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A B S T R A C T

The present article is a critical literature review about studies which are based on LCA (life cycle assessment)
and about studies which include environmental issues about concentrating solar systems (concentrating
photovoltaic (CPV), concentrating solar power (CSP), etc.). The results reveal that CPV environmental profile
depends on several factors such as the materials of the concentrator and the direct solar radiation. On the other
hand, there are different factors which influence CSP profile (from environmental point of view), including
water use and materials e.g. for storage. By considering the literature review presented it can be noted that: 1)
Regarding CPV, there is a need for more studies which investigate different concentration ratios, CPVT
(concentrating photovoltaic/thermal) systems, low-concentration CPV, strategies to reduce the impact of certain
components such as the tracking (especially for large-scale applications) and the concentrators, 2) Concerning
CSP, there is a need for more investigations about dish-Stirling, storage materials, strategies for water savings,
soiling effect, 3) In general, regarding concentrating solar systems, there is a need for more studies with Fresnel
lenses and reflectors, for small-scale systems for buildings and for multiple final applications (desalination,
drying, etc.), 4) With respect to the adopted methods/environmental indicators, certainly CO2.eq emissions,
embodied energy and EPBT (energy payback time) can provide useful information for concentrating solar
systems; nevertheless, there is a need for utilization of additional methods (e.g. based on midpoint, endpoint
approaches) which can also offer useful information.

1. Introduction

Concentrating solar energy systems can be used for small-scale
applications (e.g. Building-Added (BA) or Building-Integrated (BI)
configurations1) as well as for large-scale schemes (e.g. Concentrating
Solar Power (CSP) plants). There are different types of concentrators
(parabolic-trough, parabolic-dish, Fresnel lenses, Fresnel reflectors,
etc.) while solar energy can be concentrated for example in a single
focal point or in a line. Among the concentrating solar technologies,
there are systems which produce heat (known as concentrating solar
thermal); electricity (e.g. Concentrating Photovoltaic (CPV)); heat and
electricity (Concentrating Photovoltaic/Thermal (CPVT) and CSP) [1].

There are different possible classifications of the concentrating solar
systems, for example, based on: the size of the systems (small-scale
(e.g. BA or BI) vs. large-scale applications); the type of concentration
(e.g. point-focusing vs. line-focusing); the concentration ratio (CR); the
type of concentrator (reflector, lens, luminescent, etc.); the use or not
of sun tracking system.

Concentrating solar systems offer multiple advantages (in compar-
ison to the solar systems without concentration) such as improved
efficiency, increased energy-delivery temperatures, reduction of the
cost (for the case when there is replacement of an expensive large
receiver by a less expensive component e.g. reflecting area) and
multiple configurations for BI applications (e.g. façade-integrated
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Abbreviations: BA, Building-added; BI, Building-integrated; BICPV, Building-integrated concentrating photovoltaic; BOS, Balance of system; CED, Cumulative energy demand
method; CML, CML method; CO2.eq, CO2.equivalent; CPV, Concentrating photovoltaic; CPVT, Concentrating photovoltaic/thermal; CR, Concentration ratio; c-Si, Crystalline-silicon; CSP,
Concentrating solar power; DALY, Disability adjusted life years; Ecological footprint, Ecological footprint method; EI99 PBT, Eco-indicator 99 payback time; EI99, Eco-indicator 99
method; EPBT, Energy payback time; EPD, Environmental product declaration method; EPS 2000, EPS 2000 method; EVA, Ethylene vinyl acetate; GHG, Greenhouse-gas; GPBT,
Greenhouse-gas payback time; GWP, Global warming potential; IMPACT 2002+, IMPACT 2002+ method; IPCC, Intergovernmental panel on climate change; LCA, Life cycle
assessment; LCA-NETS, LCA-NETS method; LCI, Life cycle inventory; LCIA, Life cycle impact assessment; LSC, Luminescent solar concentrator; NIR, Near-infrared; PBT, Payback
time; PCM, Phase change material; PMMA, Polymethylmetacrylate; PV, Photovoltaic; PVB, Polyvinyl butyral; PVT, Photovoltaic/thermal; PVT/air, PVT system with air as working fluid;
QD, Quantum dots; ReCiPe PBT, ReCiPe payback time; ReCiPe, ReCiPe method; SOG, Silicone-on-glass; USEtox, USEtox method; UV, Ultraviolet

1 BI systems are integrated (and not added) into the building, replacing a building component e.g. façade [1].
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CPV or CPVT) [1,2].
Given the fact that concentrating solar systems are a promising

technology with several advantages (in comparison to the solar systems
without concentration) and interesting applications, Life Cycle
Assessment (LCA) studies (and, in general, investigations which
include environmental issues) can provide useful information about
this technology. Studies based on LCA help for the evaluation of the
environmental burdens from cradle-to-grave and facilitate fair com-
parisons of energy technologies [3]. In the literature, there are LCA
studies and works which include environmental issues about concen-
trating solar systems. In the following paragraph, some of these
investigations are presented.

