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A B S T R A C T

Uncertainty analysis in building energy assessment has become an active research field because a number of
factors influencing energy use in buildings are inherently uncertain. This paper provides a systematic review on
the latest research progress of uncertainty analysis in building energy assessment from four perspectives: un-
certainty data sources, forward and inverse methods, application of uncertainty analysis, and available software.
First, this paper describes the data sources of uncertainty in building performance analysis to provide a firm
foundation for specifying variations of uncertainty factors affecting building energy. The next two sections focus
on the forward and inverse methods. Forward uncertainty analysis propagates input uncertainty through
building energy models to obtain variations of energy use, whereas inverse uncertainty analysis infers unknown
input factors through building energy models based on energy data and prior information. For forward analysis,
three types of approaches (Monte Carlo, non-sampling, and non-probabilistic) are discussed to provide sufficient
choices of uncertainty methods depending on the purpose and specific application of a building project. For
inverse analysis, recent research has concentrated more on Bayesian computation because Bayesian inverse
methods can make full use of prior information on unknown variables. Fourth, several applications of un-
certainty analysis in building energy assessment are discussed, including building stock analysis, HVAC system
sizing, variations of sensitivity indicators, and optimization under uncertainty. Moreover, the software for un-
certainty analysis is described to provide flexible computational environments for implementing uncertainty
methods described in this review. This paper concludes with the trends and recommendations for further re-
search to provide more convenient and robust uncertainty analysis of building energy. Uncertainty analysis has
been ready to become the mainstream approach in building energy assessment although a number of issues still
need to be addressed.

1. Introduction

Uncertainty analysis has received increasing attention in the field of
building energy analysis [1–4] because a number of variables that

influence building thermal performance are inherently uncertain, such
as occupant behaviour, thermal properties of building envelope, and
weather conditions [5,6]. Moreover, the development of modern un-
certainty quantification techniques provides more advanced methods
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and tools to facilitate the research on uncertainty analysis for a better
understanding of the nature of building energy and associated energy
models [7,8]. Therefore, uncertainty analysis has been widely im-
plemented in various areas of building energy analysis, including model
calibration [1,9], life cycle analysis [10–12], building stock analysis
[13,14], impact & adaptation to climate change [15,16], sensitivity
analysis [17,18], spatial analysis [19,20], and optimization [21,22].

Uncertainty analysis in building energy assessment can be divided
into two categories as shown in Fig. 1: forward and inverse uncertainty
quantification [23–25]. Forward uncertainty analysis (also called un-
certainty propagation) focuses on quantifying the uncertainty in the
system outputs propagated from uncertain input variables through
mathematical models, while the purpose of inverse uncertainty analysis
(also called model calibration) determines unknown variables through
mathematical models from measurement data. From the perspective of
building energy analysis, forward uncertainty quantification can pre-
dict energy use or carbon emissions using building energy models with
input variations, whereas inverse uncertainty quantification can quan-
tify unknown input variations through building energy models after
collecting energy data from buildings. To date, considerably more re-
search has been carried out on forward uncertainty propagation than on
inverse uncertainty quantification in the field of building energy ana-
lysis. This is not surprising, as inverse uncertainty quantification is
significantly more difficult than forward uncertainty propagation.
Nevertheless, forward and inverse uncertainty analyses are closely
linked [8]. Efficient forward uncertainty propagation is necessary for
inverse uncertainty analysis because sampling-based inverse un-
certainty analysis usually involves a large number of simulation runs
[1]. The results from inverse uncertainty analysis are often used for
forward uncertainty propagation to predict building energy use from
various energy saving strategies [9,26].

A distinction is often made between two types of uncertainty:
aleatory uncertainty and epistemic uncertainty [27,28]. Aleatory un-
certainty (also called variability, stochastic, irreducible, and type A
uncertainty) is due to inherent or natural variation of the system under
investigation. In contrast, epistemic uncertainty (also called state of
knowledge, subjective, reducible, and type B uncertainty) arises from a
lack of knowledge. In building energy analysis, an example of aleatory
uncertainty is occupancy presence, which can be better characterized
from additional experiments or observation, but not be reduced as it is
fundamentally impossible to predict variations of occupancy patterns
for the future. Examples of epistemic uncertainty include lighting and
appliance power densities, which can be better quantified by collecting
more information to reduce its uncertainty, such as by installing mea-
surement equipment for lighting and appliances. Note that not all of
these uncertainties can be represented as specific probability functions
(such as normal distribution, Gamma distribution, and uniform dis-
tribution). Aleatory uncertainty is naturally treated in a probabilistic
framework, whereas epistemic uncertainty may be specified in a
probabilistic or non-probabilistic way, including second order prob-
ability, interval, evidence theory, and fuzzy sets [28].

