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A B S T R A C T

In recent years, distributed renewable energy-generation technologies, such as wind and solar, have developed
rapidly. Nevertheless, the utilization of ultra-low-head (ULH) water energy (i.e., situations where the hydraulic
head is less than 3 m or the water flow is more than 0.5 m/s with zero head) has received little attention. We
believe that, through technological innovations and cost reductions, ULH hydropower has the potential to
become an attractive, renewable, and sustainable resource. This paper investigates potential sites for ULH
energy resources, the selection of relevant turbines and generators, simplification of civil works, and project
costs. This review introduces the current achievements on ULH hydroelectric technology to stimulate
discussions and participation of stakeholders to develop related technologies for further expanding its
utilization as an important form of renewable energy.

1. Introduction

Although hydropower is considered to be a renewable energy resource,
its sustainability is sometimes questioned because of the impacts of dams
on the environment, which is a major barrier for the deployment of large-
or mid-sized hydropower projects [1]. Interest in using small hydropower
resources is increasing, and the technology is being developed worldwide
because of its advantages in terms of scale (i.e., small), deployment time
(i.e., short), and impact on the environment (i.e., low) [2]. To date, most
published literature focuses mainly on small hydropower technologies
that use low hydraulic heads between 2 m and 30 m [3–6] or on hydro-
kinetic energy conversion technology [7–9]. Nevertheless, not enough
attention has been paid to water-energy development in situations where
the hydraulic head is between 0 m and 3 m (i.e., ultra-low head [ULH])
because of the poor economic benefits of these resources [10].

ULH hydropower will become an attractive, renewable, and sus-
tainable resource through advances in hydraulic turbines, simplified
civil works, and reduced project costs. In addition, this type of water-
energy technology is advantageous in that it can be distributed widely
and implemented near human activities, and it is generally regarded as
environmentally benign. Specifically, the low environmental impact of
ULH hydropower is reflected in two main points: 1) the wide blade
passages and low rotating speed can significantly reduce collision
damage for fish; and 2) because no dam or a very low dam is involved,
barriers for fish migration and navigation are avoided and water flow
downstream are ensured. Although generally considered to be envir-
onmentally benign, inappropriate applications of the technology can

result in harmful impacts to the environment [7,8]. In this review, ULH
water energy refers to situations where the hydraulic head is less than
3 m or the flow velocity is more than 0.5 m/s with zero head. Based on
the classifications defined by Singh and Kasal [11], ULH hydropower
can be pico-hydro (less than 5 kW), micro-hydro (5 kW~100 kW),
mini-hydro (100 kW~1 MW), small-hydro (1–15 MW), or medium-
hydro (15–100 MW) depending on the output. Many low-head projects
seek to minimize infrastructure and costs, and as a result, low-head
hydropower projects are almost always “run-of-the-river” installations
(i.e., water-storage capabilities are small to nonexistent) [12].

This paper focuses on ULH water-energy deployment and provides
an overview on ULH hydropower technology. It begins with the
introduction of existing ULH water-energy sites, followed by discus-
sions of turbine and generator selection for ULH hydropower sites.
Then, we discuss ways to simplify implementation of the technology
and provide a breakdown of project costs. Finally, we summarize future
development objectives for ULH hydropower projects.

2. Sites of ULH water-energy resources

A comprehensive assessment based on the temporal and spatial flow
properties of water-energy resources should be performed to confirm the
economic value of candidate sites. However, it would be difficult to conduct
a survey for reliable statistics because ULH water-energy resources are
widely distributed geographically throughout the world. Thus, existing ULH
water-energy sites are introduced within the following categorized exam-
ples: 1) Rivers and Streams; 2) Canals, Locks, and Pumping Stations; 3)
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Piping Systems; 4)Wastewater Hydropower; 5) Tailrace Flows from the
Power Station; 6) Tidal Energy; and 7) Other Sites.

2.1. Rivers and streams

Many undeveloped rivers or streams throughout the world contain
abundant ULH resources that could be used to generate electrical energy
via suitable hydro-units installed in simple, onsite structures [13–15].
Meier and Fischer [16] reported that in Vietnam, block and support
construction utilizing locally sourced wood and bamboo have been used,
and several 200-W, low-head, pico-hydro units have been installed to
generate power. Water current alone (i.e., no hydraulic head) can be used
to produce power using a hydro-kinetic turbine [17,18]. The power
available from a potential hydro-kinetic site is dependent on the speed
and depth of the flow, which determine the size of the turbine that can be
used. A study conducted by the Electric Power Research Institute (EPRI)
estimated the hydro-kinetic technically recoverable power from rivers in
the United States to be 119.9 TWh/yr [19]. For example, using water
turbines (Fig. 1), 1 MW of electric power could be generated in the East
Channel of the East River in New York City, with minimal impacts on the
river mean water velocity in the channel [20].