Kreith et al. [4] presented a work about CO2 emissions from fossil
and solar power plants in USA. Several configurations, including high-
concentration collectors, were discussed. The CO2 estimations were
based on a net energy analysis from operational systems and detailed
design studies. It was demonstrated that energy-conservation measures
and shifting from fossil to renewable-energy sources have considerable
long-term potential for the reduction of the CO2 produced because of
energy generation. In the work of Ferriere and Flamant [5] several
environmental advantages of the concentrating solar systems were
presented (predicted reduction of the cost per kWh of produced
electricity (on a long-term basis) due to the technological progress;
the concentrating solar systems provide an eco-friendly solution (with
low CO2 emissions) instead of using nuclear power plants, etc.).
Masanet et al. [6] highlighted the role of LCA within the sector of
electric power systems. It was noted that the application of LCA to
electric power technologies is a vibrant research field that is likely to
continue given the fact that the world is searching for solutions to meet
growing electricity demand with reduced impact (in terms of the
environment and the human health) [6]. Ferriere [7] discussed several
aspects about the environmental and social benefits of concentrating
solar power systems (low CO2 emissions per kWh of produced
electricity; possibilities for multiple configurations in terms of hybri-
dization (e.g. with biomass) and storage; creation of new job opportu-
nities, etc.). On the other hand, an evaluation about the environmental
performance of several PV technologies, including CPV, with emphasis
on Canada, has been conducted [8]. It was highlighted that PV systems
have considerably lower impact (in terms of CO2 emissions and other
environmental indicators) than the use of fossil fuels for electricity
production [8].

In the literature there are also review studies which include LCA
and, in general, environmental issues (e.g. reduction of CO2 emissions
and energy savings) about solar energy systems. In Table 1, selected
review studies are presented and it can be seen that most of the review
articles about solar energy systems give emphasis on:

a) PV LCA and there are few review studies which focus on environ-
mental issues about CSP.

b) The technologies (characteristics of an installation, concentrators,
materials for storage, etc.) and there are few review studies which
include environmental issues about CPV and CPVT systems.

By taking into account that concentrating solar systems offer some
characteristics which are interesting from environmental point of view,
it can be seen that there is a need for a review article which presents an
overview of studies about concentrating solar systems from environ-
mental point of view. In the frame of this concept, the present study is a
critical review which includes LCA studies and, in general, investiga-
tions with environmental issues about different types of concentrating
solar systems (CSP, CPV, CPVT, etc.). The main objective of the present
review is to approach concentrating solar systems from environmental
point of view. In the frame of this goal:

Table 1
Review studies which partly include LCA or, in general, environmental issues about
concentrating solar systems.

Reference Year Main content of the review

Raugei and
Frankl [9]

2009 PV today and the future for PV
Prospective life cycle analysis of selected PV
technologies

Fthenakis and
Kim [10]

2011 PV LCA, LCI (modules, BOS), EPBT, GHG emissions
Criteria pollutants, heavy metal emissions
Concentrating PV systems, Life-cycle risk analysis,
Outlook

Parida et al. [11] 2011 Photovoltaic power generation, Hybrid PV power
generation
Light absorbing materials, Performance and
reliability
Environmental aspects
Sizing, distribution and control
Storage systems, Concentrators, Applications
Problems related to PV technology, Future prospects

Peng et al. [12] 2013 LCA for PV systems
Life-cycle energy requirements of PV systems
Solar radiation and energy output
EPBT and GHG emission rate of PV systems
New technologies and their effects on EPBT and GHG
emission rate

Gerbinet et al.
[13]

2014 The LCA methodology (general issues about LCA
stages, etc.)
LCA of PV systems

Sahoo [14] 2016 Recent trends of PV progress in India
Future prospects
Government initiatives in order to promote solar
energy in India

Chow et al. [15] 2012 PVT developments in the twentieth century
Recent developments in flat-plate PVT and
concentrator-type design
Miscellaneous developments over the last years

Tyagi et al. [16] 2012 Solar thermal collectors (concentrating collectors,
etc.)
PV technology (types of solar cells, etc.)
PVT technology (PVT/air, etc.)
Novel applications of PVT

Zhang et al. [17] 2012 The concept of PVT and the theory behind PVT
operation
Classification of PVT modules
Standards for PVT evaluation (from technical,
economic, environmental point of view)
R &D progress, practical applications of PVT, studies
for the future

Chemisana [1] 2011 Building-integrated CPV

Sharaf and
Orhan
[18,19]

2015 Fundamentals, current technologies, design, PV cells,
solar thermal collectors, solar concentrator optics
and concentrated solar energy [18]
Implemented systems, performance assessment,
future directions, high- and low-concentration
CPVTs [19]

Turney and
Fthenakis
[20]

2011 Characteristics of the installation and operation of
solar power plants
Metrics for environmental impact categories
Environmental impacts, Net environmental impact

Burkhardt III
et al. [21]

2012 Harmonization method
Results and discussion for parabolic trough and for
power tower
Limitations of the analysis
Recommendations for future work

(continued on next page)
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– The references are presented classified based on certain criteria
(type of system, methods/environmental indicators adopted, etc.)
which are related with the environmental profile of the systems.

– Issues about the materials for CPV concentrators, factors which
influence CPV and CSP environmental profile and future prospects,
are also included, in order to provide a complete picture of the
systems based on different points of view.

– A critical discussion is also provided, identifying gaps in the
literature and proposing methods/indicators which can give useful
information about the environmental profile of concentrating solar
systems.

2. General information about methods and indicators

In Section 2, some information about LCIA (life cycle impact
assessment) methods and environmental indicators (related to the
references of Sections 3 and 4) is presented.

The concept of "embodied energy" presents the energy needed to
process (and supply to the construction site) a material. In order to
determine this embodied energy, an accounting methodology should be
used for summing the energy inputs over the major part of the material
supply chain or life-cycle e.g. of a system. In the same concept with
embodied energy, the emissions of energy-related pollutants (for
example CO2 emissions which are associated to climate change and

global warming) may be examined over the life-cycle. In this way, the
notion of "embodied carbon" arises [31].