Researchers in the field of building energy simulation have pro-
posed several classifications of uncertainty to represent the different
characteristics of uncertainty in building energy analysis [3,22,29,30].
Uncertainty can be divided into model form uncertainty and parameter
uncertainty [31,32]. Model form uncertainty (also called model dis-
crepancy) refers to underlying the missing physics, numerical approx-
imation, and other issues of computer programs [7,29], whereas para-
meter uncertainty refers to uncertainty associated with the values of
parameter that appear in building energy simulation models. Uncertain
parameters in building energy analysis can be further divided into three
categories: design parameters, inherent uncertain parameters, and
scenario parameters [3,22,30,33–35]. Uncertainty in design parameters
exists in the design process where design parameters are determined
through a series of design stages. For example, while the exact insula-
tion materials or window types are not known in the early design stage,
they will become known during the detailed design stage. Inherent
uncertain parameters are usually uncontrollable, such as occupant be-
haviour, or the deviations between rated and actual plant system effi-
ciencies. Scenario parameters refer to potentially varying economic or
climatic conditions. Inherent uncertain parameters are usually denoted
by normal distributions, whereas design uncertainty can be expressed
by continuous or discrete uniform distributions [36]. Ramallo-González
et al. [22] subdivided inherent uncertain parameters into workmanship
& quality of building elements and occupant behaviour. Note that fewer
studies have been carried out on model form uncertainty than on
parameter uncertainty in the area of building energy analysis [37].

Although a large number of studies have been conducted on un-
certainty analysis of building energy analysis, a comprehensive up-to-
date review on uncertainty analysis in the area of building energy as-
sessment is still unavailable. Therefore, this paper aims to provide a
detailed systematic overview of uncertainty analysis in building energy
assessment from four aspects: uncertainty data sources, both forward
and inverse uncertainty methods, application of uncertainty analysis,
and available software for uncertainty analysis. Because reliable un-
certainty data are the foundation for uncertainty analysis in building
energy analysis, it is necessary to gain a good understanding of the
latest research development of data sources relevant to building per-
formance as will be described in Section 3. Forward and inverse ana-
lysis (as will be described in Section 4 and Section 5, respectively) are
the two main methods applied in the field of building performance
assessment. The forward uncertainty analysis will discuss the Monte
Carlo sampling-based, non-sampling, and non-probabilistic approaches
to help an analyst choose the appropriate method. Inverse uncertainty
analysis will be described from the perspectives of both the frequentist
and Bayesian methods to provide a full picture of modern statistics to
deal with the calibration problems of building energy models. Four
applications on uncertainty analysis in building energy performance
will be described in Section 6, including building stock analysis, HVAC
system sizing, variations of indicators of sensitivity analysis, and opti-
mization under uncertainty. The software available for uncertainty
analysis will be presented in Section 7 to provide the computation en-
vironment for implementing the uncertainty methods described in this
paper. Moreover, the trends and recommendations for further research
will be summarized in the final section to provide more convenient and
robust uncertainty analysis in assessing building energy performance. It
should be emphasized that uncertainty analysis is not yet regarded as
standard practice in assessing building performance in industry al-
though the traditional deterministic approach is considered to be un-
acceptable due to the lack of sufficient information obtained from one
single simulation run [38,39]. This review will also help to promote
uncertainty analysis as a mainstream method in the area of building
performance assessment.

2. Methodology

This literature review follows the concept-centric principle

Fig. 1. Forward and inverse uncertainty analysis in building performance
analysis.
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proposed by Webster and Watson [40] and also incorporates the
strengths of reviews published in the field of building energy analysis
[41–43]. The research methodology is composed of three steps as fol-
lows.

(1) Search and Screen relevant research papers. A keyword search was
conducted using Google Scholar and Scopus database since these
databases can cover broad publications in the field of building en-
ergy analysis. All the journal or conference papers should meet the
following criteria: papers written in English; peer-reviewed pub-
lications; relevant to the topics as described in the last paragraph of
“Introduction” section; more focused on recent research findings.
The online publications from the IBPSA (International Building
Performance Simulation Association) with a larger number of in-
ternational and regional conference papers are also used to select
papers relevant to this overview since this online database includes
the latest and important findings in the field of building energy
analysis.

(2) Review all relevant publications. All the papers selected in the first
step will be reviewed carefully by the authors from four aspects:
uncertainty data sources, forward & inverse uncertainty ap-
proaches, application of uncertainty analysis, and available soft-
ware in this field.

(3) Identify gaps and future research directions. After carefully ana-
lysing relevant papers, research trends and gaps are identified in
uncertainty analysis of building energy performance. Moreover,
future research directions are also determined to make uncertainty
analysis become a main-stream method in building energy assess-
ment.