2.2. Canals, locks, and pumping stations

Canals and other artificial waterways with water flow velocities greater
than 1.5 m/s are ideal sites for ULH energy conversion because of their
controllable, predictable, and relatively clean characteristics [21–23]. The
U.S. Department of Energy Wind and Water Power Technologies Office
supported hydro-kinetic energy development within existing canal sys-
tems [22] such as the Roza Canal in Washington State (Fig. 2). British
Waterways reported on plans to 1) exploit 3541 km of Britain's canals and
rivers and 2) build 25 small-scale hydroelectric schemes with a total
generating capacity of 40 MW, which would be enough to power 40,000
homes [24]. Botto et al. [25] considered water hydro-kinetic turbine
technology applicable to small and medium-sized channels as a break-
through in clean energy production, and analyzed the database of
Piemonte regional (Northwestern Italy) irrigation canals to map the
energy potential production of that resource. Micro-hydropower systems
using irrigation water in an agriculture canals have been built in Taiwan
[26] and the Lao People's Democratic Republic [27]. Overall, water
current hydro-kinetic generation is viable in waterways and canals with
sufficient water velocities. Furthermore, the faster the water flows, the
more potential there is for generating electrical power. In some pumping
stations, pumps can be used as turbines to generate power under special
conditions. For example, pumping units work as turbines to generate
3 MW of power in Jiangdu irrigation and drainage stations in China when
the Huaihe River has excess inflow [28].

2.3. Piping systems

The piping in industrial cooling water circulation systems, water-
works, and water supply lines in hydropower plants have varying
amounts of surplus water head. Zhou et al. [29] described a case in
which surplus pressures ranging from 39 to 147 kPa existed in a
cooling tower piping system. A modified Francis turbine was installed
to harvest the previously wasted energy in the cooling system. Zheng
et al. [30] researched 300-kW small turbine units that could be used to
replace pressure-relief valves in water supply systems of hydropower
plants. Excess pressure in the diversion pipes of many water treatment
plants also can be exploited to generate power [3]. The use of micro-
hydro systems in water supply networks can control the system
pressure while producing power [31]. However, when potential energy
recovery in a city water supply network is explored, care must be taken
to avoid impacts to the water quality [32]. In addition, the bypass pipe
can be set up to prevent accidents that could affect the normal water
supply. Therefore, optimal planning, design, implementation, and
management of the proposed approach are important for obtaining
maximum environmental, social, and economic benefits [33].

2.4. Wastewater hydropower

Although implementation of hydroelectric power in wastewater
plants is still in the developmental stage, the water-energy extant in
those facilities has been receiving more attention as new low-head
turbine system technologies have emerged. In a recent investigation of
seven states in the United States (i.e., California, Texas, Florida,
Pennsylvania, New Jersey, New York, and Massachusetts), Torrey
[34] identified both high energy prices and an abundance of wastewater
plants that would make these sites attractive candidates for wastewater
hydropower installations. Capua et al. [35] studied eight wastewater
treatment plants in Massachusetts and reported average flow volumes
ranging from 0.05 to 15.99 m3/s and available hydraulic heads ranging
from approximately 1.22 to 5.18 m. The Deer Island Wastewater
Treatment Facility located near Boston, Massachusetts, has been
recovering energy from water flowing from the plant since 2002 [35].
The two 1-MW hydroelectric generators installed in this plant can
produce over 6 million kWh annually, leading to savings of approxi-
mately $600,000 per year. A wastewater treatment facility in Millbury,
Massachusetts, has an available head of 1.7 m and an average flow
volume of 1.4-m3/s, which can generate about 20 kW of power [34].

Generally, there are two schemes for hydro-units installed near
wastewater plants [36]. In the first scheme, the hydro unit is installed
upstream of the wastewater plants. In this case, the turbine compo-
nents should be more corrosion resistant, and the diversion pipe
entrance must be equipped with a thin trash rack. In the second

Fig. 1. Two turbines deployed in New York City's East River. The diameter of each
turbine is 5 m. (Used with permission of Verdant Power).