Primary energy (energy sources) is the energy that is embodied in
the natural resources (coal, crude oil, etc.) and it does not include
anthropogenic conversions. This primary energy should be converted
(and transported) so as to become "usable energy". The embodied
energy shows the energy used to produce a material substance,
considering the energy utilized at the manufacturing facility, the energy
utilized for the production of the materials that are used in the
manufacturing facility, etc. [32].

Related with the above mentioned issues, CED (cumulative energy
demand) method presents characterization factors for the energy
resources divided into non-renewable and renewable impact categories
[33].

The primary energy demand over the life-cycle of a system can be
utilized for example for the calculation of the energy metric EPBT
(energy payback time). EPBT presents the time required for a renew-
able energy system to generate the same amount of energy (in terms of
primary energy equivalent) that was used to produce the system itself
[10]. Within the concept of EPBT, GPBT (greenhouse-gas payback
time) [34] can be also evaluated, by considering the CO2.eq emissions
over system life-cycle. PBTs based on other types of methods such as
ReCiPe and EI99 [35] can be also presented.

In Table 2 a presentation of different methods is provided. With
respect to ReCiPe (successor of EI99 and CML-IA), it includes at the
midpoint level 18 impact categories (ozone depletion, human toxicity,
ionising radiation, photochemical oxidant formation, etc.). On the
other hand, at the endpoint level most of the midpoint impact
categories are multiplied by damage factors and they are aggregated
into 3 endpoint categories: human health, ecosystems and resource
surplus costs. The three endpoint categories are normalized, weighted
and aggregated into a single-score result [33]. The impact categories
which refer to human health (endpoint results with characterization)
can be presented in DALY (disability adjusted life years).

Finally, it should be noted that there are some investigations which
present cost issues (for example reference [4]). In addition, there are
studies that are based on multiple LCIA methods and environmental
indicators (e.g. reference [36]).

3. Literature review: CPV

3.1. LCA and environmental issues about CPV

In Table 3, literature studies about CPV are presented, classified
into two main categories: 1) high-concentration PV and 2) low-
concentration PV.

From the review about high-concentration PV (Table 3) it can be
noted that:

Table 1 (continued)

Reference Year Main content of the review

Bijarniya et al.
[22]

2016 Concept and layout of CSP-based power generation
Critical factors for site selection
Classification of CSP
Status of CSP in India
Discussion and key issues in terms of CSP in India

Grágeda et al.
[23]

2016 Solar technologies (CSP, PV, etc.)
Solar energy projects in Chile
Sustainability analysis of the solar plants

Fernández-
García et al.
[24]

2010 Parabolic-trough collectors and applications (CSP,
domestic, etc.)

Kalogirou [25] 2004 Solar collectors (flat-plate, parabolic-trough, etc.)
Thermal analysis of collectors
Performance of solar collectors
Applications of solar collectors

Ibrahim et al.
[26]

2014 Review of water-heating systems (CPVT, flat-plate
collectors, etc.)

Barlev et al. [27] 2011 Parabolic-trough collectors, heliostat-field collectors,
linear Fresnel reflectors, CPV, etc.
Thermal energy storage, Energy cycles, Applications

Xu et al. [28] 2015 PCMs for thermal storage and recent developments
of PCM encapsulation
Research and applications of latent-heat thermal
energy storage for CSP
Modeling and simulation of latent-heat thermal
storage
Operation of CSP using thermocline latent-heat
thermal energy storage system; Cost analysis

Liu et al. [29] 2016 CSP plants and thermal energy storage; Recent
developments in thermal energy storage systems;
Compatibility of the containment materials with the
storage media; Cost issues

Kuravi et al. [30] 2013 Plant-level design considerations; Component-level
considerations; System-level considerations;
Developments in thermal energy storage for CSP

Table 2
Presentation of different methods (according to reference [33]).

Methods Information

CED Non-renewable and renewable impact categories
Greenhouse gas protocol GHG emissions
IPCC 2013 GWP (global warming potential)
USEtox Human and eco-toxicological impacts
Ecological footprint Nuclear energy use, CO2 emissions, Land

occupation
CML-IA Midpoint approach
IMPACT 2002+ Combination midpoint/damage approach
ReCiPe Combination midpoint/damage-oriented

(endpoint) approach
EPS 2000 Damage-oriented approach
EPD Environmental product declaration
EI99 Damage-oriented approach
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1) There are few investigations about CPVT.
2) Most of the references are about CPV with CR 500× and multi-

junction PV cells.
3) The systems have been studied for several climatic conditions

(Spain, USA, etc.).
4) Most of the investigations examine CO2.eq emissions, embodied

energy and EPBT while there are few studies about land-use
requirements.

5) Some references include comparisons of CPV systems with simple
PV (without concentration) and the results of these comparisons
depend on several factors (the insolation of the region, the type of
the CPV system, etc.).

6) For most of the cases CPV systems show CO2.eq emissions less than
50 g/kWh and EPBTs less than 1 year.

7) Some investigations highlight the fact that the tracking system of a
high-concentrating PV installation is responsible for a considerable
part of the total environmental impact of the installation
[38,39,41].

8) Most of the studies have been conducted between the years 2010–
2015.

Based on the review about low-concentration PV (Table 3) it can be
seen that:

1) There are few references about CPVT.
2) There are some investigations about CPV and CPVT for BI applica-

tions with CRs 2.8–10× and mono-crystalline PV cells.
3) The systems have been evaluated for several climatic conditions

(Spain, UK, France, etc.).
4) The studies are based on multiple methods and environmental

indicators: ReCiPe, EI99, CO2.eq emissions, GPBT, embodied en-
ergy, EPBT, Ecological footprint, etc.

5) Some investigations include comparisons of CPVs with simple PVs
(without concentration).

6) The results show that the environmental profile of a CPV system
depends on several factors such as the solar irradiance and the
materials of the concentrator.

