance, the MLP-qN was significantly
more demanding computationally. The approach showed good results
in both artificial false events (quarry and sea-side explosions) and
natural false events (thunder).

3.4.3. Liquefaction prediction
Goh [191] developed two PNNs for the estimation of the seismic

liquefaction potential from cone penetration test data (PNN-c) and
shear wave velocity data (PNN-v). The models had four layers. The
PNN-c input layer had 6 variables—earthquake magnitude, the peak
acceleration at the ground surface, the total vertical overburden stress,
the effective vertical overburden stress, the measured cone perforation
test tip resistance, and the mean grain size. The PNN-v also had 6 input
variables but instead of the last two variables, it had the measured shear
wave velocity and the soil type number as input. In both models, the
pattern layer had the number nodes equal to the training samples. The
summation layer had two neurons. The binary output classified the
input vector as occurrence or non-occurrence of liquefaction, and a GA
was used for training. For PNN-c and PNN-v, the training consisted of
two thirds of 170 and 186 samples, respectively. The remaining one
third was used for testing. The author stated that these significantly
outperformed conventional methods.

Pal [192] implemented two SVM models for the prediction of
earthquake liquefaction potential from standard penetration test data
(SVM-s) and cone penetration test data (SVM-c). From a combination of
several input variables, SVM-s had seven inputs selected—standard
penetration test value, mean grain size, total stress, effective stress,
earthquake magnitude, fines content, and normalized horizontal ac-
celeration at ground surface. In the case of SVM-c, five input variables
were chosen—cone resistance, mean grain size, effective stress, earth-
quake magnitude, and normalized horizontal acceleration at ground
surface. The models’ output was the classification of occurrence and
non-occurrence of liquefaction. For SVM-s, the modeling datasets were
collected from previous works and consisted of 59 and 26 records
(training and testing, respectively) obtained between the years 1891
and 1980 in different world regions. Similarly, for SVM-c, the training
and testing datasets were obtained between 1964 and 1983 and con-
sisted of 74 and 35 records, respectively. The authors stated that SVM
models presented better results than preceding studies.

3.4.4. Erosion estimation
Licznar and Nearing [193] developed an FNN model for the pre-

diction of soil erosion in eight locations in eastern USA. Several alter-
native model structures were tested and the one with best results had 10
input variables—precipitation, duration of precipitation, canopy cover,
inter-rill cover, effective hydraulic conductivity, adjusted inter-rill soil
erodibility, adjusted baseline rill erodibility, number of days since last
disturbance, slope steepness, and slope length. A single hidden layer
with 10 neurons activated by a tan-sigmoid function was employed. The
output layer had two variables—soil loss and runoff. The training al-
gorithm was the Levenberg-Marquardt algorithm. The training (50% of
the total data), validation (25%), and testing (25%) datasets were
measured in eight locations in eastern USA. An alternative model with
just a single output for soil loss and 40 hidden neurons showed lesser
accuracy. Despite good accuracy, the authors affirm that a major lim-
itation of the widespread use of these models was the lack of physical
concepts and relations, which may lead to the abnormal understanding
of the results due to the complex functioning of the erosional system.
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3.4.5. Soil classification
Chang and Islam [194] developed a SOFM and an MLP models to

infer soil texture classes in a dry-down process using remotely sensed
data and soil properties in Little Washita watershed, Oklahoma, USA.
Two input vectors were tested—brightness temperature (SOFMb3 and
MLPb3) or soil moisture (SOFMm3 and MLPm3)—for both models to
classify soil types. The SOFM models classified the soils into three
groups—coarse, medium, and fine soil—as function of ratio of sand to
percent of clay. The MLP models had a single hidden layer, which was
activated by a binary sigmoid function. The output layer classified the
input vector into the same three classes as SOFM models. The MLP
models were trained using the Levenberg-Marquardt algorithm. The
authors also tested the MLP to classify data into six groups—sand,
loamy fine sand, fine sandy loam, loam, silt loam, and silty clay loam/
clay loam. The output was an integer corresponding to each class. The
authors concluded that the SOFM models presented reasonable accu-
racy for the cases where soil properties were not available; however, the
MLP models had better results. These models only work well if no other
physical attribute is present in neighboring grid points, such as rainfall
variability, lateral flow, topography, etc.