Fig. 2. Structure to support testing of a turbine that produces electricity from flowing
water. Instream Energy Systems of Vancouver, B.C., built this structure over the Roza
Canal in the Yakima Basin in Washington State to support testing of a turbine that
produces electricity from the flowing water. (Used with permission of Instream Energy
Systems Corporation).
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scheme, the hydro unit is installed downstream where the hydro unit
encounters cleaner water so component materials used in the unit can
be less corrosion resistant; however, space limitations at the site can
become an important issue.

2.5. Tailrace flows from the power station

Reserved flows or compensation flows at the foot of hydropower
dams or the water exiting from the draft tube still have considerable
hydro-kinetic energy [37,38]. Use of these flows to generate electricity
would result in lower flow rates and, thus, reduced erosion on down-
stream hydraulic structures along the shoreline. Rozumalski and
Fullarton [39] used a three-dimensional computational fluid dynamics
model to simulate flow rates in the tailrace at Milford Dam in Kansas.
The results indicated that velocities of strong currents in the tailrace
could reach 1.4–1.7 m/s [39]. A quantitative flow-field visualization of
the tailrace region at Wanapum Dam in southeast Washington State
provided the distribution of flow vectors and provided useful reference
points for siting the hydro unit (Fig. 3) [40]. Jose et al. [41] confirmed
the viability of a small hydroelectric project at the tailrace of the
Poringalkuthu Powerplant in India. In addition to extracting energy
from the tailrace flows, cooling water from the thermal power station
was conveyed to the hydropower plant to produce electricity by a
Kaplan turbine and generator [36]. Overall, by extracting 0.1% of the
water energy from the total hydroelectric generation, an additional
12 GW of power could be generated worldwide via tailrace hydropower
by 2020 [38].

2.6. Tidal energy

Tidal energy contains potential and kinetic components that can be
harnessed by tidal barrages and tidal current turbines, respectively [42].
The theoretical global tidal resource is estimated to be 8800 TWh/yr [43].
Technically recoverable tidal energy potential is predicted to be 800 TWh/
yr [44]. The National Renewable Energy Laboratory and EPRI estimate
that the total potential of all the combined ocean renewable energies in
United States currently exceeds the national electric energy needs [45]. A
total of 13 GW of new hydro-kinetic technologies could be deployed by
2025, supplying at least 10% of the electrical needs of the United States
[45]. There are many potential current energy sites including Ireland, the
Amazon River, the English Channel, the Strait of Gibraltar, Fiji Island, the
Strait of Messina, the southern coast of Iran, and South Korea [46]. In

Europe, the EU-JOULE CENEX project [47] included a resource assess-
ment and compiled a database of European locations in which over 100
sites ranging from 2 to 200 km2 of sea-bed area were identified, many
with power densities greater than 10 MW/km2. Abundant tidal energy
resources in China have great potential to be exploited. More than 80% of
China's tidal energy resources are distributed in Fujian and Zhejiang
Provinces, and sea areas to the south of Yangtze River Estuary are rich in
current energy [48]. However, at present, tidal energy development is still
facing the challenges related to the complex ocean hydrodynamic
environment, short equipment life, maintenance obstacles, construction
difficulties, and the significant capital investment required [49].

2.7. Other sites

Water energy for exploitation may exist at other sites. Check dams
are installed in streams to control floods and gravel transport and to
mitigate erosion [50]. The resultant water reservoir stores a certain
amount of water and forms a low hydraulic head, which can be used to
generate electricity via hydro-units installed through the dams or
connected with siphon pipes. Desalination plants use reverse osmosis
to separate water from dissolved salts through semi-permeable mem-
branes under high pressures of around 7 MPa [51]. Water residue from
the process still at high pressure can be passed through a turbine to
recover part of the energy used to drive the reverse osmosis process
[51]. In another example, an attraction flow must be installed so fish
migrating upstream can find the entrance of the fish-passage system.
This attraction flow can be created by placing a penstock from the
upstream basin to the entrance of the fish pass system. In this case,
energy recovery would involve installing a turbine that would use the
attraction discharge and the difference of the water levels between the
upstream basin and the fish-passage entrance [36].