7) The studies have been conducted over the years 2011–2017.

Regarding high-concentration PV for domestic applications, Renno
and Petito [37] proposed a model for choosing the proper modular
configuration for a point-focus CPVT system. The scope of the
investigation was the evaluation of different configurations according
to their energy/economic performances and space occupied. The main
CPVT components included the solar cells, the optics and the tracking
system. The system considered was point-focus with parabolic mirrors,
triple-junction cells and dual-axis tracking. It was found that the high-
concentration level offers interesting solutions for domestic applica-
tions (from energetic and economic point of view) for southern Italy,
taking into account CPVT life-cycle. In addition, significant reduction
of CO2 emissions was observed [37]. Concerning high-concentration
PV for large-scale applications, several studies have been presented
[38–43], highlighting that the tracking system shows a considerable
environmental impact [38,39,41].

With respect to the specific case of low-concentration PV for BI
applications, Lamnatou et al. [34,35] conducted an LCA for a BICPV
(linear dielectric-based CPV with geometrical CR 2.8×). In Fig. 1,
details about the studied system are presented. Two configurations
(with and without reflective film) were evaluated. In Fig. 1(a) and (b), a
sample of the concentrator made by polyurethane and the solar cell
utilized in the BICPV system [34,35] are presented. In Fig. 1(c), the two
configurations (left without reflective film and right with reflective film)
are shown. By utilizing the reflective film, the rays escaping from the
corner are trapped and thus, the PV output increases [34,35].
Furthermore, in Fig. 1(d) a configuration of the studied BICPV
integrated into the façade of a building [35] is illustrated (the moduleT
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is assumed to be vertically placed on a south-facing wall). From
Fig. 1(d) it can be seen that the proposed BICPV offers (except of the
shading effect) advantages from aesthetical point of view.

The study of Lamnatou et al. [34] was based on embodied energy
and embodied carbon and the cities of Exeter, Barcelona, Madrid,
Dublin and Paris were examined. The results for the GPBT showed that
among the studied cities (and by taking into account both configura-
tions) GPBT has the highest values for Paris (27.2–33.1 years) and the
lowest values for Dublin (3.3–4 years). Certainly, the high GPBTs for
Paris are related with the low CO2 emissions of France´s electricity

mix.2 Concerning EPBT (average values based on two databases; CPV
with reflective film), Barcelona and Madrid presented the minimum
EPBTs (around 2.4 years) while Paris, Exeter and Dublin showed
EPBTs 3.2–3.5 years. The utilization of reflective film results in 0.2%
increase in system initial impact (embodied energy and embodied
carbon; material manufacturing of the modules). Nevertheless, the
results of the study [34] verify that, on a long-term basis, this
additional impact is compensated (this is because the CPV with
reflective film has higher electrical output in comparison to the CPV
without reflective film). More specifically, it was found that the use of
reflective film reduces around 11–12% the values of EPBT and GPBT.
The EPBT was also evaluated with an alternative way by taking into
account the replacement of the materials of a wall [34].

The above mentioned BICPV has been also evaluated by Lamnatou
et al. [35] based on additional methods/indicators (ReCiPe, ReCiPe PBT,
EI99, EI99 PBT, USEtox, Ecological footprint, etc.), for Barcelona, Exeter
and Dublin, verifying that the reflective film remarkably improves the
environmental profile of the reference system (system without reflective
film). The results according to ReCiPe/endpoint with characterization
(Fig. 2a) reveal that for all the components of the CPV system, climate
change/human health, particulate matter formation and human toxicity
are the categories with the highest impact (with climate change/human
health showing the highest contribution to the total impact). By focusing
on the total DALY impact for all the studied categories of Fig. 2(a), it can
be observed that PVs are responsible for the major part of DALY. On the
other hand, in Fig. 2(b) DALY impact (ReCiPe/endpoint with character-
ization) per kWh of produced electricity (for 25-years lifespan), is
illustrated. From Fig. 2(b), it can be seen that, among the studied cities,
Barcelona shows the lowest impact and the use of reflective film reduces
the impact (for all the studied cases) [35].

3.2. Materials for concentrators of CPV systems and other factors
which influence CPV environmental profile

Given the fact that the materials of the concentrator influence the
profile (from environmental point of view) of a CPV system, in this
section several aspects regarding these materials are presented, based
on selected literature references.

With respect to the use of PMMA (polymethylmetacrylate) and SOG
(silicone-on-glass) for Fresnel lenses for CPV applications, both
materials present advantages and disadvantages. For example,
PMMA has low weight but it has the drawback of the shape warp
(which means shift of the lens focus). On the other hand, SOG is more
resistant to erosion and scratching; however, it has low rigidity and it
shows lens-facets deformation because of different thermal expansion
of substrate and glass. Regarding the above mentioned issues, more
information can be found in the studies of Cvetkovic et al. [47] and
Hornung et al. [48]. In addition, Annen et al. [49] conducted a direct
comparison of PMMA and SOG for Fresnel lenses for CPVs. In the
literature there is also a review about the durability of Fresnel lenses,
with emphasis on CPV applications: reference [50].

Moreover, French et al. [51] presented a work about the optical
properties of polymeric materials for CPV systems. It was noted that
certain fluoropolymers offer desirable optical and physical properties
for optical applications within the field of CPV. Ethylene backbone
polymers (for example, PVB sheet and EVA can be utilized as
encapsulants for crystalline silicon (c-Si) and other flat-plate PV
configurations. It was also mentioned that these materials are available
with a big variety of polymer compositions and additive packages
(which affect their optical properties, for example in terms of the UV
absorption edge) [51].