Zhao et al. [195] developed an ANN model to generate high-re-
solution maps of soil texture distribution (clay, silt, and sand contents)
from soil attributes in Black Brook watershed, New Brunswick, Canada.
The model had 6 input variables—clay content, sand content, soil ter-
rain factor, drainage, sediment delivery ratio, and vertical slope posi-
tion. A single hidden layer was used with 25 neurons activated by a
sigmoid function. The output was the clay and sand contents. The silt
content was calculated by subtracting the predicted values. The Le-
venberg-Marquardt algorithm was used for training. The training
(14196 samples) and testing (12957 samples) datasets were gathered
from 46 polygons of detailed quantitative soil texture data. These were
re-sampled into a grid with 10m resolution. The model presented a
good predictive capability according to the authors.

3.4.6. Subsurface cavities
Elawadi et al. [196] implemented an approach to determine the

depth and radius of subsurface cavities at the Medford cave site,
Florida, USA. The depth to the cavity center was estimated using an
MLP model, the horizontal location was determined from picking the
minimum gravity anomaly, and the radius of the cavity was calculated
from density difference between host rock and cavity filling materials.
The input layer had 21 variables of gravity measurements, 5 neurons in
the hidden layer, and a single variable in the output layer. The training
set of 15 samples was synthetically generated with different depths
ranging from 1m to 8m. The model was tested with 14 samples of
synthetic data for cylindrical and spherical cavities. The back-propa-
gation algorithm was used, and a field test was carried out at Medford
cave site. The authors noticed that data agreed well with the drilling
tests thus concluded that it provided fast and robust determination in
working field scenarios.

3.4.7. Soil mechanics
Sonmez et al. [197] developed an MLP model to predict the elastic

modulus of intact rock. The input variables were uniaxial compressive
strength and unit weight. A single hidden layer was used with 2 neu-
rons, which were activated by a sigmoid function. The output was the
elastic modulus of intact rock. The model was trained using the back-
propagation algorithm using 487 randomly selected samples of a total
of 609 from more than 35 rock types. The remaining subset was used
for testing. The dataset was compiled from published data in the lit-
erature and laboratory tests on greywacke and agglomerate core sam-
ples. The results allowed building a prediction chart of elastic modulus
of intact rocks, which showed a strong prediction capability and could
be used for practical purposes.

Singh et al. [198] implemented an ANFIS model for the prediction
of the deformation modulus of rocks, also known as Young's modulus.

Three input variables were used—point load, density, and water ab-
sorption. A Gaussian membership function and three fuzzy if-then rules
were used. The output was a single variable to determine the de-
formation modulus. The model was trained using the back-propagation
algorithm with a dataset of 85 samples and it was tested using 10
samples. The authors stated that ANFIS showed good predictive cap-
ability using vague and imprecise information.

Yilmaz and Kaynar [199] compared an MLP, an RBF, and an ANFIS
for the prediction of the swell percent of soil. The input variables were
the liquid limit, activity, and cation exchange capacity. The MLP and
RBF models had a single hidden layer. The MLP had 2 neurons and the
RBF had 16 neurons. Both models had their layers activated by tan-
sigmoid activation function. The MLP was trained by the back-propa-
gation algorithm, while RBF was optimized using a least mean square
algorithm. The ANFIS had 5 layers and was trained using a combination
of gradient descent and least-squares method. The training (60%),
testing (20%), and verification (20%) datasets were built from 215 soil
test samples. The authors concluded that RBF exhibited the most reli-
able predictions and the main advantage was a greater degree of ro-
bustness and fault tolerance in comparison to traditional statistical
models.

Lee et al. [200] developed ANN models and a hyperbolic formula-
tion for the prediction of unsaturated soil shear strength. The ANN
would determine the apparent cohesion parameter of the saturated soils
shear strength formulation, which also includes two other para-
meters—the internal friction angle and the effective soil cohesion. Four
ANN models were tested. The first model (ANNI) had six input varia-
bles—sand fraction, clay and silt fraction, void ratio, compacted water
content, cohesion, and friction angle. The remaining models only had 5
input variables. The second model excluded the friction angle (ANNII),
the third excluded the void ratio (ANNIII), and the last one excluded the
compacted water content (ANNIV ). For all models, a single hidden layer
was used with two neurons activated by a logistic sigmoid function. The
output variable was the apparent cohesion. The back-propagation al-
gorithm was used to train the model with a Bayesian regularization
technique to guarantee generalization. The training dataset was made
up of 20 samples. The testing dataset consisted of 7 samples. ANNIV

presented the best accuracy.
Neural networks were also used to determine other soil properties.

For example, in estimating the shear modulus and damping ratio [201],
stress-strain behavior [202], angle of shearing resistance [203], com-
pressive strength [204], soil compaction and permeability [205], pre-
consolidation pressure [206], deviatoric stress and volumetric strain
[207], effective stress [208], and bulk density [209].

