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The concern of increasing renewable energy penetration into the grid together with the reduction of
prices of photovoltaic solar panels during the last decade have enabled the development of large scale
solar power plants connected to the medium and high voltage grid. Photovoltaic generation components,
the internal layout and the ac collection grid are being investigated for ensuring the best design,
operation and control of these power plants. This paper addresses the review of components as pho-
tovoltaic panels, converters and transformers utilized in large scale photovoltaic power plants. In addi-
tion, the distribution of these components along this type of power plant and the collection grid
topologies are also presented and discussed.
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1. Introduction

The energy demand worldwide is expected to grow by 41%
during the next 20 years due to industrial and residential needs
[1]. Commonly, the electricity demand was supplied by fossil fuels
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as oil, natural gas and coal; but the variability of electricity price,
the rise of CO, emissions and the reduction of fossil fuel reserves
have caused that different countries and organizations focus on
renewable energy as a solution to supply the future and the pre-
sent demand [2].

Therefore, the use of renewable energies to supply electricity
has grown in the last years, especially wind and photovoltaic
power. Wind power plants had the fastest growth during the last
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years. In fact, the cumulative wind power installation in the Eur-
opean Union at the end of 2014 was 128.8 GW [3], while in Asia,
US, and South America was 115 GW [4], 65 GW [5] and 4 GW [4]
respectively. In contrast, photovoltaic (PV) power installations did
not have the same growth, due to prices of photovoltaic panels,
technology used and social opposition. In fact, the cumulative
power installation of photovoltaic for residential and utility pur-
pose connected to the grid in 2014 was 81 GW in Europe, 37 GW in
Asia [4],13 GW in USA [6] and only 104 MW in South America [4].
According to the European Photovoltaic Industry Association EPIA,
the total installed capacity of photovoltaic power in Europe will
reach 156 GW, and for Asia will be 184.9 GW until 2018 [7]. US,
South America and South Africa show a drastic increment on the
development of PV power plants (PVPPs) adding several GWs to
the worldwide PV generation, in fact US has 21.8 GW of PVPPs
under development [8].

Because of this trend, different PV panels, inverters, transfor-
mers, protections and storage systems have been developed to
improve the overall performance of PVPPs for small, large (LS-
PVPPs) and very large scale (VLS-PVPPs).! Accordingly, this paper
focuses on two main objectives; former, the introduction of the
main characteristics of the basic components for LS-PVPPs; and
the latter, the definition and discussion of internal disposition of
PV panels, inverters and transformers considering also the ac
collection grid topologies for LS-PVPPs.

Numerous publications regarding the review of suitable tech-
nology for small PVPPs are found in the literature. The explanation
of the components, topology and the control of small PVPPs for
houses and buildings are studied in [10-13]. Meanwhile, [14] and
[15] focus on problems related to large scale integration of PV
generation into the distribution system as voltage drop and net-
work losses. The topologies used to interconnect PV panels with
the inverters, for small PVPPs interconnected to the grid, are stu-
died by [16] and [17]. Besides, Salas et al. [ 18] study the technology
used by inverters in small PV application comparing efficiency,
control, cost, weight, and its future trend.

In contrast, there are few publications regarding the review of
the electrical layout and the suitable technology for LS-PVPPs and
VLS-PVPPs. Stranix et al. [19] and Simburger et al. [20] review the
design of LS-PVPPs considering electronic devices, wiring, pro-
tections, PV panels, mounting characteristics, installation, main-
tenance and cost according to the technology used in 1980s.
Alternative configurations are studied in [21], comparing technical
advantages and disadvantages, but these configurations are only
based on central inverters topologies. Ito et al. [22] present how
different types of PV panels affect the area occupied by a VLS-
PVPP. In [23] and [24], a summary of the problems related to the
integration of LS-PVPPs to the grid considering electrical grid
codes is described. The control and the implementation of
LS-PVPPs are studied in [25-27] with specific examples. Despite
the extensive literature review, there is a lack of information about
the internal topology and the ac collection grid for LS-PVPPs.
Therefore, the development of this review is critically important in
order to describe the components, their internal disposition and
the ac collection grid topology used in LS-PVPPs. To accomplish
the objectives of this paper an extensive literature review is
developed considering publications of the last 30 years presented
in journals and magazines. Besides, an extensive review of the
technical data of real LS-PVPPs developed around the world is
developed to do a deeper analysis of the current trend.