Fig. 1. The BICPV system studied from LCA point of view by Lamnatou et al. [34,35]: a)
sample of the concentrator [35], b) solar cell [34,35], c) the system without reflective film
(left) and the system with reflective film along the edges (right) [34], d) a configuration of
the BICPV integrated into the façade of a building [35] (Sources: [34,35]).

2 The low CO2 emissions are associated with the fact that there is high penetration of
nuclear energy (it should be noted that nuclear power plants include risks and other
environmental issues related e.g. with nuclear waste management) [35].
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On the other hand, the concept of LSC (luminescent solar concen-
trator) for PV applications was proposed several years ago [52]. Bomm
et al. [53] conducted a study about the fabrication and full character-
ization of LSCs comprising CdSe core/multishell quantum dots (QDs).
Transmission-electron-microscopy analysis revealed that QDs are well
dispersed in the acrylic medium while maintaining a high quantum
yield of 45%, resulting in highly transparent and luminescent polymer
plates. A detailed optical analysis of the QD-LSCs was presented [53].

Finally, it should be noted that in the literature there is a review
study about coatings for concentrating solar systems [54], including
CPV schemes. The aim of [54] was to focus on the underlying chemistry
and stability of some of the main coatings that are in use (or that are
currently under investigation) so as to identify issues such as gaps in
the knowledge and prospects in terms of performance improvements
[54].

In Table 4, issues related with concentrators of CPV systems, based
on selected literature studies, are presented. In terms of the materials
shown in Table 4, QD-LSCs need improvements in order to be
commercially viable [53]. On the other hand, fluoropolymers (pre-
sented in [51]) have applications as encapsulants in crystalline-silicon
and other flat-plate PV systems (detailed optical properties of these
materials will be useful for the design of the geometrical optics of a CPV
system [51]). With respect to PMMA and SOG for CPVs, (as it was
previously mentioned) both lenses present advantages and disadvan-
tages and thus, their evaluation (for CPV applications) from LCA/
environmental point of view depends on multiple factors (related for
example with rigidity, thermal expansion and refractive index change
as well as with the behavior of the lens in combination with the CPV on
a lifespan-basis). Additional issues which influence the environmental
profile of a CPV are related with: 1) the materials of the solar cells (the
selection of the materials depends e.g. on the CR and the issue of
building integration), 2) the direct solar radiation (since CPVs work
with this part of the solar radiation), 3) the combination of CPV
technology with other types of systems (e.g. with CSP).

Fig. 2. ReCiPe endpoint/with characterization: a) The contribution of each component3 to the total impact of material manufacturing (43 modules; configuration with reflective film)
according to climate change/human health, ozone depletion, human toxicity, photochemical oxidant formation, particulate matter formation and ionising radiation (DALY); b) DALY per
kWh of produced electricity for Barcelona, Exeter and Dublin, configurations with/without reflective film, 25-years lifespan, studied categories: i) climate change/human health and ii)
other categories (ozone depletion, human toxicity, photochemical oxidant formation, particulate matter formation and ionising radiation) (Source: [35]).

3 The reflective film is not illustrated in the graph because it presents a very small
impact (less than 0.3% based on all the methods and impact categories studied in [35])
but it has been taken into account for the calculations.
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4. Literature review: CSP

4.1. LCA and environmental issues about CSP and other types of
concentrating solar systems

In Table 5, literature studies about CSP and other concentrating
solar systems are presented and it can be noted that:

1) There are few investigations about dish-Stirling.
2) Most of the references are about CSP plants based on parabolic-

trough and solar tower technologies.
3) Several studies examine scenarios which include hybridization of

CSP plants with natural gas, biomass, etc.
4) There are few investigations which examine the effect of the storage

materials on CSP environmental profile.
5) The systems have been evaluated for several climatic conditions

(Spain, USA, etc.).
6) Most of the investigations examine CO2.eq emissions; however,

there are several studies which are based on embodied energy,
EPBT and LCIA methods with midpoint and/or endpoint ap-
proaches (ReCiPe, EI99, IMPACT 2002+, etc.). On the other hand,
some investigations present economic issues.

7) For most of the cases CSP plants show CO2.eq emissions less than
40 g/kWh and EPBTs around 1 year.

8) Most of the CSP studies have been conducted between the years
2011–2016.

9) There are few references about concentrating solar systems based
on parabolic-trough technology for small-scale applications for

buildings. Most of these studies have been conducted in 2016 and
they present CO2.eq emissions.

With respect to CSP, Piemonte et al. [62] presented an LCA study
about a molten-salt CSP plant combined with a biomass back-up
burner, developed by the Italian Research Centre ENEA. The LCA was
performed by means of SimaPro7 software. The methods of EI99, IPCC
and CED were adopted. Three different configurations of power plants
were compared: molten-salt CSP plant, oil power plant and gas power
plant. The functional unit "production of 1 kWhe energy" was used and
the system boundary was cradle-to-gate, including use phase. In Fig. 3,
the solar part of the CSP plant consisting of a solar-collector field of
parabolic mirrors and the receiver tube, is illustrated. In Fig. 4, findings
from the work of Piemonte et al. [62] regarding LCA comparisons in
terms of CED (Fig. 4a) and in terms of GWP evaluated on a 100-years
basis (Fig. 4b), are presented. From Fig. 4(a) it can be seen that the CSP
plant includes a high quantity of renewable energy while fossil energy
requirements are around 85% less than those of the oil and gas power
plants. These findings are in accordance with the remarkably lower
GWP reported by the CSP configuration (in comparison to those of the
oil and gas power plants): Fig. 4(b).