3. Sources of uncertainty in building performance analysis

In this section, four types of uncertainty are summarized, as listed in
Table 1: weather data, building envelope, HVAC system, and occupant
behaviour. In the area of uncertainty analysis of building energy, two
initial studies on quantifying uncertainty parameters are performed by
Macdonald [44] and de Wit [45]. Macdonald [44] quantified three
types of input parameters based on an extensive literature review:
thermo-physical properties, casual gains, and infiltration rates. In ad-
dition to these parameters, de Wit [45] quantified uncertain parameters
with little measurement data available, including wind pressure coef-
ficients and indoor air temperature distributions. Recently, Sun [32]
provided more information on uncertainty of ground albedo, con-
vective heat transfer coefficients, and lighting/plug loads. In Wang's
thesis [31], more attention is concentrated on infiltration, workman-
ship issues related to thermal bridges, occupancy variables, and HVAC

system uncertainty. These recent works are included in a full repository
of quantified sources of uncertainty as part of the Georgia Tech Un-
certainty and Risk Analysis-Workbench (GURA-W) developed by the
Georgia Institute of Technology [37], which will be described in Section
4.1.3. De Wit [45], Heo [46], and Struck [47] provide more general
descriptions of uncertain parameters.

3.1. Weather data

Due to changeable nature of weather, weather data is highly un-
certain, causing variation of energy use in buildings. In building energy
simulation, a typical meteorological year chosen from actual weather
data over several decades is usually applied using the
Finkelstein–Schafer method [16,48]. Currently, increasing concern is
being shown that a single weather data file (typically containing 8760
hourly values) cannot contain reliable and sufficient information on
plausible weather conditions and their likelihoods in assessing building
energy performance [49,50]. Simulated energy consumption using ty-
pical weather data does not necessarily represent the average energy
use based on the weather data of actual historical meteorological years.
Moreover, building performance is affected by future climate, not by
historical weather conditions. Most weather data derived from histor-
ical data do not represent the likely long-term weather conditions to
which buildings will be exposed in the future. These two aspects (his-
torical and future weather data) are discussed in the following sub-
sections.

3.1.1. Historical weather data
Two methods are used to determine variations of historical weather

data in building energy analysis (as an alternative to using only one
typical weather data file). In the first method, several weather files are
used, such as the typical year file, cold weather data, and hot weather
data, to sufficiently include the possible variations in the weather
conditions with the minimal weather dataset. Rodríguez et al. [51] used
three weather files to represent the uncertainty of weather data for the
extreme cold, medium, and extreme hot years. Breesch and Janssens
[52] applied two weather files to consider the effects of warming
summer conditions, including normal and warm temperatures.

In the second method, all the recent weather data are used to re-
present long-term weather uncertainty according to the frequency of
occurrence [53,54]. Hong et al. [49] assessed the weather impact on
building energy performance using 30-year (1980–2009) historical
weather data. They implemented a total of 3162 simulation runs by
considering three types of office buildings with two design efficiency
levels in all 17 ASHRAE climate zones. They found that the typical
meteorological year (TMY3) weather file was not able to represent the

Table 1
Sources of uncertainty in building energy analysis.

Types Sub-types Parameters References

Weather History – [50–55,58,59]
Future – [2,16,60–62,64]

Building envelope Thermal properties Thermal conductivity [3,33,44,52,56,59,66,67,119,123]
Density [3,33,44,52,56,59,119]
Specific heat capacity [3,33,44,52,56,59,119]
Window U value [35,116]
SHGC [52,116]

Surface properties Absorption (absorptivity) [33,44,52,56,116]
Emissivity [33,44]
Reflectance [33,56,58,116]

Others Internal convective heat transfer coefficient [35,52,56,116]
External coefficient [32,35,56,59,116]
Infiltration (air tightness) [3,35,44,52,59,116]
Thickness [3,5,33,52,119,123]

HVAC system – – [2,51,52,55,77,79,81]
Occupant behaviour Implicit – [3,33,44,52,59,84,94,96,116]

Explicit – [97–100]
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average energy performance predicted by an actual 30-year weather
dataset. Wang et al. [55] used the weather files of 10–15 years to assess
the variations of energy use in an office building, and found that the
energy variations ranged from − 4.0 to 6.1% according to the weather
file, compared with the energy prediction using the TMY data. Four
USA cities were used as locations to represent variations of climate
types: Washington DC, Chicago, Atlanta, and San Francisco. Sun et al.
[56] used 32 weather datasets (1982–2013) to investigate the effect of
weather uncertainties on sizing HVAC system under different climate
zones. As an alternative to directly using the historical weather data,
Lee et al. [57] developed a stochastic model based on a Vector Auto-
Regressive process in which a number of varying weather conditions
are generated based on a historical weather dataset.

Most weather data are measured at a nearby meteorological station,
which cannot represent actual microclimate conditions around a
building. Hence, meteorological weather data need to be modified to
reflect the impact of nearby vegetation, neighbouring buildings, and
mesoscale flow characteristics. Sun et al. [58] built statistical models to
quantify the uncertainty of four microclimate variables: local wind
speed, local temperature, wind pressure and solar irradiation.