! In this paper we consider small scale if the power rate of the PVPP is in the
range of 250 kW to 1 MW, LS-PVPP from 1 MW to 100 MW and according to the
International Energy Agency [9], VLS-PVPP has a rate capacity from 100 MW to GW.

The remainder of this paper is structured as follows. Section 2
presents a review of the main electrical components used in LS-
PVPPs. Section 3 is dedicated to the analysis of the internal dis-
position of the components in a LS-PVPP. Section 4 presents the
analysis and discussion about the ac collection grid topologies in
LS-PVPPs. Finally, the conclusions are presented in Section 5.

2. Electrical components

The electrical components of LS-PVPPs have three tasks: (i) to
convert solar energy into electricity, (ii) to connect the LS-PVPP to
the grid, (iii) to assure an adequate performance. The basic com-
ponents involved in these tasks are PV panels, PV inverters and
transformers. In this section, a review of these components is
developed considering their operating principles, the current
technology used, and their future trend.

2.1. PV panels

Solar cells are the basis of the PV panel. The function of the
solar cells is the conversion of solar energy into electricity [28]. A
number of solar cells are connected in series and then encapsu-
lated in an especial frame to construct the PV panel [29].

There are different materials of solar cells affecting the overall
efficiency of the PV panels. The basic types, crystalline (c-Si) and
multicrystalline (m-Si) silicon, present efficiency values around
20% [30]. Other types as the thin film solar cells using amorphous
silicon (a-Si) have an efficiency around 6.9-9 % [22,30] . Thin film
solar cells are also using other materials as copper indium dis-
elenide (CulnSe,-CIS), and cadmium telluride (CdTe) with effi-
ciencies around 15% [28] and 12% [30] respectively. Other mate-
rials are in research with the aim to improve efficiency and costs
as it is summarized in [31] and [32].

The c-Si and m-Si has dominated the utility market during the
last years due to its efficiency, the land used, and its stability
during time, reliability and abundant primary resource. The main
drawback of this technology is the price due to manufacturing and
the quantity of material used [33,34]. In contrast, thin film solar
cells have some benefits as the price, the efficiency of sun light in
low radiation and low temperature coefficient. But the main
drawback for its utilization on LS-PVPPs is the land occupied,
lower efficiency, low stability during time [35,36] and the scarcity
of materials [37].

The efficiency of the solar panels affects the overall dimension
of the LS-PVPP, as it is explained in [22]. For the same power, if the
efficiency reduces, the area occupied by the LS-PVPP is major. The
total cost is also affected not only by the land occupied but also
because of installation, transportation, maintenance and mounting
characteristics [38]. Fig. 1 illustrates the relationship between the
efficiency of the different types of solar cells with the size of the
PVPP according to the available data in [22] for a LS-PVPP of
100 MW. The Fig. 1 shows that the multicrystalline silicon solar
cells (m-Si) have larger efficiencies (10-12%) than the case of thin
film solar cells (7-9%). The area occupied by the silicon solar cells
is less than twice the area used in thin film solar cells when
amorphous silicon is used. This is also validated by Yimaz at et al.
[39] using a small system of 33 kW to compare the performance of
(c-Si), (m-Si) and thin film solar cells.

Researchers are still looking forward the improvement of solar
cell characteristics by the increment of the efficiency, the decay of
prices and the long-term stability [40]. For LS-PVPPs, other solar
cell characteristics are also becoming necessaries as sustainability,
recycling and reduction of CO, production during its life cycle [41].
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Fig. 1. Efficiency and area occupied by PV panels with different types of solar cells
for a LS-PVPP of 100 MW [22].

2.2. PV inverters

The PV inverters are electronic devices that permit the con-
version from dc to ac power and are used in different applications.
In the case of LS-PVPPs, the PV panels generate dc power, then
these panels are connected to a PV inverter to generate ac power
[28], permitting its connection to the internal ac grid.