3. Turbine selection for ULH applications

It is important to select a suitable hydro-turbine for ULH water-
energy exploitation. Conventional water turbines can be classified as
impulse turbines or reaction turbines. The main types of conventional
hydropower turbine types include Pelton turbines, Turgo turbines,
cross-flow turbines, Francis turbines, Kaplan turbines, and tubular
turbines [4]. In addition, there are more than 20 types of emerging
hydro-kinetic turbines for current energy conversion [52]. These
emerging hydro-kinetic turbines can be classified as lift or drag types,
with the type being based on either the principle of the hydraulic force
acting on the blades or, for horizontal axis and vertical axis turbines,
the relationship between the flow direction and the rotation axis [7]. A
turbine selection chart usually is used to select turbines for considera-
tion and to perform technical and economic comparisons among them.

3.1. Available and updated turbine selection charts

Turbine selection charts can provide basic information useful for
determining a turbine that may be suitable for a particular site. The
charts also can help a manufacturer verify that a turbine is appropriate
for site-specific conditions. Turbine selection charts are provided in
some textbooks [53] and in the published literature [54–56]. As a
typical example, the turbine selection chart in the Fig. 4 [57] shows
turbines types that can be used for hydraulic heads ranging from 1 to
1000 m and discharge scopes ranging from 1 to 100 m3/s. However, it
does not consider innovative turbine technologies that can operate in
ULH and discharge conditions. It has been reported that some
structure-simplified Francis turbines can be applied in situations where
the head is less than 3 m [58], and the re-designed cross-flow turbine
can operate as a hydro-kinetic turbine in situations where there is no
hydraulic head [59].

Generally, traditional turbine technology is not viable for projects in
which the head is less than 2 m. New technologies are being developed

Fig. 3. Graphical representation of water flow through the Wanapum Dam Tailrace.
Discharge of 2100 m3/s going through the spillway (clearly demarked by the high velocity
contour) and a total flow rate of 5800 m3/s. (Used with permission of Grant County
Public Utility District).
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to take advantage of these small water elevation differences, but they
generally rely on the kinetic energy in the streamflow as opposed to the
potential energy associated with the hydraulic head [60]. Available
turbine selection charts are not comprehensive in terms of turbine
types and application ranges included, so the charts do not provide
satisfactory selection guidance for ULH turbines. Therefore, we used
relevant research results [4,9,54,57,61–64] to create a turbine selec-
tion chart suited for use at ULH sites (Table 1). The table considers the
viabilities of technology and economy, and even under extreme
conditions of the lowest hydraulic head (0.5 m) or slowest velocity
(0.5 m/s), turbines still can be selected. Certainly, the use-range of a
turbine can change as circumstances change, and the turbine types in
the chart should be regularly updated to reflect the emergence of new
technologies.

3.2. Pros and cons of typical turbines

Generally, open-flume Francis turbines are seldom used in ULH
applications. At discharge rates less than 1 m3/s, Francis turbines are
difficult and expensive to machine because of their small size and large
number of blades. Compared to Kaplan turbines, Francis turbines exhibit
poor flow capacity and lower power output under the same ULH
conditions. Francis turbines are superior to propeller turbines because
of their good stability and high efficiency over wide head ranges or
discharge fluctuation ranges. Kaplan turbines also perform better over a
large range because of their double-regulation capability (i.e., the runner
blades and guide vanes both are adjustable). However, the blade
adjustment mechanism is complex and requires adequate installation
space in the runner hub. Thus, because of this complexity, Kaplan units
are expensive and, to be economical, are more suitable for larger flow
capacity situations in which hydraulic heads are very low. Fixed-blade
propeller turbines are much more cost-effective than Kaplan turbines and
are more appropriate for ULH applications; however, the optimal power
operating ranges are more limited for propeller turbines.

Tubular turbines are good selections for ULH conditions and for
large discharge conditions because water passes straight through the
turbine, resulting in low hydraulic losses. For sites where the total flow
capacity is lower, single- or non-regulated tubular turbines can be used
instead of double-regulated types to reduce the complexity and
resulting system cost. Furthermore, the geometry and number of guide
vanes and runner blades can be reasonably simplified to reduce
manufacturing costs of Kaplan and tubular turbines [65,66]. In recent
years, a very-low-head turbine has been demonstrated to be suitable for
operating under ULH conditions as an innovative axial-flow hydraulic
turbine [67,68].