3.4.8. Soil organic matter
Fidêncio et al. [210] developed an RBF network to determine the

organic matter in soils. The input variables were the first eight non-
normalized scores of the principal component analysis of the soil data
samples (which explains 97% of the data variance). The model out-
performed the MLP model, also developed by the authors. The authors
concluded that the RBF model is fast, clean and reliable and can be used
as a tool to determine organic matter content in soils, as the errors were
acceptable for soil laboratories.

3.4.9. Soil organic carbon
Were et al. [211] developed and compared an SVM and an MLP

models to predict soil organic carbon in the Eastern Mau Forest Re-
serve, Kenya. The models were used to create prediction maps. The
tested input variables were rainfall, land cover, aspect, slope, curvature,
TWI, NDVI, PC1, sand, silt, magnesium, calcium, potassium, phos-
phorus, nitrogen, and pH. The training and testing soil data were ran-
domly split into 176 samples for training and 44 samples for testing.
The authors observed that all models overestimated the organic carbon
stocks and had equivalent accuracy performance.
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3.4.10. Ground temperature
Kalogirou et al. [212] developed an ANN model for the generation

of 10 km grid geothermal maps of ground temperature at 20, 50, and
100m in Cyprus. The 9 input variables were lithology class (22 types),
elevation, minimum, mean, and maximum annual ambient tempera-
ture, rainfall, x and y-coordinates, and depth. Three slabs in a single
hidden layer, with 5 neurons each, were used and activated with dif-
ferent functions—Gaussian, Gaussian complement, and hyperbolic
tangent functions. The output layer had a single neuron activated by a
logistic function. The back-propagation algorithm trained the model.
The training and testing datasets were obtained from recorded data
from 41 boreholes. After eliminating incomplete measurements, the
total data represented 112 patterns; from these, 90 patterns were used
for training and 22 for testing. The authors considered the model to be
suitable for engineers in design of geothermal systems.

3.4.11. Thermal resistivity
Erzin et al. [213] implemented an MLP model for the prediction of

the thermal resistivity of clay, silt, silty, fine and coarse-sands. Six input
variables were the water content, soil dry unit weight, and particle
diameter finer than 10%, 30%, 50%, and 70%. The hidden layer had 8
neurons. The output variable was the soil thermal resistivity. Both
hidden and output layers were activated by a logistic sigmoid transfer
function. The Levenberg-Marquardt algorithm was used for training.
The training and testing datasets were gathered from different soil
measurements with a thermal probe.

3.4.12. Thermal conductivity
Kalogirou et al. [214] implemented an ANN, similar to a previous

study [212], for the estimation of ground thermal conductivity in Cy-
prus. The estimated information was then used to generate geothermal
maps for conductivity for the first 100m in dry soil. 8 input variables
were used—lithology class (22 types), elevation, minimum, mean, and
maximum annual ambient temperature, rainfall, and x and y-co-
ordinates. In a single hidden layer, with three slabs having 3 neurons
each, which was activated by Gaussian, Gaussian complement, and
hyperbolic tangent functions. A single output variable activated by a
logistic function was used to predict thermal conductivity. The model
was trained using the back-propagation algorithm. The datasets used
for training and testing of the model were measurements recorded from
41 boreholes. From those, 33 were used for training and 8 for testing.
The geothermal map was created by determining the conductivity in a
10 km interval grip.

3.4.13. Electric resistivity
Erzin et al. [215] developed an ANN model for the prediction of the

soil electric resistivity. From several tested structures, the one with the
best performance had three input variables—thermal resistivity, soil
type, and saturation. A single hidden layer had 7 neurons that were
activated by the sigmoid function. The single output variable was the
thermal resistivity. The Levenberg-Marquardt algorithm was used in
training. The training, testing, and validation datasets were in total 236
soil samples, which were divided into 132, 57, and 47 samples, re-
spectively. The authors compared the ANN to two multiple regression
analysis models and the former outperformed all. They concluded that
this approach was an inexpensive and efficient substitute to laboratory
testing.

3.4.14. Hydraulic properties
Schaap et al. [216] developed a computer program (ROSETTA)

comprising a set of five hierarchical pedotransfer functions, based on 60
to 100 neural networks combined with the bootstrap method, for the
estimation of water retention and hydraulic conductivity of soils. The
training of the models was carried out using 2134 soil samples of water
retention and 1541 samples for hydraulic conductivity. The authors
noticed that ROSETTA program performed reasonably well when

several predictors are used (texture, bulk density, one or more retention
points) and, despite lower accuracy otherwise (textural classes only),
the models were still useful in cases of missing measured data.