4.2. Multiple aspects related with CSP environmental impact

In Table 6, different factors which influence CSP environmental
profile are presented, classified into categories. From Table 6 it can be
seen that these factors include multiple issues:

Table 4
Selected literature studies about materials for concentrators of CPV systems and other factors which influence CPV environmental profile.

Study/topic Findings/issues highlighted Additional comments

Materials for concentrators of CPV
Fresnel lenses: Cvetkovic et al. (2011)

[47], Hornung et al. (2010) [48]
PMMA has low weight but it shows shape warp (thus, shift of the lens
focus)

SOG is more resistant to erosion and scratching but it
presents lens-facets deformation because of different
thermal expansion of substrate and glass

Fluoropolymers: French et al. (2011) [51] Several fluoropolymers were presented and it was noted that the
detailed optical properties of these materials will be useful for the
design of the geometrical optics of a CPV system and for the
optimization of system optical throughput

UV: this absorption can influence radiation durability of the
materials

QDs luminescent solar concentrators:
Bomm et al. (2011) [53]

For QD-LSC concept to be commercially viable: the absorbance of
QDs should be higher and extended further into NIR, and re-
absorption losses should be drastically reduced

Coatings for concentrating solar systems:
Atkinson et al. (2015) [54]

Coatings for reflectors and glass receiver protector tubes: issues such
as protection of reflector from corrosion, reflection losses and dirt
were presented

Other factors which influence CPV
profile

PV cell material: Chemisana (2011) [1] For CPV applications different types of PV cells can be adopted
(multi-junction, mono-crystalline, etc.), depending on the system

There are toxic products which are involved in the
production of PV cells (depending on the type of the PV cell)

The issue of building integration:
Chemisana (2011) [1]

Certain CPV systems are appropriate for BI applications For BICPV another environmental issue is related with the
fact that the system replaces the materials of a building
component (e.g. of a wall) [1,34]

CR: Chemisana (2011) [1] CR also determines if a CPV is appropriate (or not) for BI
applications

CPVs with CRs less than 10× are interesting for BI
applications (they do not require tracking)

Solar radiation: Renno et al. (2015) [55] Since the optics should focus sunlight on the PV cells, CPV systems
work by using direct solar radiation (thereby, it is important to have
an accurate estimation of the global and direct radiation)

A methodological approach was proposed in order to
evaluate the electric and thermal energy production of a
point-focus CPVT

Combination of CPV with another system
e.g. with a CSP: Cocco et al. (2016)
[56]

A hybrid CSP–CPV system was proposed (in order to improve the
dispatchability of solar power plants)

The results demonstrated the advantages of adopting an
integrated management strategy in order to obtain a
constant power output curve
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1) Cooling and water use (there is a big difference in terms of the water
consumption of a CSP based on a water-cooling systems and that of
a CSP based on a dry-cooling system).

2) Materials (for storage, for the concentrating devices, etc.): e.g.
nitrate salts, silver and steel alloys.

3) Soiling and atmospheric aerosol loads (for example, soiling causes
optical losses to the solar field of a CSP plant).

4) Combination of CSP with other systems (desalination systems, PVs,
etc.).

5) Land use, lifespan of system components, operation and main-
tenance needs, etc.

Finally, it should be noted that another factor is related with the
location of the CSP plant since the location determines critical issues
such as solar irradiance, soiling and land use.

5. Several issues related with concentrating solar systems
and future prospects

5.1. End-of-life materials and recycling

In the frame of an LCA study, scenarios which examine the effect of
material recycling are of great interest since recycling can lead to
considerable reduction of the impact (depending on the materials which
are considered for recycling and depending on the studied systems).
Scenarios which include recycling can refer, for example, to copper,
aluminium and glass components of solar thermal systems [114].

Other aspects, interesting from environmental point of view, are
related with the recovery of valuable materials from end-of-life PVT
[115] or PV panels [116], the identification of weak points of the
recycling processes of PV panels (conventional vs. innovative scenarios
of recycling can be examined) [116] and PV panel disposal in a landfill
site [116]. Moreover, in the work of Halasah et al. [42] it was noted that
by comparing CPV and flat-plate configurations, it is clear that for
crystalline silicon-based PVs, the main contributors to embodied
energy are PV cells since the process of producing the silicon is very
energy-intensive. Thereby, reducing the required energy is related with
technological improvements [42]. Halasah et al. [42] also mentioned
that aluminium frame is another significant contributor which effect
can be reduced by increasing the amount of recycled aluminium
utilized.

On the other hand, in the LCA studies of Lamnatou et al. [34,35]
about a BICPV system, recycling for the aluminium frame of the BOS
was taken into account. Within the field of BICPV, in the review of
Chemisana [1] it was noted that among the advantages that CPV offer
(in comparison to conventional flat panels without concentration) is
related with the ease of recycling of the constituent materials.
Furthermore, in the study of Kammen et al. [117] issues about
recycling of CPV systems were presented.T
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Fig. 3. CSP plant from the study of Piemonte et al. [62]: solar parabolic mirrors and
receiver tube (Source: [62]).
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Regarding high-concentrating PV power generation systems, in the
work of Nishimura et al. [39] several scenarios were examined,
including recycling as treatment after system usage. Furthermore, in
the investigation of Peharz and Dimroth [41] about the high-concen-
trating PV System FLATCON® it was mentioned that the recycling of
the FLATCON® concentrator is specifically easy since the greatest part
of the materials refers to steel (for the tracking) and glass (for the
modules). In addition, the solar cells are mounted on single copper
heat spreaders (which can also be removed at the end of the system
lifespan) [41]. Peharz and Dimroth [41] highlighted that recycling of
raw materials can have a significant influence on the calculations of the
EPBT.