Conventional cross-flow turbines (Fig. 5) pushed by water jets
usually are used for a wide range of hydraulic heads ranging from 5 to
200 m [69]. The best efficiency of a cross-flow turbine is somewhat less
than for a Kaplan or Francis turbine. However, the cross-flow turbine
has a flat efficiency curve under varying load, and its structural
requirements are simple and it has a self-purification capacity [70].
Furthermore, cross-flow turbines can be improved to be semi-sub-
merged or fully submerged to convert current energy with a much
higher efficiency [54,71–73]. Therefore, cross-flow turbines may be an
ideal hydro-energy converter to be used at ULH sites.

A new series of Archimedes screw turbines have been designed for
low-head conditions (i.e., 1–10 m) and large discharge ranges (i.e.,
0.1–15 m3/s). A significant advantage these screw turbines is their
tolerance for debris [60]. Archimedes screw turbines are potentially
fish-friendly, have low environmental impact, low rotating speed, and
relatively simple structural requirements [74]. Ak et al. regard the
Archimedes screw as the most suitable turbine for low-head hydro-
power using a multi-criteria analysis tool [75]. However, Archimedes
screw turbines are volumetrically large and, as a result, are less
desirable with respect to transportation and installation. Based on
the principles of water energy converted by these turbine blades, more
tests should be performed to verify the efficiencies reported in the
literature [54,60,76].

Hydro-kinetic turbines are driven by free flow when ultra-low or
zero head conditions exist. This type of turbine usually is applied in
natural streams (e.g., rivers), tides, ocean currents, artificial waterways,
and other sites with sufficient water velocities [7]. A hydro-kinetic
system can convert the energy of flowing water to electricity, and power
production can be increased by deploying multi-unit arrays like wind
farms [62]. In addition, the structural requirements for these systems
are minimal [77]. However, their relatively low efficiency, cavitation
[7], high installation costs, and maintenance difficulties are the biggest
challenges to advancing hydro-kinetic technologies.

4. Generator matched with turbine

It is very important to select the right generator for efficient ULH
water-energy conversion under different head and flow velocity condi-
tions. Usually, the characteristics of ULH hydropower generation are
similar to those of wind power generation, such as low output power
and slow fluctuating rotation speeds. Therefore, for generator selection,
much can be learned from the wind power industry [78]. Two common
types of generators are reported in the literature [79–82]: 1) squirrel-
cage induction generators and 2) permanent-magnet synchronous

Fig. 4. Typical turbine application range chart. (Used with permission of SJ
Williamson).

Table 1
Turbine selection table for ULH sites.

Type Rated Head Rated Output
(or velocity) (or capacity)

Open flume Francis turbine H > 2.0 m N> 100 kW
Kaplan turbine H > 1.5 m N> 100 kW
Propeller turbine H > 1.5 m N> 10 kW
Tubular turbine (double-regulated) H > 1.0 m N> 100 kW
Tubular turbine (single-regulated) H > 1.0 m N> 50 kW
Tubular turbine (non-regulated) H > 1.0 m N> 10 kW
Cross-flow turbine H > 0.5 m or V > 2.0 m/s N > 1 kW
Archimedes turbine H > 1.5 m N> 10 kW
Hydro-kinetic turbine V > 0.5 m/s N > 10 W

Fig. 5. Schematic diagram of a cross-flow turbine installed in a channel. (Used with
permission of Elbatran AH.).
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generators. Both types have been adopted as cost-effective choices for
ULH power generation [83].

4.1. Squirrel-cage induction generator

The name of squirrel-cage induction generators was derived from
the similarity between its rotor structure and a squirrel cage [78].
Despite being less efficient than an equivalent permanent-magnet
synchronous machine and the need to run at a more-or-less fixed
speed [80], this type of induction generator is an attractive option for
pico-/micro-/mini-scale hydropower generation because of the follow-
ing advantages [84,85]: low cost, robustness, simpler startup, and
simpler control. In addition, a squirrel-cage generator requires the
least amount of maintenance because of its simple and rugged
brushless rotor construction [86]. However, a reliable controller should
be installed to regulate the voltage and frequency [11].

4.2. Permanent-magnet synchronous generator

Low-head hydro installations usually experience extreme variations
in flow and hydraulic head, which requires a generator that can tolerate
input power variations [87]. Generators that are based on permanent-
magnet machines are very suitable for slow and variable-speed condi-
tions because their performance can be maintained at different rotating
speeds [88]. Davila-Vilchis and Mishra [89] demonstrated a type of
axial-flux permanent-magnet generator that was improved to produce
the following advantages: minimum maintenance, no heat problems
inside the bobbins, high efficiency at lower RPMs, and improved
electricity production cost. However, permanent-magnet generators
have disadvantages related to magnetic degradation [79]; that is, the
excitation is fixed and, hence, the output voltage varies with load [90].