The PV inverter has one or two stages of conversion. In one
stage, a single inverter (dc-ac) is commonly used, and in two
stages an additional dc-dc converter is connected [42,43]. The use
of dc—dc converter in LS-PVPPs is still on research. A review of the
state of the art of non-isolated dc-dc converters is studied in
[44,45] and isolated dc-dc converters are analyzed in [46]. In non-
isolated converters, the configuration used are boost, buck, buck &
boost, Ciik or SEPIC. The leakage current, the voltage stress and the
current ripple are a drawback of non-isolated dc-dc converters.
Therefore, isolated configuration is considered appropriate for LS-
PVPPs. The isolation is commonly obtained by a high frequency
transformer. The typical configurations are flyback, forward, push-
pull and boost-half-bridge [47]. The switching stress, the cost and
the efficiency are typical issues on these configurations [46].

The choice of the dc-dc converter depends on the dc-ac
inverter used at the next stage. The typical inverters used are
Neutral Point Clamped (NPC) and Cascade H-Bridge (CHB) [48]. If a
dc-dc stage is connected, an isolated converter suites better for
CHB as it needs independent dc input for each CHB used [49]. In
the case of a NPC, non-isolated converter is connected in a pre-
vious stage [50].

In any case, one or two stages of conversion, the PV inverters
used in LS-PVPPs must overcome issues related to the technology
of the PV panels and electrical requirements. First, PV inverters
must have galvanic isolation to overcome any issue related to the
leakage current from the PV panels interconnection [46]. Second,
due to the non-linear characteristics of the voltage and current of
the PV inverter, a tracker of the maximum power point (MPPT) for
any radiation and temperature is needed [51]. Third, the power
quality and the operational characteristics of the PV inverters must
obey any of the electrical standards applicable to the country.

Photovoltaic power initially became important in Distribution
generation for which some of the applicable standards for PV
inverters are IEEE 1547, UL1741 and ANSI C84. These electrical
standards permit that the PV inverter disconnects in any case of
faults, low voltage or disturbance into the grid. However, an
immediate disconnection is counterproductive for a large facility
as a LS-PVPP. Dedicated standards for the interconnection of LS-
PVPPs to the grid are the ones presented in Germany (BDEW), US
(FERC LGIA) and Puerto Rico (PREPA). According to these stan-
dards, not only inverter's disconnections is forbidden, but they also
have to provide grid support functions as voltage and frequency

DC side AC side
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AC Internal PV
plant grid
v MV configuration
MV HV ~ GRID
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Fig. 2. Location of the transformers in the LS-PVPP.

regulation as well as fault ride through capability [52,53]. To help
to comply these requirements FACTS and capacitor banks are
included, but they are not part of these review.

2.3. Transformers

In LS-PVPPs, there are two types of transformers installed
(Fig. 2). The first one (Tn) steps up the voltage from the PV
inverters to the range of 13.8-46 kV [54]. The second one (T-HV)
has two functions: (i) to provide galvanic isolation for LS-PVPPs
from the electrical grid and (ii) to step up the voltage from the LS-
PVPP [21]. In the LS-PVPP detailed in [55], forty transformers are
used to step up the voltage of the PV inverters from 0.4 kV to
30 kV. In this case, another transformer is used for the complete
LS-PVPP to step up the voltage from 30 kV to 110 kV.

If the PV inverter has a power rating higher than 500 kW, three
winding transformer is commonly used [56]. This transformer has
two windings for low voltage (LV), to connect two inverters, and
the third one for medium voltage connection (MV) [57,58]. The
existing vector groups for this transformer are Dy, y,, Dd,d,, YNy,
Yn, YNdndp, YNy, d, [59]. In the case of PV inverters with a power
rating less than 500 kW, transformers of two windings are used
[60]. These transformers have two windings, one for low voltage
(LV) and the other for high voltage (HV). The transformer T-HV has
also two windings, one for medium voltage (MV) and the other
one for high voltage (HV). The existing vector group for this
transformer is Yy.

Any of these transformers (Tn or T-HV) is elected according to
the rated power, efficiency, and cost. The transformer could
become a bottleneck, if the rated power is smaller than the normal
operation of the LS-PVPP. If the rated power is too large, there
could be some instabilities that cause problems with the overall
performance [54,57]. To overcome this issue, a technique has been
designed by Testa et al. [61] to choose the transformer according to
the power, the efficiency, the cost and the operation of a LS-PVPP.