Uncertainty in the weather data has been handled in different ways
depending on the types of design applications and modelling methods.
For designing mechanical systems, Huang et al. [35] implemented
normal distribution to quantify uncertainty in both ambient tempera-
ture and relative humidity values selected as the design weather con-
ditions for calculating peak cooling loads. By using a quasi-steady-state
calculation method for building energy rating, Corrado and Mechri [59]
used a bivariate normal distribution to quantify uncertainty in both
monthly average temperatures and global horizontal solar radiations,
since these two weather variables are highly correlated.

3.1.2. Future weather data
A large number of studies have been conducted on assessing the

impact and adaptation to climate change in buildings [15,16,60–62].
Climate projections from global circulation models usually have larger
spatial and temporal resolutions (typical 300 km × 300 km and 24 h)
than the local hourly data required for dynamic building energy si-
mulation [63]. Therefore, these weather projections need to be down-
scaled using suitable methods, including dynamical downscaling, sto-
chastic weather generation, interpolation, and morphing approach. The
morphing approach widely used in building energy analysis is to shift
and stretch weather variables from the current weather time series in
order to create new future weather data by encapsulating information
about the future climate [16,64]. The advantages of this method are
that the future weather sequences are meteorologically consistent with
the best climate projection.

A major step towards quantifying the uncertainty of future climate
is the UK Climate Projections (UKCP09) released in 2009 [65]. UKCP09
deals with three types of uncertainty: complexity of climate system,
natural climate variability, variations of future pathway of greenhouse
gas and aerosol emissions. For the uncertainty of greenhouse gas
emissions, the UKCP09 applies three scenarios: low, medium, and high
[65]. For each scenario, the UKCP09 provides weather projections in a
probabilistic manner by accounting for the complexity and natural
variability of the climate system for a range of possible outcomes,
which makes risk-based analysis easier in decision making process.
Since a large number of hourly weather files can be generated from
UKCP09, further developments have concentrated on finding ways to
efficiently implement the UKCP09 in building energy analysis [61,62].

3.2. Building envelope

The parameters related to building envelope have been categorized
into three types: thermal properties, surface properties, and other
parameters. Compared to occupant behaviour and HVAC systems in
buildings, there has been more data available on the uncertainty of

building envelope.

3.2.1. Thermal properties
An early extensive document on the thermal properties of building

materials was compiled by Clarke et al. [66]. Their report reviewed the
available data and described the variations of thermal property values
in these data. Based on these data, Macdonald [44] derived more de-
tailed uncertainty data of thermal properties, which can be easily ap-
plied to uncertainty analysis. Detailed information on the uncertainty
ranges of the thermal properties of building materials was presented in
Macdonald's studies [44], including conductivity, density, and specific
heat capacity. These data have been widely used in the uncertainty
analysis of building energy use [35,52,59]. Note that the uncertainty
ranges of thermal properties are due to both measurement errors and
environmental conditions, such as moisture, temperature, and age. For
example, moisture conditions have simultaneous effects on density,
thermal conductivity, and heat capacity. Dominguez-Munoz et al. [67]
provided more specific information on the thermal conductivity of in-
sulation materials using several hundred measurements of conductivity
from seven European national laboratories.

3.2.2. Surface properties
The surface properties of building envelope affect building energy

performance by absorbing or reflecting solar energy and emitting
thermal energy. Macdonald [44] summarized the mean and standard
deviation of emissivity and absorptivity values for different building
materials based on the work by Clarke et al. [66]. The emissivity of
materials often used in building construction is around 0.9–0.95 [68]
and the corresponding standard deviation is 0.02 [44]. A typical
emissivity value for highly polished materials (such as aluminium foil)
is 0.05 [68] and its standard deviation is 0.01 [44]. For the solar ab-
sorptivity of bricks, the average values are 0.49 and 0.76 for light and
dark bricks, respectively, and their standard deviation is 0.04 [44].

Ground reflectance (also called ground reflectivity or albedo) is an
often overlooked parameter in building energy analysis [69], and can
differ depending on surface properties, cloud cover, snow conditions,
and other factors. Based on Thevenard et al. [69], Silva and Ghisi [33]
used a triangular distribution with a range from 0.13 to 0.26 for the
reflectance of ground surface. Sun et al. [58] obtained a non-normal
distribution of ground reflectance derived from various available data
sources using the Monte Carlo method. In their research, the distribu-
tion of ground reflectance from their research is clustered at about 0.25
and ranges from 0.05 to 0.45 in the case of no snow for city terrain. In
the presence of snow, the ground reflectance increases significantly,
ranging from approximately 0.75 to 0.95 for fresh snow cover [58,69].