Moreover, in the study of Romero-Alvarez and Zarza [80] about
CSP installations, it was noted that most of the solar field materials/
structures can be recycled and in this way, they can be used again for
other plants. Furthermore, in reference [118] a CSP plant based on
Fresnel mirrors it was proposed and it was mentioned that the system
has low environmental impact since it consists of fully recyclable
materials (glass and steel).

Issues related with recycling for the case of CSP systems are also
included in the studies of Desideri et al. [86], Ferriere [7], Whitaker
et al. [66], Burkhardt III et al. [60], Corona et al. [57], Lechón et al.
[58], Pihl et al. [104], Calvet et al. [102] and Burkhardt III et al. [21].

In addition, Py et al. [119] presented a work about thermal storage
for solar power plants, based on low-cost recycled materials. It was
noted that the storage of large amounts of heat requires large amounts
of materials (and thus, there is high cost and high environmental
impact).

Moreover, in the comparative LCA study of Adeoye et al. [67],
regarding thermal-energy storage configurations for CSP plants, sev-
eral scenarios were examined including material recycling and water
recycling. In terms of material recycling, recycling of steel, glass,
polyethylene and polyvinylchloride were considered. The energy re-
quired for dismantling the plant was taken into account while the
energy needed for separating the dismantled materials was not taken
into account. Regarding water recycling, an on-site membrane bio-
reactor was considered for the treatment of the water used for cleaning
the mirrors. Construction, operation and maintenance of the mem-

brane bio-reactor were taken into account. It was noted that this almost
eliminated the use of desalinated water [67].

5.2. Comments and future prospects

By taking into account the literature review presented (Sections 3
and 4), some comments (which can be also viewed as future prospects
for research) are following presented:

1) Regarding CPV, there is a need for more studies which examine:

– A range of different CRs (in order to investigate the effect of CR and
the effect of the optical losses on the environmental profile of a CPV
system).

– CPVT systems for production of both electricity and thermal energy.
– Low-concentration CPV.
– Strategies to reduce the impact (e.g. by recycling and by adoption of

manufacturing processes with lower impact) of certain components
such as the tracking (especially for the large-scale installations), the
concentrators and the PV cells.

2) Concerning CSP, there is a need for more investigations about:

– Dish-Stirling systems.
– The effect of the storage materials on the environmental profile of

the whole CSP plant.
– Strategies for water savings (water-efficient coolers, etc.) in CSP

cooling system.
– The effect of soiling on CSP performance (from energetic and from

environmental point of view).

3) In general, within the field of concentrating solar systems, there is a
need for more studies:

– Based on Fresnel lenses and reflectors.
– For small-scale systems for buildings, for example for BI configura-

tions.
– For multiple final applications (desalination, drying, etc.).

Fig. 4. Results from the study of Piemonte et al. [62]. LCA comparisons (heavy-oil power plant, gas power plant vs. CSP ENEA) based on: a) CED and b) GWP 100a (IPCC) (Source:
[62]).
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Table 6
Several factors which influence CSP environmental profile.

Study/topic Location Findings/issues highlighted Additional comments

Cooling and water use
Dry-cooling vs. wet-cooling CSP

plants: Martín (2015) [95]
Almeria, Spain For the selected location, the wet-based system

produces slightly less CO2 than the air-cooled
system

The plant was located in Almeria (Spain) because
of the high solar irradiation

Reduction of water use in CSP:
Damerau et al. (2011) [96]

North Africa For the studied cases, the wet-cooling systems
would likely be unsustainable (while dry cooling
and sourcing of alternative water supplies would
offer sustainable solutions)

Four representative locations were evaluated in
terms of their ecological and economical
drawbacks (based on conventional and alternative
cooling systems)

Water use in CSP: Fthenakis and Kim
(2010) [97], Meldrum et al. (2013)
[98]

USA [97] Fthenakis and Kim [97] presented life-cycle uses of
water in U.S. electricity generation, analyzing
several data, including water use of multiple
systems (CSP parabolic trough, solar tower, etc.)

CSP water consumption: considerable differences
between wet-cooling and dry-cooling
configurations [97,99,100]

Materials (for storage, etc.)
CSP oil-cooled plants, with/without

heat storage in molten-salt tanks:
De Luca et al. (2015) [101]

Almeria, Spain The adoption of thermal storage almost doubles
the production (annual electrical energy), the
charge factor and the value of the capital cost
(comparing to a plant without storage and with the
same power block); the main benefit of a plant with
storage is the higher flexibility to dispatch
electrical energy when it is needed (and also during
the absence of solar radiation)

The most used thermodynamic solar plants (in the
world) adopt linear parabolic collectors and oil as
heat transfer fluid (in the receiver tubes)

Materials for thermal storage (based
on sensible heat) for CSP systems:
Calvet et al. (2010) [102]

The material COFALIT® resisted brutal and
repeated changes of the temperature, confirming
its ability to store/destock sensible heat over a
wide range of temperatures (up to 1000°C)

A material from industrial vitrification of asbestos
waste was characterized (under concentrated solar
flux in order to be evaluated as storage material
(sensible heat) for CSP plants)

Use of nanofluids and molten salt in
CSP: Abid et al. (2016) [103]

The studied nanofluids presented higher energetic
and exergetic efficiencies comparing to the studied
molten salts; parabolic-dish and parabolic-trough
collectors were utilized

The overall performance of a parabolic-dish solar
collector was found to be higher with the adoption
of nanofluids as solar absorbers

CSP constraints in terms of the
materials: Pihl et al. (2012) [104]