Currently, researchers are looking for other type of transfor-
mers to reduce the area occupied and to improve the reliability of
LS-PVPPs. The work developed by Hafez et al. proposes the use of
medium frequency transformers at LS-PVPPs [62]. According to
this work, the efficiency of the overall power plant improves by 2%
in comparison with a LS-PVPP developed in Eggebek that uses
multistring inverters, but an ac-ac converter is added to the
topology.

After the understanding of the definition, function, character-
istics and the future trend of the main components in LS-PVPPs,
the following section studies the distribution of these components
for this type of application.
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3. Internal PV plant configuration

The connection of PV inverters with PV panels (Fig. 3) and
transformers (Fig. 4) in LS-PVPPs considers three basic topologies:
(i) central, (ii) string, and (iii) multistring [16,17]. There is a fourth
basic topology, the ac module integrated, but its application in LS-
PVPPs has not been developed yet. The power produced by the
different topologies is affected by solar radiation and shading
effect, becoming very important the correct choice of the topology
according to the power output, location, reliability, cost and effi-
ciency [10].

In this section, a review of these configurations is developed,
describing and analysing their main characteristics, advantages,
disadvantages, applications and future trend. To overview a sum-
mary of the configurations presented in this section, some
tables (see Tables 1-3) and graphics (see Figs. 3-7) are developed
according to the data collected from several publications and
manufacturers.

3.1. Description of internal topologies

The interconnection between PV panels and the inverters is
illustrated in Fig. 3. The central topology (Fig. 3(a)) interconnects
several thousands of PV panels to one inverter. The disposition of
these PV panels are clustered into PV arrays. Each array has hun-
dreds of PV strings connected in parallel, and each string has
hundreds of PV panels connected in series. The string topology
(Fig. 3(b)) connects one PV string with one inverter. The multi-
string topology (Fig. 3(c)) connects one PV string to a dc-dc con-
verter, then 4 or 5 dc—dc converters are connected to one inverter
which may or may not be closed to the dc-dc converter. The fourth
topology, the ac module integrated (Fig. 3(d)) has one inverter per
each PV panel. The inverters utilized on these topologies take the
name of the topology used: central, string, multistring and ac
module integrated. The electrical characteristics of these inverters
are described in Table 1.

These topologies are differentiated by four categories: general
characteristics, power losses, power quality and cost (Table 2). The

a b
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Fig. 4. Connection of transformers at medium voltage. (a) Central PV inverter with
three winding transformer and (b) multistring PV inverter with two winding
transformer.

Table 1
Electrical characteristics of PV inverter topologies.

Inverter topology P (kW) Vin mppt dc (V) Vout ac (V)  f(Hz)
Central 100-1500  400-1000 270-400 50, 60
String 0.4-5 200-500 110-230 50, 60
Multistring 2-30 200-800 270-400 50, 60
Module Integrated 0.06-0.4 20-100 110-230 50, 60
C
+ - + - + - + -
DC DC
DC DC
.
.
+ -
DC DC DC
AC AC AC

Fig. 3. PV inverter topologies. (a) Central, (b) string, (¢) multistring, and (d) module integrated.
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Table 2
Main characteristics of PV inverter topologies.

Characteristics Central String Multistring Module

integrated

Performance Reliability L H M H-H
Robustness H L M L-L
Flexibility L H M H-H
MPPT L H M H-H
efficiency

Power losses Mismatching H L L L-L
Switching H L M L-L
ac power L M M H
losses
dc power H L M L-L
losses
ac voltage L H M H-H
variation

Power quality dc voltage H-H M H L-L
variation
Voltage H M L L
balance

Cost Installation M H M H-H
cost
dc cables H L M L-L
ac cables H M M H
Maintenance L M H H-H

The following nomenclature is used: H-H: very high, H: High, M: Medium, L: Low,
L-L: very low.

first category, general characteristics, considers the robustness,
reliability, flexibility and MPPT efficiency [63-65]. Each topology
presents its own general characteristics that depends specially on
the power rating, number of PV inverters and number of PV
strings. For instance, the central topology has low levels (L) of
reliability, flexibility and MPPT efficiency but its robustness is
higher than other topologies.