3.2.3. Other parameters
This section focuses on infiltration rate, thermal bridges, convective

heat transfer coefficient, and thickness of building materials.
Infiltration rate (closely related to air tightness) is a function of age,

construction quality, building use, and weather conditions [9,44]. In-
filtration rate is one of the most uncertain parameters since it is difficult
to measure in buildings. Moreover, in previous studies, the infiltration
rate has been ranked as one of the key variables influencing building
energy use based on sensitivity analyses [9,70]. Most papers have
quantified uncertainty in the infiltration rate on the basis of a collection
of measurement data available from existing buildings [9,66,71,72].
Emmerich et al. [73] summarized an extensive dataset of existing fan
pressurized tests, most of which were sourced from the work by Persily
[74]. Li et al. [75] studied the natural ventilation and infiltration rate in
the dormitory and analysed the uncertainty.

Unwanted heat transfer occurs through thermal bridges in a
building at connections between envelope components such as wall/
window and wall/floor connections. The severity of this thermal bridge
effects depends on construction details and the quality of construction
workmanship [76]. Moon [76] quantified the effect of construction

W. Tian et al. Renewable and Sustainable Energy Reviews 93 (2018) 285–301

288



details on the temperature factor based on simulation results of three
case studies. He also quantified the effect of poor workmanship on the
temperature factor by comparing simulation results with measure-
ments. This approach was adopted in the Moon's paper [71] to in-
vestigate the effect of varying quality of thermal bridge workmanship
and infiltration rates on the building energy demand.

Internal and external convective heat transfer coefficients have been
studied extensively in the field of building energy assessment [26,32].
In these studies, external convective heat transfer coefficients are often
expressed as a function of local wind speed and surface properties (e.g.,
roughness). However, a few studies have been carried out on quanti-
fying the uncertainty of convective heat transfer coefficients in build-
ings. Sun [32] summaries correlation relationships between two em-
pirical coefficients derived in the previous studies for the calculation of
external heat transfer coefficients, using a bivariate normal distribution,
since these two coefficients are found to be correlated. Huang et al. [35]
used a normal distribution and a triangular distribution for an internal
and external convection heat transfer rate, respectively.

Uncertainty in the thickness of building materials is caused by the
differences between design specifications and construction outcomes.
Silva and Ghisi [33] assumed that the material thickness parameter
follows a normal distribution with a standard deviation of 10% of its
mean value. The same uncertainty range is also used for material
thickness parameters in the research by Hopfe and Hensen [3].

3.3. HVAC system

Compared to other types of uncertainty in buildings, few studies
have been conducted on the uncertainty related to HVAC systems
[55,77]. Building energy analysis usually assumes that HVAC systems
operate in ideal conditions. In reality, however, the performance of
HVAC systems is affected by a number of factors, such as oversizing,
ageing, maintenance, usual wear and tear.

Typically simulation studies have considered only uncertainty in
mechanical system efficiencies, quantified as the form of a probability
distribution [9,51]. Beyond the system efficiencies, Wang et al. [55]
explored the uncertainty of energy use as the result of different levels of
building operation strategies that include lighting control, plug-in
equipment control, HVAC operation schedule, variable-air-volume box
minimum-flow, economizer setting, night setback, supply air tempera-
ture control, and temperature setting for non-occupied hours. The re-
sults suggest the uncertainty in the annual energy use ranges from
− 28.7 to 79.2% due to the parametric variations associated with
building operation strategies. Yan et al. [78] quantified uncertainty
associated with actual system operation, specifically the outdoor air-
flow control parameter, with the application of HVACSIM+ simula-
tions and measured flow rates.

Another relevant topic is the longitudinal performance of HVAC
systems as the result of system deterioration over time. The National
Renewable Energy Laboratory (NREL) report [79] provides typical
degradation rates depending on the maintenance level and system type;
the degradation rate for boilers and constant/variable volume fans is
0.2% per year with good maintenance and 0.5% per year without
maintenance. For central chillers and heat pumps, the degradation rate
is 0.1% with maintenance and 1% per year without maintenance. In
order to account for uncertainty associated with the degradation rate,
de Wilde et al. [80] proposed a stochastic process model with a gamma
distribution in order to model system deterioration over time. Huang
et al. [81] proposed a method using a Bayesian Markov Chain Monte
Carlo (MCMC) method to estimate the degradation effect of chiller
systems. They demonstrated through a case study that the proposed
method provides accurate predictions with associated uncertainty le-
vels to evaluate the reliability of chillers in future years.

3.4. Occupant behaviour

The relationship between the occupant behaviour and thermal
performance of buildings has recently become a very active research
area [82–87]. Occupant behaviour is regarded as a major uncertainty
source that can account for up to 30% of variation in building energy
performance [88]. Studies have shown that occupant behaviour leads to
the uncertainty in energy consumption even within the same building
[89,90]. Previous researchers have studied various aspects of occupant
behaviour in building, including occupant monitoring, ontology of oc-
cupant behaviour, behaviour model development & evaluation, and
model implementation [83,91,92].