4.3. Other generators

Other promising generator technologies are used to exploit ULH
water energy. Marques et al. [91] reported that cascaded induction
generators require lower maintenance because slip rings and brushes
are not used. Nakamura and Ichinokura [92] designed a super-multi-
polar permanent-magnet reluctance generator that can be connected
directly to a low-speed turbine without the use of a gear box. To
eliminate the need for a powerhouse, waterproof turbo-generators are
designed to allow the entire power unit to run safely while submerged
in the flow [4]. Efforts to develop different types of generators to meet
the special requirements in ULH power systems should be continued.

5. Structural requirements

Structures in conventional hydropower facilities mainly include
water-storage structures, water-diversion facilities, a powerhouse, and
a tailrace passage. Costs for these structures often account for more
than half of the total project cost. Therefore, it is very important to find
some ways to reduce the costs of structures for ULH power projects.

5.1. Using local resources

Water-retaining and conveyance structures and structural support
frames can be made with abundant local materials (e.g., wood, bamboo,
stone, etc.), which can reduce costs for construction, maintenance, and
replacement. Water can be a diverted from a river or it can come from a
small dam or weir made from locally available materials. These types of
installation are frequently used in the mountainous districts of Kham,
Mai, and Kuah in Laos, where there is an abundance of suitable small
streams (Fig. 6.) [27]. In Thailand, mostly local materials have been
used to construct small, portable, and low-cost check dams to store
water collected during the rainy season for use in the dry season [93].

5.2. Using existing facilities

It is more economically viable to develop water power projects at
existing sites, such as sluice gates, irrigation canals, water pressure release
valves, and municipal wastewater outfalls, and at sites in rivers with
existing dams [60]. A siphon hydroelectric plant can be especially
attractive for adding hydropower capability at existing dams or similar
sites (Fig. 7). This approach has often proven to be a cost-effective,
timesaving option because a siphon plant moves the water over, not
through, the dam [3]. This avoids the often time-consuming and
expensive work of developing a water passage if modifying the existing
structure is not feasible. During the planning phase, it is important to
determine that adding ULH hydropower into an existing infrastructure
does not negatively impact the original primary function of the site [36].

5.3. Modular units

Modular units integrate the turbine, generator, control and protection
equipment, and support structure. Modular units also are known as “plug-
and-play” or “self-contained” units. These new technologies can minimize
or eliminate the traditional powerhouse and simplify construction. A
modular small hydro system combining a modified bulb turbine design
has been developed for use at low-head, non-powered dams and lock sites
(Fig. 8) [87]. The very-low-head turbine often is installed in an existing
channel, so structural modifications are minimized or nonexistent (Fig. 9)
[94]. Some other innovative turbine technologies are available from Power

Fig. 6. Standing Pico-Hydro Unit in Khaivieng Village, Kham District, Xieng Khouang
Province.(Used with permission of M Smits [27]).

Fig. 7. Eight siphon-type Kaplan turbines. The units were installed by North Side Canal
Company in Idaho, United States, in 2015. The site has a 6 m of head and a total of
1.28 MW installed capacity. (Used with permission of A Hansten of North Side Canal
Company).
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Pal [57], Natel Energy, Mavel [3], Kössler [95], Turbinator [87], Instream
Energy Systems, Amjet Turbine Systems [96], Canyon Hydro, Obermeyer
Hydro, etc. These new technologies make it possible to lower investment
cost and shorten construction time.

6. Project costs

The costs of a ULH hydropower project are a major concern for a
developer or an investor. The costs include not only the expected costs
and benefits, but also the sensitivity (i.e., the corresponding economical
risk and uncertainty) [97]. Because of the complexity of an economic
assessment, our review focused only on project cost. At this time, the
cost of ULH hydropower is nearly equal to the cost of a wind energy
plant but less than that of a solar energy plant [54,98].