The second category, power losses, considers mismatching,
switching, ac and dc losses. Mismatching losses are inevitable in
any PV array. These depend on uneven degradation along the PV
string, shading, cloud coverage, dust, cooling, MPPT efficiency,
among others [66,67]. In this case, central topology presents
higher (H) mismatching losses because several strings are con-
nected to a single inverter. The switching losses are also a concern
that depends on the devices and the control of the PV inverter. The
length of the cables in the dc or the ac side influences the
cumulative losses of LS-PVPPs. Central inverters have very high
(H-H) losses at the dc side as many strings are connected in par-
allel. In contrast, the ac losses in the central inverter are low (L), as
the transformers (Tn) are connected very close to the inverter.

The third category, power quality, is influenced by the dc and ac
voltage variations and voltage balance. In the case of central
topology, the dc voltage variation is very high (H-H) because many
strings are connected in parallel. In this case, the ac voltage var-
iation is low (L) and the voltage balance is high (H) as it has only
one inverter. The voltage is unbalanced specially when many
inverters are connected in parallel as the case of module inte-
grated. Due to losses, distances and voltage sags, the three phase
voltage balance at the point of connection with the transformer
(Tn) could be affected. Therefore, when several inverters are
connected in parallel, it is necessary to develop a master control
for a group of PV inverters to reduce the ac voltage variation and to
improve the voltage balance.

The fourth category, the cost, involves the installation, main-
tenance, land cost and length of cables in the dc or the ac side
[63,68,69]. The comparison of costs for each topology is detailed in

Central

String

o

e

U
93ej05

Multistring

___ Module
integrated

Fig. 5. Comparison between different PV inverter topologies characteristics for LS-
PVPPs.

Table 2, but the land cost is not included as it depends on the
location of the LS-PVPP.

Because of comparison analysis, Fig. 5 is developed considering
each characteristic for every topology presented in Table 2. It can
be stated that the central topology has the following advantages:
robustness, low ac power losses, low ac voltage variation and a
reasonable installation and maintenance cost in contrast to the
other topologies. The general characteristics of string and multi-
string topologies [63] are very attractive, but the main drawback is
the installation and the maintenance cost as the number of
inverter increases. String topology has similar characteristics as
the multistring topology, but it is recommended to use it when
each PV string has different orientation angles [69,70]. In real LS-
PVPPs, module integrated has not been implemented, but it can be
concluded that it has good characteristics considering flexibility,
MPPT efficiency and reliability. The robustness, power losses,
power quality and the general cost are several drawbacks for the
module integrated topology.

3.2. Analysis in real LS-PVPPs

In this subsection an analysis of real LS-PVPPs is developed to
see the applicability of the topologies studied before. A compar-
ison of three different topologies available in the market con-
sidering cost, efficiency and area is illustrated in Fig. 6. The
topologies compared are central, multistring and an additional
topology called multicentral inverter. This topology encapsulates
in one cabinet several central inverters with a power rating less
than 100 kW. In the cabinet, there are at least three different PV
inverters with the same characteristics. Each of them has its
individual MPPT control. The output of each inverter is connected
in parallel with the adequate protections to have only one output
for the complete cabinet. Fig. 6 shows that multicentral inverter
has better characteristics on price and efficiency in comparison
with central and multistring inverter.

Additionally, Fig. 7 compares 22 LS-PVPPs of different power
from 6 to 90 MW, where 17 of them have PV inverters connected
in central topology. The comparison is made between the area
occupied and the number of PV modules in contrast to the capa-
city rating of the LS-PVPP for central and multistring topology. This
graph shows that the central topology is the most used technology
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Fig. 7. Comparison of area and number of PV panels used between different real LS-PVPPs.

due to its feasibility and the small number of inverters used in the
power plant. Multistring topology is barely used in LS-PVPPs and
the area occupied according to the evaluated data is almost the
same as the area used for central topology.

In any of these cases at large scale, string topology has not been
used. The work developed by Syafaruddin et al. [71] analyses that
an array of PV panels connected to central inverter generates less
power than string topology for the same PV array considering non-
uniform irradiance condition and a novel MPPT control based on
artificial neural network. The study developed by Woyte et al. [72]
concludes that there is not a considerable difference among cen-
tral and string inverter with a similar annual yield, thus the per-
formance ratio during the year is similar.