Minasny and McBratney [217] implemented an FNN model to
predict van Genutchen pedotransfer function parameters for soil water
retention. The process consisted in fitting the predicted parameters with
the measured data, instead of training the network to fit the estimated
parameters. Two models were built with different number of input
variables—three (FNN3) and four inputs (FNN4). The FNN3 had clay,
silt, and sand percentage as input variables. The FNN4 includes a fourth
variable, the bulk density. Both models had a single hidden layer with 4
neurons activated by the hyperbolic tangent function. The output
variables were four vector parameters—residual and saturated water
content, and scaling and curve shape factors. The training was carried
out by the Levenberg-Marquardt algorithm. The modeling datasets
were collected from previous published works on Australian soil
properties and water retention (484 and 378 samples for training and
testing, respectively), and GRIZZLY database of soil samples in different
countries (660 samples for testing). When compared with other ap-
proaches, the authors realized that the proposed models outperformed
other neural network models, such as ROSETTA [216], at least by 5%
and 13% accuracy for FNN3 and FNN4, respectively.

3.5. Climate change

Neural networks started to be used to estimate climate change
scenarios since the late 1990s [218–220]. Forecasting long-term cli-
mate behavior was complex and had a central problem with great un-
certainties associated with the projections. Important parameters for
the climate models were also poorly constrained. In addition to these
issues, the calculation of probability density functions required a large
number of simulations, which were limited by computation time. To
respond to these issues, Knutti et al. [221] developed an MLP model
trained with synthetic data from climate simulations as a surrogate
model to a climate change ensemble method. The neural network
model consisted of 10 input variables and 10 neurons in the hidden
layer. The input variables were randomly selected and their prediction
capability was tested. The output variables depended on the number of
predicted values. The training procedure used the Levenberg-Mar-
quardt algorithm. The training dataset consisted of 500 simulations.
The authors concluded that the MLP was two to three orders of mag-
nitude faster than the simulation model and allowed to dramatically
improve the efficiency of the ensemble method. The accuracy of the
model fell below the error margin of the simulation model, thus being
negligible.

Another aspect to consider in climate change predictions is the re-
solution of the simulated maps. These maps are usually grids containing
hundreds of kilometers and are unable to present local sub-grid features
and dynamics. To overcome the issue, Tripathi et al. [222] im-
plemented a least square SVM model for statistical downscaling of
precipitation at a monthly scale for 29 subdivision stations in India. The
input variables were determined using principal component analysis for
each meteorological station. The output variable of the model was
precipitation. The model was trained using a multifold cross-validation
procedure. The total dataset was divided into 70% for training and 30%
for testing. The modeling datasets were extracted from the National
Center for Environmental Prediction in USA. The data spans over Jan-
uary 1948 to December 2002. Monthly area weighted rainfall data was
extracted from the Indian Institute of Tropical Meteorology for the 29
stations. The simulated monthly climate data for the IPCC scenario
IS92a, which ranged from January 1948 to December 2100, was ob-
tained from the Canadian Center for Climate Modeling and Analysis.
The data was interpolated into a grid with a 2.5° interval using a linear
inverse square interpolation procedure. Five scenarios of precipitation
were projected—2000–2019, 2020–2039, 2040–2059, 2060–2079, and
2080–2099. The results showed an increase in precipitation in several
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coastal and northern regions of India and a drop in the precipitation for
Kerala and East Madhya Pradesh. When the authors compared the re-
sults with conventional ANNs, they concluded that the SVM provided a
promising alternative due to its generalization capabilities and lower
complexity.

4. Discussion

This paper makes a thorough overview of a set of topics, which are
generally treated in different research fields but whose interrelations
are relevant to be exploited in the quest for a more sustainable built
environment, with strong applicability in the planning of cities, design
of buildings, and exploration of renewable energy resources. The re-
viewed methods for estimating, forecasting, classification, and mon-
itoring of renewable energy and environment-related variables allow to
identify possible interdisciplinary research opportunities for the de-
velopment of comprehensive tools to address those issues.

By combining solar, atmospheric, geologic, and hydrologic vari-
ables, in a multi-criteria decision aiding process, the forecasting and
estimation capabilities of the models could contribute to better plan-
ning sustainable cities and infra-structures, to avoid hazardous loca-
tions, to minimize environmental impacts, and to optimally manage
water and renewable energy resources. As an example, the forecast of
extreme atmospheric and hydrologic events, such as high precipitation
and river floods, combined with landslide classification, can help to
determine which areas are safer to build on; to make use of the fore-
casted wind speed and direction as input variables for other models that
estimate wave level in coastal areas; or, to identify ideal land surface
areas that maximize solar radiation availability and avoid soil erosion
and liquefaction.