Most current building energy simulation programs treat the vari-
ables associated with occupant behaviour as deterministic by allowing
users to specify fixed temporal schedules for occupancy-related vari-
ables, such as occupants, lighting use, plug loads, and cooling/heating
set-points. Such schedules are easy to implement, but do not represent
the complex stochastic nature of human behaviour or its interaction
with the indoor environment in buildings. New approaches have been
developed to adequately present the variations of occupant behaviour,
and these methods can be categorized into two types: implicit and ex-
plicit [82,93]. The implicit models focus on predicting occupant control
actions associated with building systems (e.g. windows, lights, equip-
ment) rather than understanding underlying logics behind occupant
behaviour. In contrast, the explicit models directly represent beha-
vioural logics to determine the state of the occupant and his/her control
actions accordingly.

Implicit occupant models are widely used in the field of building
energy analysis because they are a natural extension of the schedule-
based approach currently used in building simulation programs
[44,70]. Moreover, occupant presence may not be the best proxy for
predicting internal loads (e.g., lighting and plug-in equipment) [94].
Corrado and Mechri [59] used a triangular distribution for the total
number of occupants and a normal distribution for occupant metabolic
rates. Ward et al. [94] compared the different models of internal loads,
including Menezes [95], DEmand LOad REconStructor (DELORES)
[96], Sun [32], and Auto-Regressive Integrated Moving Average
(ARIMA). Breesch and Janssens [52] implemented three scenarios (low,
medium, and high) to represent the variations of internal heat gains.

Explicit models for occupants can directly determine the state of
occupant behaviour in a building. This type of models include Markov
chain [97], agent approach [98], Bernoulli process [99], and random
walk [100,101]. The Markov chain method is based on conditional
probabilities derived from measurement data that yield stochastic
predictions [97]. In contrast, the agent approach focuses on modelling
the underlying complicated rules such as the interactions of occupants’
perception, intention, etc. Bernoulli processes may be the most sim-
plistic of stochastic models as it treats the probability of an event as
being independent on the previous state. A random walk is a sequence
of random variables obtained by adding a white noise to a time series
data to simulate occupant behaviour in an unpredictable way [100].
According to [101], the occupancy pattern can significantly vary de-
pending on the building type (process driven buildings such as offices,
factories, residences vs. random walk buildings such as university labs,
libraries), building environmental control (central autonomous HVAC
vs. individual control), and many other unknowns. More research is
needed in this area to better understand occupant behaviour and find
appropriate ways to simulate these behaviour and associated un-
certainty in building energy analysis.

4. Forward uncertainty quantification in building performance
analysis

Uncertainty propagation can be divided into probabilistic and non-
probabilistic methods [102]. Probabilistic uncertainty approaches are
based on rigorous probability theory under the availability of sufficient
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data, whereas non-probabilistic approaches are developed to cope with
a lack of information or data. Probabilistic uncertainty propagation can
be further categorized into sampling-based and non-sampling ap-
proaches [103]. Sampling-based methods belong to external methods
(also called non-intrusive), which treats an original deterministic model
as a black-box model by running this deterministic model with different
samples many times. In contrast, non-sampling methods include per-
turbation methods, moment equations, spectral representations (sto-
chastic Galerkin and collocation) methods, and classical stochastic
differential equations [103–105]. The advantage of internal (non-
sampling) methods is their ability to provide high accuracy and high
efficiency results, while this method requires extensively modifying the
existing computational system code for uncertainty propagation [106].
The advantage of external uncertainty propagation is the ability to
maintain a well-validated model code at a high computation cost.

Sections 4.1 and 4.2 discuss the Monte Carlo simulation method and
its variations, respectively. Sections 4.3 and 4.4 presents non-sampling
and non-probabilistic uncertainty propagation methods, respectively.
The relevant references for both forward and inverse uncertainty ana-
lysis in building energy analysis are summarized in Table 2.

4.1. Monte Carlo sampling-based simulation

Monte Carlo-based simulation is the most widely used uncertainty
propagation method in the area of building energy assessment
[107–109]. This is because this method is very intuitive and easy to
implement compared to other uncertainty propagation approaches
(such as full factorial numerical integration, stochastic Galerkin, and
discrete projection). Moreover, the sampling-based method is usually
regarded as the most reliable uncertainty technique since it can be
applied to most simulation environments and deal with different types
of probability functions of input variables, even for correlated variables
[104,110]. The main disadvantage of this method is the slow con-
vergence rate with a large number of function evaluations, which incurs
a high computational cost. The high computational cost because of
using the Monte Carlo uncertainty simulation can be reduced in three
ways. First, more efficient sampling methods can be used, such as Latin
hypercube sampling or Sobol sequence, which is discussed in Section
4.1.2. Second, surrogate models can be applied instead of original ex-
pensive engineering mathematical models in propagating uncertainty
as is described in Section 4.2.3. Third, more recent uncertainty quan-
tification methods can be employed, such as stochastic polynomial
chaos expansion, stochastic collocation. These new numerical methods
are briefly described in Section 4.3. For detailed description of these
new methods, please refer to [8,110].