Table 3 summarizes the main characteristics of some LS-PVPPs
developed by SMA, ABB, SunPower and Danfoss. This table indi-
cates the area, the number of PV panels, the panel type, the PV

inverters and the topology” used in operating LS-PVPPs. Other
components are still necessary for the design, implementation and
operation of LS-PVPPs, as junction boxes for dc and ac side, sensors
[73,74] and protection devices that are not part of this review.
The data detailed in Table 3 shows that the preferred material
of PV panel is m-Si and thin film. In LS-PVPPs that uses thin film
solar panels occupies twice the area than the PVPPs that uses m-Si.
Only, three PVPPs of the table below uses c-Si, and these show less
number of PV panels and less area occupied. Furthermore, the
number of PV inverters depends on the topology used, a large
number of PV inverters are common in multistring topology. For
instance, in the cases of Veprek and Long Island solar plant with a
corresponding power of 35 MW and 37 MW have similar area

2 M=Multilevel, C=Central.
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Table 3
Details of some operational LS-PVPPs.
Photovoltaic power plant Power (MWp) Area (km?) Panels (x10°) Panel type Inverters number Topology
Korat I 6.0 0.13 29 m-Si 540 M
Narbonne 7.0 0.23 95 Thin film 19 C
Rapale 7.7 0.49 100 Thin film 900 M
Airport, Athens 8.1 0.16 29 m-Si 12 C
Saint Amadou 8.5 0.24 113 Thin film 16 C
Volkswagen Chattanoga 9.5 0.13 33 m-Si 10 C
Masdar 10 0.22 87 m-Si, Thin film 16 C
Adelanto 10.4 0.16 46 m-Si 13 C
Taean 14 0.30 70 m-Si 28 C
Jacksonville 15 0.40 200 Thin film 20 C
San Antonio 16.0 0.45 214 Thin film 22 C
Cotton Center 18.0 0.58 93 m-Si 36 C
Almaraz 221 1.2 126 m-Si 6697 M
Veprek 351 0.83 185 c-Si 3069 M
Long Island 37.0 0.80 164 m-Si 50 C
Reckahn 37.8 0.98 487 Thin film 43 C
Ban Pa-In 44.0 0.80 160 m-Si 61 C
Lieberose 71.0 2.2 900 Thin Film 38 C
Kalkbult 75.0 1.05 312 m-Si 84 c
Eggebek 80.0 1.29 76 m-Si 3200 M
Montalto di Castro 85.0 2.83 280 c-Si 124 C
Templin 128 214 1500 Thin Film 114 C
California Valley Ranch 250 6.01 749 c-Si 500 C
Agua Caliente 290 9.71 5200 Thin Film 400 C
power as Reckahn power plant, the area occupied increases in 20%
’ e o o ’ ‘ and the number of PV panels is almost three times than the case of
Long Island PV plant. However, in both cases the internal config-
DC bus DC bus DC bus . . . .
— uration chosen is central and the number of inverters is almost
DC/ Dcﬂ LDC/W similar.
ac AQ /g . . . .

° . ’ e cost influences in the decision of the topology an e
< Ach 7 ACh ACh Th t infl the d f the topology and th
L+V e L Y e technology used as well as the efficiency required, the perfor-

” i 1 mance, the area, the price of land and the location. Despite the
) () importance of the internal distribution of the PV panels, inverters
./ L/ ./ and transformers, the following section studies the general con-
mv_ 7 MV J( My~ figuration of the overall plant without considering the PV inverter
‘ ‘ topology chosen for the PV arrays.
— . mv HV
\ ‘ ‘ 4. Collection grid topologies
L] L] L]
DC bus | DCbus | DCbus N Collection grid topologies are considered for internal dc or ac
L D\C D\c / X power. Very little information has been documented about the ac
/ . . .
A /AJ L/;c GRID collection grid topologies for LS-PVPPs and none has been pre-
v 7 ACbus w 7 ACbus |y 7 ACbus sented for the dc collection grid. This section explains some pos-
7 7 1z sible AC collection grid topologies described by some manu-
facturers as radial, ring, star and their variations considering their
- ’ ) advantages and disadvantages. In this explanation, an array of PV
My 7 My 7 My 7 panels together with its inverter and transformer is considered as
PV generator.