6.1. Breakdown of costs

The main cost of a ULH hydropower project includes civil en-
gineering costs, electromechanical costs, transmission, engineering and
approvals, and operations and maintenance (O &M) costs. The ap-
proximate breakdown of the low-head hydro project costs are listed in
Fig. 10 [60]. The costs are highly dependent on the site and are
included for illustrative purposes only. All costs are larger for greenfield
(i.e., environmentally friendly) sites except for the electromechanical
costs [60]. Because of the high standards of greenfield sites, civil
engineering costs are a large proportion of total costs, more than 40%
in most cases [99]. Installing hydropower capability at existing dam
projects could significantly decrease civil engineering costs and lead to
an increase in the electromechanical cost proportion due to the

decrease in total costs [60]. Annual O &M costs are often quoted as a
percentage of the investment cost per kilowatt. For small-scale hydro-
power installations, typical values range from 1% to 6% and, in some
cases, can be even higher [100]. According to LaBonte et al. [101], the
cost breakdown for hydro-kinetic energy conversion systems covers all
lifecycle expenditures including project planning and permitting,
generating equipment, supporting infrastructure, and O&M.

6.2. Costs of conventional small hydropower projects

The wide investment cost bands for hydropower projects within
countries and between countries (Fig. 11) are determined by factors
such as the resource availability, site-specific considerations, and the
cost structure of the local economy [100]. For a low-head hydropower
project, the total initial project costs can range from U.S. $1800 to
$8000 per kilowatt [87]. However, by using localized expertise and
technology, costs can be reduced to below $1000 per kilowatt [4].

A series of empirical equations have been established to estimate
overall project cost, civil engineering costs, and electromechanical costs
[4,100,102,103]. For example, the initial capital cost equation, based on
existing non-powered dams and conduit sites, is given by Eq. (1) [87]:

C H P= 566.9P
0.01218 1.1452 (1)

where H is the water head (m) and P is the power (kW). Singal and Saini
[104] performed research to develop a methodology for correlating the
total cost using regression analysis that considered head and capacity as
cost-sensitive parameters for alternative layouts having one to four
turbines. Actual project costs may vary significantly when detailed design
and construction are carried out. Unsuitable turbine selection, a lack of
experience with pico-hydro technology, or a failure to execute a good cost-
effective approach will dramatically increase costs [105].

6.3. Hydro-kinetic turbine system costs

Hydro-kinetic technologies are still in the early developmental phase,

Fig. 8. A 100-kW Nameplate Capacity hydro-kinetic unit. This unit is located at the U.S.
Army Corps of Engineers Lock and Dam No. 2 in Hastings, Minnesota. (Used with
permission of Hydro Green Energy, LLC).

Fig. 9. A 410-kW very-low-head turbine unit in the Tarn River, Millau, France. (Used
with the permission of MJ2 Technologies S.A.S.).

Fig. 10. Approximate breakdown of low-head hydro project costs. (Source: [60]).

Fig. 11. Total Installed Hydropower Cost Ranges by Country. (Source: [106–108]:).
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which makes it difficult to conduct accurate economic analysis for proposed
installations. When more devices have been built and deployed, specific
estimates for costs can be made. EPRI conducted preliminary economic
analyses for several proposed hydro-kinetic projects in Alaska (Table 2)
[17]. The estimated O&M costs ranged between 2.45% and 7.08%
depending on the size and location of the deployment [40].

7. Conclusions and prospects

Although ULH hydro-resources are abundant in many countries,
the survey task is difficult because no comprehensive database has been
established to collect relevant information from wide-ranging sources.
Because of different site conditions and deployment methods for each
ULH hydropower project, a more accurate cost-assessment model of
ULH hydropower projects need to be established in the future. For
ULH turbines, future development objectives are summarized below:

• First, high-efficiency turbines with large flow capacities should be
designed to produce more electricity.

• Second, lightweight, inexpensive materials should be investigated
and adopted when feasible to reduce the costs of manufacturing,
transportation, and installation while being able to meet the
mechanical specifications.

• Finally, to prolong service lives, turbines must be made of corrosion-
resistant materials and be equipped with good seals, and bearing
lubrication systems.

Non-regulated turbines with variable-speed generators have a wide
tolerance for head or flow fluctuations and, thus, can obtain maximum
power outputs. Ideal generators for ULH power systems need to be small,
direct-driven, and variable speed, and must have good self-protection
capabilities. The use of modular units, locally available materials, and
existing facilities can significantly reduce project costs. Overall, it is no
doubt that the availability of reliable technology and low implementation
costs will be the two key factors that will influence the adoption of the
ULH hydropower.
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