The procedure for quantifying uncertainty in building performance
using the typical Monte Carlo simulation method is illustrated in Fig. 2.
The first step involves specifying probability distributions of uncertain
input variables. The second step is to generate samples for input vari-
ables using sampling methods. The third step involves running math-
ematical system models to obtain matrixes corresponding to input
samples for output variables. The final step is to present uncertainty
results of output variables. A further optional step can be used in which
sensitivity analysis is conducted to determine the key factors for

explaining the distributions of building thermal performance. These
steps are described in detail in the following subsections.

4.1.1. Specify distributions of input variables
The first step in quantifying uncertainty in building performance

using the typical Monte Carlo simulation method involves specifying
the probabilistic distributions for all uncertain variables. This step is
both the most important and the most difficult aspect of the uncertainty
analysis of building energy performance. Section 3 provides a summary
of the quantification of uncertainty distributions for input parameters.
In the field of building energy analysis, the Gaussian distribution is the
most widely used distribution for inherent parametric uncertainty
[2,6,35,36,45]. Gaussian distributions need to be truncated where ne-
cessary to avoid unfeasible values (for instance, a negative value or zero
for thermal resistance). In contrast, uniform distribution is commonly
used in presenting the possible change of various building design
strategies [111–114].

In the case of a large number of input variables, performing sensi-
tivity analysis prior to implementing uncertainty analysis can sig-
nificantly reduce computational cost by selecting key factors influen-
cing building energy performance. Spitz et al. [85] selected the ten
most influential parameters from 139 parameters with respect to their
effect on the air temperature. Kim [115] selected the first five important
factors using the Standardized Rank Regression Coefficients (SRRC)
method to construct regression models for forward uncertainty analysis.
Dominguez-Munoz et al. [116] used the standardized regression coef-
ficient (SRC) to determine the key factors affecting peak cooling loads.
Tian and Choudhary [12] implemented SRC and multivariate adaptive
regression splines (MARS) to identify four important variables for the
energy performance of schools located in London.

4.1.2. Sampling methods
Several methods have been used in building energy analysis (in-

cluding random sampling, Latin hypercube sampling, and Sobol se-
quence) to obtain the combinations of input variable values from
probability density functions.

The random sampling method (also called traditional Monte Carlo)
selects random samples from user-specified probability distributions
[117–119]. Compared to other sampling methods, this method requires
a large number of samples for convergence although it yields unbiased
estimates of the mean and variance of outputs [120]. Asadi et al. [121]
implemented the Monte Carlo sampling method to generate 70,000
energy models with different input samples in order to analyse the ef-
fects of building shape on energy performance. Lu et al. [122] applied
the random sampling method to estimate variations of electricity and
gas consumption in Ma’anshan city of China using the Crystal ball
software.

Latin hyper-cube sampling (LHS) is the most widely used sampling
method in the field of building energy analysis as it can produce con-
verged results with a considerably reduced number of samples
[3,51,52,58,59,107,111,116,123]. LHS is a stratified sampling method
that divides the range of every input variable into N segments (the
specific sample size) with equal probability. The recommended length
of the segments is dependent on the specified probability distribution

Table 2
Literature on forward and inverse uncertainty analysis in building performance assessment.

Method Sub-types Literature

Forward Probabilistic Sampling-based 1D Monte Carlo [3,35,51,52,59,111,121–123,128,138]
2D Monte Carlo [70,142]
Incremental sampling [143]

Non-sampling – [150–154]
Non-probabilistic – – [156–158]

Inverse Frequentist – – [60,121,161–165]
Bayesian – – [1,9,171,173,176,183,198]
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shapes of input variables. One value is then randomly selected from
each segment until all segments have one sample. An important feature
in the LHS method is that every hypercube partitioned by segments
associated with input variables has the same number of samples. Con-
sequently, the LHS method usually requires a smaller sample size than
the random sampling method for the same statistical accuracy. Hence,
the LHS method is more suitable for computationally expensive models
that include many uncertain variables. The general recommendation for
a LHS sample size is ten times the number of variables in computer
experiments [124]. However, this sample size may be inadequate for
uncertainty analysis when complicated non-linear relationships be-
tween inputs and outputs exist in the building energy model. Further
research is needed to provide clear guidance on the sampling number
suitable for building energy analysis.

The quasi-Monte Carlo sampling method is an efficient space-filling
technique to produce low discrepancy sequences by filling the unit
hypercube with good uniformity of coverage. Several low-discrepancy
sequences exist, including Halton, Sobol, and Faure [125]. Tian et al.
[17] implemented the Sobol sequence for the identification of the key
variables among ten input variables with respect to their effect on the
energy use of an office building. Eisenhower et al. [126] applied the
quasi-random sampling method for uncertainty and sensitivity analysis
of building energy models. A comparison of Latin Hypercube and quasi
Monte Carlo sampling methods was conducted by Kucherenko et al.
[127].