Fig. 8. Radial collection configuration.

occupied, though the topology is different. The number of PV
panels used in the case of Long Island is twenty thousand less than
Veprek solar plant, though the power is higher in the first case.
The number of multistring inverters, in the case of Veprek, has a
total number of 3069 in contrast to 50 inverters used in the case of
Long Island. Despite the topology used, the area and the number of
PV panels do not seem to have any relation with the topology
chosen. However, the area occupied and the number of PV panels
have a relation with the type of material used in the PV panel. In
Veprek PV plant, c-Si is used, in contrast m-Si is used in Long
Island. In the case that thin film solar cells is chosen for similar

4.1. Radial

The radial collection system considers several numbers of PV
generators connected to one feeder, developing one string, as
shown in Fig. 8. The majority of LS-PVPPs uses this topology
because it is cheapest and simplest, but its low reliability makes it
less attractive. If the first generator connected to the feeder is lost,
all the string are lost. One example of this configuration is detailed
by Danfoss using one of their Multistring inverters. In this case a
LS-PVPP of 15 MW is proposed. It has two feeders of 7.5 MW, and
each of them has 5 transformer stations of 1.5 MW. The low vol-
tage side of the transformer is connected to 88 multistring inver-
ters that are connected in parallel between them [75]. In the case a
PV inverter is lost, the total power production will not be affected
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Fig. 9. Ring collection configuration. (a) Case 1 and (b) case 2.
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Fig. 10. Star collection configuration. (a) Case 1 and (b) case 2.

significantly, but, if one transformer station is lost, all the feeders
can be lost in the worst case scenario. In this case the power
produced will reduce by 50%.

4.2. Ring

The ring collection topology is the one used to improve the
reliability of LS-PVPPs. The connection is based on radial design
but it adds another feeder in the other side of the string (Fig. 9). If
one of the PV generators is lost, then the PV generators connected
to the other side of the feeder can still give power to the LS-PVPP.
The drawback is the cost and the complexity of the installation. A
LS-PVPP of 10 MW proposed by Danfoss uses this configuration
considering 15 transformer stations. The low voltage side of these

transformers is connected to 42 multistring inverters. In this case,
if there is any failure in one of the inverters just a small part of the
LS-PVPP is lost (less than 1%) [76]. In this case, if any transformer
station is lost, there is a reduction of power production of 6.3%.

4.3. Star

This collection topology has one PV generator connected to the
main collector. Commonly, this collector is in the middle of the LS-
PVPP to reduce the distances of the cables and to have the same
losses between them (Fig. 10). This solution offers higher reliability
than the other cases. On the downside, there is one feeder for each
PV generator that increases the total cost. An example of 21 MW
LS-PVPP is explained by Abraham Ellis for the integration of
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Table 4
Summary of basic elements, internal configuration and topologies for LS-PVPPs.

Basic elements

Configuration and topologies

PV panels PV inverters Transformers  Internal configuration Collection grid topologies
Central
m-Si one stage (dc-ac) Radial
Two windings String
Technology c-Si two stages (dc-dc-ac) Ring
Three windings Multistring
Thin film solar cells  galvanic isolated or non-isolated Star
ac module
Most used X o ) o Not enough documented
m-Si and Thin film One stage dc-ac Three winding Central
tecnology PVPPs
Switching losses
Effciency Effciency Power effciency
Size Reliability
Price Adequate control Voltage variation
Concerns Price Losses
Manufacturing Compliment of grid codes Installation cost
Power Cost

stability Galvanic isolation

Price

Maintenance cost

Renewable Energy in South Africa [77]. The star configuration
proposed considers 8 transformer stations. Each of these trans-
formers is linked to 3 central inverters on the low voltage side. In
this case, if a transformer station is lost, 14% of the power pro-
duction will be affected. This can be reduced if multistring inver-
ters are used. It will have a power reduction of 4% if any of the
central inverters fails.

The ac collection grid topologies presented here have different
problems about reliability, cost and efficiency. These issues are
overcome if there is a complete analysis about these configura-
tions in one case scenario, very few cases have been published
making impossible the comparison among them. Finally, we pre-
sent a table (Table 4) that summarizes the technology, the internal
topology and the ac collection grid configurations used in LS-
PVPPs, considering what has been discussed before.