Almeria, Spain; California,
USA

In general, most of the materials required for CSP
are common; however, certain CSP material needs
become considerable in comparison to the global
production; the requirements for nitrate salts,
silver and steel alloys in particular would be
considerable if CSP becomes a major global
electricity supply

Two CSP case studies were examined based on: 1)
parabolic-trough (Plataforma solar de Almería), 2)
solar tower (Sierra SunTower, California)

Soiling and atmospheric aerosol
loads

Soiling of CSP solar reflectors:
Bouaddi et al. (2015) [105]

Southwest Morocco The accumulation of the dust particles on the solar
reflectors of CSP plants, reduces the reflectance

Soiling causes optical losses to the solar field of a
CSP plant

The impact of atmospheric aerosol
loads on CSP production in arid/
desert places: Polo and Estalayo
(2015) [106]

Spain The accurate quantification of the direct normal
irradiance is important for CSP design

One source of uncertainty for satellite-derived
direct normal irradiance is the accuracy in terms of
the quantification of the aerosol optical depth

Combination of CSP with other
systems

Combination of CSP with
desalination: Palenzuela et al.
(2015) [107], Ortega-Delgado et al.
(2016) [108]

Mediterranean Sea and the
Arabian Gulf [107]; Almeria,
Spain [108]

The best coupling was found to be "reverse osmosis
unit connected to the local grid" (this option
presented the lower levelized water cost [108])

Although the low-temperature multi-effect
distillation with thermo-compression was not so
favorable for the Mediterranean, the differences
with the CSP with reverse osmosis were not too big
(for some cases even negligible) [107]

Combination of wind turbines, CSP,
hydroelectricity and wave power:
García-Olivares et al. (2012) [109]

Subtropical regions A global alternative mix to fossil fuels was
examined, based on renewable energy technologies
that do not use scarce materials

Overall, the proposed alternative to fossil fuels
seems feasible from technical point of view

Hybrid PV-CSP plants: Parrado et al.
(2016) [110]

Atacama Desert, Chile PV-CSP plants are a feasible solution for a
continuous delivery of sustainable electricity in
northern Chile

PV-CSP plants can have a positive effect on the
stabilization of the electricity price and they can
also reduce the carbon footprint of Chile

(continued on next page)
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4) In terms of the adopted methods/environmental indicators, cer-
tainly CO2.eq emissions, embodied energy and EPBT can provide
useful information for CPV, CSP (and, in general for concentrating
solar systems); however, there is a need for use of additional
methods which can also provide useful information (e.g. LCIA
methods which combine midpoint with endpoint approach such as
ReCiPe and IMPACT 2002+).

6. Conclusions

The present article is a critical literature review about studies which
are based on LCA and about studies which include environmental
issues about concentrating solar systems. The references are presented
according to certain criteria (type of the system (CSP, CPV, CPVT),
etc.). Additional issues related to the environmental profile of concen-
trating solar systems are also presented.

Based on the literature review about high-concentration PV it can
be mentioned that most of the investigations have been conducted
between the years 2010–2015, they examine CO2.eq emissions, embo-
died energy and EPBT. In terms of the impact of these systems, for
most of the cases high-concentrating CPV systems present CO2.eq

emissions less than 50 g/kWh and EPBTs less than 1 year.
According to the literature review about low-concentration PV, it

can be noted that most of the studies have been presented between the
years 2011–2016 and they are based on different methods/environ-
mental indicators (ReCiPe, EI99, embodied energy, EPBT, CO2.eq

emissions, GPBT, etc).
Moreover, the results demonstrate that CPV environmental profile

depends on several factors such as the direct solar radiation, the
materials of the concentrator (PMMA, SOG, etc.) and the materials of
the PV cells.

On the other hand, the literature review about CSP shows that most
of the references are about parabolic-trough and solar tower technol-
ogies and they have been conducted between the years 2011–2016. In
terms of the studied issues, most of the cases examine CO2.eq emis-
sions; however, there are several studies which are based on embodied
energy, EPBT and LCIA methods with midpoint and/or endpoint
approaches and economic issues. For most of the investigations CSP
plants present CO2.eq emissions less than 40 g/kWh and EPBTs around
1 year.

There are different factors which influence CSP environmental
profile, including cooling and water use, materials (for storage, for
the concentrating devices, etc.), soiling, land use, lifespan of system
components, operation and maintenance needs, location, etc.

By considering the literature review presented it can be noted that:

1) With respect to CPV, there is a need for more studies which
examine different CRs, CPVT systems for production of both
electricity and thermal energy, low-concentration CPV, strategies
to reduce the impact (e.g. by recycling) of certain components such
as the tracking (especially for the large-scale installations) and the
concentrators.

2) Regarding CSP, there is a need for more investigations about dish-
Stirling systems, the effect of the storage materials on the environ-
mental profile of the whole CSP plant, strategies for water savings in
CSP cooling system, the effect of soiling on CSP performance (from
energetic and from environmental point of view).

3) In general, within the field of concentrating solar systems, there is a
need for more studies with Fresnel lenses and reflectors, for small-
scale systems for buildings (e.g. BI) and for multiple final applica-
tions (desalination, drying, etc.).

4) Concerning the adopted methods/environmental indicators, cer-
tainly CO2.eq emissions, embodied energy and EPBT can provide
useful information for concentrating solar systems; nevertheless,
there is a need for adoption of additional methods which can also
offer useful information (e.g. LCIA methods which include midpoint
and endpoint approaches such as ReCiPe and IMPACT 2002+).

Conclusively, the present review article provides an overview within
the field of LCA/environmental investigations about concentrating
solar systems, identifying gaps of the literature and critical issues
related with the environmental profile of several concentrating solar
technologies.
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