Another example can be drawn from the field of building design. It
is frequent to assess a building's thermal performance using dynamic
simulation programs. These require weather data from the building's
location to produce accurate analysis. However, not all locations have
complete, or sometimes not even partial weather data available, due to
the cost of setting up and operating a meteorological station. Weather
data includes atmospheric, solar, and hydric values, such as hourly air
temperature, precipitation, wind speed and direction, direct and diffuse
solar radiation, among others. Neural networks may be a sound alter-
native approach to produce the missing data or even generate a full
dataset by interpolation from other weather data stations located in
surrounding regions. The idea can even be pushed along further by
aiming to predict a building's performance using weather data that was
forecasted for a future climate change scenario.

In power generation, the use of different prediction variables may
help to find opportunities to conjugate renewable energy production
from different sources, such as solar, wind, hydro, geothermal, and
biomass for a specific region or urban area. The combined use of dif-
ferent models may be used to estimate sharable renewable energy
sources at an urban quarter or building scale. The accurate prediction of
weather variables may also allow determining future energy con-
sumption, which is important in energy management in a smart grid
scenario.

However, the advantages of neural networks in producing fast and
accurate forecasts are dependent on the quality of training and testing
datasets. The model type and structure also exert great influence in the
prediction capability of the model and it is dependent on the nature of
the application problem. The type and number of input variables and
the model structure strongly influence the algorithm accuracy; there-
fore, preprocessing methods are required to determine the adequate
variables for each model. Nonetheless, neural networks are powerful
tools due to their generalization capabilities and robustness.

5. Conclusion

This paper offers a comprehensive, integrated review of the

application of neural networks to predict solar, atmospheric, hydro-
logic, and geologic-related variables, which have influence in the per-
formance, salubrity, and security of cities, buildings, and infra-
structures. It collects a diversified number of applications and identifies
a wide range of output variables that are important to promote sus-
tainable built environments, thus providing a thorough and insightful
view on the use of this kind of machine learning techniques.

The prediction of those variables is helpful in urban planning, re-
source management and power generation, and to better design
buildings and other constructions, as these can be combined to develop
multi-criteria decision tools that empowers the decision maker by in-
tegrating multiple, conflicting and incommensurate evaluations aspects
to assess the merits of potential solutions in a vast range of decision
settings. These methodological approaches and decision support tools
are potentially helpful for urban planners, architects, and engineers;
e.g., to determine the renewable energy potential of a region, develop
new technological systems that combine renewable energy resources,
optimally manage energy and water resources, avoid hazardous loca-
tions for new constructions, reduce the environmental impact of cities
and buildings, design more energy efficient buildings and healthier
cities, and guarantee the quality and availability of renewable energy
and water.

Additionally, the neural networks contribution, as a surrogate
method to simulation models and downscaling techniques, on climate
change scenarios was also reviewed. It was found that neural networks
can be used to estimate missing weather data, interpolate data from
information of other locations, and even to build future weather sce-
narios to test building's performance robustness to different climate
change scenarios.

Several of the variables reviewed are very hard to predict due to the
uncertainty of the weather phenomena, especially in longer time spans,
such as solar radiation, cloud cover, wind speed and direction, pre-
cipitation, wave and tide levels, and extreme weather events, or due to
suddenness of geologic phenomena like earthquakes. Although there
are other variables that are easier to predict due to their stability (lower
variation over time), such as land cover classification and erosion,
neural networks may still be useful as surrogate methods to destructive
testing or costly methods, particularly the ones related to soil char-
acterization. The accuracy of their predictions is generally sufficient for
early planning and design stages.

However, for a proficient usage of these techniques, developers
should take into consideration that the performance of neural networks
models is greatly dependent on the quality of the training set, the model
type and structure, and the mechanisms that enhance the model per-
formance (input selection algorithms, filtering, pattern recognition,
optimization of the model parameters, etc.). Therefore, there are still
research avenues that should be pursued to increase the accuracy of
neural networks to determine environment-related variables. Some of
the most promising research avenues are:

• selecting the best input variables or developing appropriate variable
selection mechanisms;

• developing models more adapted to the requirements and char-
acteristics of real-world problems;

• determining the effectiveness of artificial intelligence in comparison
with traditional methods;

• performing systematic comparisons of different artificial in-
telligence models;

• developing evolutionary approaches capable of continuous learning
and adaptive behavior;

• applying filtering and pattern recognition mechanisms to the data;
and,

• hybridizing models with other algorithms, namely optimization
approaches, to improve overall robustness, accuracy, and reliability.
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