5. Conclusions

In this paper, the main characteristics of the basic components
for LS-PVPP have been detailed. In addition, the internal disposi-
tion and ac collection grid topologies have been described con-
sidering real LS-PVPPs implemented around the world. Tables 1-4
present a general summary of the different topics discussed in this
review. It is worth pointing out that the right choice of the com-
ponents affects the area occupied, the efficiency and the reliability
of LS-PVPPs. From this review, some conclusions can be argued:

e The material used in the PV panels makes a big difference in the
area occupied. Better materials of PV panels make possible the
reduction of the area used by LS-PVPPs. PV panels with higher
power and less size must be developed specifically for LS-PVPPs.
This will help us to reduce the installation costs and the area
used. In this sense, silicon solar cells are more suitable for large
installations as it has higher efficiency and the land used is less
than the case of thin film solar cells. Also, the prices are
expected to decay in the future years which will help us to
the development of LS-PVPPs. However, thin film solar cells
technology is still improving and it is expected that more LS-
PVPPs will use it, as the price is less than crystalline or multi-
crystalline solar cells.

e The most widely used PV inverters in LS-PVPPs have one stage
of inversion (dc-ac), as it is a known technology and has been
deeply applied on the integration of renewable energy into the

grid. However, two stages are attractive for the future of LS-
PVPPs to improve the control of the PV generator at the dc side
which permits us to reduce the dc variations. Besides, the
addition of galvanic isolation in any of these cases depends
broadly on the PV panel type and the electrical characteristics
required by the LS-PVPP. Deeper studies are necessary consider-
ing real cases scenarios to understand the advantages and
disadvantages of the use of converters with one or two stages,
galvanic isolated or not.

® The performance of a LS-PVPP depends mostly on the operation
and control of the PV inverters. Until now the PV inverters have
broadly developed to comply electrical standards to support the
consumer without providing grid support functions. Due to the
future trend of the development of LS-PVPPs that have to behave as
similar as possible as the conventional power plants, PV inverters
have to improve their operational and control characteristics.
However, not many studies about the improvement of PV inverters
technology and control have been developed for LS-PVPPs.

® The internal topology is critical for the performance of the LS-
PVPPs. Central topology has been preferred by the majority of
LS-PVPPs developed in the world. This may obey to the
simplicity of installation and to the small number of compo-
nents in the overall power plant. The drawback of the central
topology is the mismatching losses caused by the change of
radiation reducing the effectiveness of the MPPT control and
affecting the output power. Multistring topology has better
characteristics of efficiency because it has a dedicated MPPT
control per string. The complexity of installation and the large
number of inverters installed make this topology less attractive
to investors. The multistring inverter topology has a big poten-
tial on LS-PVPPs, but deeper research on cost, efficiency and
behavior is necessary.

® According to the topology chosen and the rated power of the
inverter, the transformer is elected. Two windings transformer
was commonly used in PVPPs developed in the 90s due to the
power of central inverter. However, the development of central
inverters with higher rating has increased the necessity to have
an improved transformer. Today, one of the transformers most
used in real LS-PVPPs has three windings that permits us to link
two central PV inverters with their independent control. But in
the case of multistring inverters, two winding transformers are
still used. The future trend of the transformers for LS-PVPPs
depends specially on how the inverter improves its technology
and control. Their size, operation, maintenance, power quality
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are the current concern in LS-PVPPs and deep research on new
transformer’s generation is still emerging.

® A comparison of various conceptual designs for the ac collector
system options in terms of losses, reliability and economics has
been presented in this review. In real LS-PVPPs radial config-
uration is the most used as it has the lowest cable cost.
Currently, there is any study comparing the collector system
options for this type of application and how the variation of
solar radiation and temperature affects the performance of any
configuration. In future years the use of radial or ring config-
uration will be the most used and not so many changes will
occur in this area. However, as the PV array supplies dc power
will be more attractive to have dc collection grid instead of ac.
This will depend on how the dc-dc converters and protections
will develop in the future years and how the price for dc
technology will drop.

e The future of LS-PVPPs depends on the decay of prices, size
reduction, efficiency improvement of the different elements
used in its development (PV panels, transformers and inverters).
After the prices will be sufficiently reduced, the internal con-
figuration and the collection grid are part of the future concern
in LS-PVPPs considering cost, robustness, reliability and flex-
ibility. Together with the concern of the elements and the
configuration, the necessity to improve the control and the
energy management of LS-PVPPs is increasing. The trend is to
control the LS-PVPPs to behave as similar as possible as
conventional power plants considering grid code requirements.
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