In the case of correlated variables, several methods are available to
maintain the correlation structure among variables, including the
Iman/Conover, dependence-tree copula, and Stein method [36]. The
Stein method has been used to consider the correlations between solar
heat gain coefficients and U-values in generating input samples [128].

4.1.3. Create and run energy models
A large number of simulation runs are usually required in un-

certainty analysis. Hence, it is necessary to automate the generation of
simulation models with different input values, the simulation of
models, and the extraction of the relevant data from simulation results
using computer programming languages or specialized tools.

Several simulation programs have been used in uncertainty analysis

of building energy use, including EnergyPlus
[72,111,113,117,126,127,129,130], ESP-r [6], TRNSYS [52,118], SAP
2009 [131], DOE-2 [112,121], and VA 114 [3]. EnergyPlus is the most
widely used simulation software for the uncertainty analysis of building
energy because the Input Data File (IDF) file required for EnergyPlus is
an ASCII (i.e. text) file, which can be easily edited using computer
languages [132]. The ISO 13,790 monthly method is also used in for-
ward uncertainty analysis of building energy [59] since it is able to
rapidly compute many simulation runs using the simplified model. An
additional module has been added in the ESP-r program to facilitate the
application of Monte-Carlo based uncertainty analysis [44].

General-purpose programming languages can be used to edit
building energy programs to automatically create many building energy
models, including Matlab [3], Python [121], Excel VBA [2,133], and R
environment [134,135]. Tian and de Wilde [2] used the Excel visual
basic application (VBA) to create a large number of EnergyPlus models
to investigate the impact of climate change on building thermal per-
formance. Tian et al. [136] constructed approximately 100,000 En-
ergyPlus models using the R program based on the shape files of geo-
graphical information (GIS) data to study the energy performance of
London Westminster area.

Researchers have developed special programing environments for
the uncertainty analysis of building energy [37,137]. The jEPlus pro-
gram was developed by Zhang Yi [137] to support parametric analysis
for EnergyPlus. This tool was used to draw samples from uncertainty
ranges, create associated EnergyPlus models and simulate the models
for uncertainty analysis of building energy models [51,130]. Recently,
the GURA-W was developed to provide an extensive list of uncertainty
sources, standard uncertainty quantification (UQ) repository, and ad-
vanced statistical methods for uncertainty and sensitivity analysis [37].
A key feature of the GURA-W is the UQ repository that houses the pre-
defined distributions of uncertainty sources, which can be used as prior
density functions for the common modelling practice if no additional
detailed data are available on a building under investigation [138]. The
GURA-W environment has been used to perform uncertainty analyses
for sizing HVAC systems [31] and supporting performance-based con-
tracts [56].

Fig. 2. Flow chart of one-dimensional Monte-Carlo uncertainty method.
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4.1.4. Present uncertainty results
Uncertainty in probabilistic model predictions can be presented as

numerical values or as visual graphs. Numerical indicators are de-
scriptive statistical measures including mean, median, standard devia-
tion, percentile, interquartile range, coefficient of variation, and
quantile. Typical graphical methods include histogram
[3,35,107,116,118], density plot [13,59,107], cumulative distribution
functions [56,116,122,131], and box plots [16,113]. Presently un-
certainty analysis results is more complex if analysis results are multi-
dimensional as a function of time or space. Time-series energy results
are very common in assessing dynamic building energy behaviour. Box
plots are a good method to show the variations of time series energy
data. An example of this application is available in Tian et al. [2] to
show the uncertainty of energy use in four time periods.

4.1.5. Conduct sensitivity analysis
Sensitivity analysis can be applied after presenting the results of

output uncertainty analysis (Fig. 2) in order to explain how input
variables contribute to output variables [139]. While uncertainty and
sensitivity analysis is closely related, they belong to two different dis-
ciplines. Uncertainty analysis is focused on either assessing output
uncertainty derived from input uncertainty (i.e. forward uncertainty) or
obtaining input uncertainty from measurement data (i.e. inverse un-
certainty), whereas sensitivity analysis concentrates on assessing the
contributions of input factors for variations of system outputs. Sensi-
tivity analysis can be divided into local and global sensitivity analysis
[36]. Detailed descriptions on the application of sensitivity analysis in
building performance assessment can be found in [36,134]. Dom-
inguez-Munoz et al. [116] used the SRC to determine the key factors
affecting peak cooling loads. Tian and de Wilde [2] applied the SRC and
Adaptive COmponent Selection and Smoothing Operator (ACOSSO)
sensitivity methods to identify the important variables influencing en-
ergy performance of a campus building located in Plymouth, UK.
Menberg et al. [140] developed an enhanced Morris method that uses
the median value of analysis results instead of the average value for
estimation of parameter importance, and demonstrated that the en-
hanced Morris method provides more robust results with a much re-
duced number of samples.

4.2. Variations of Monte-Carlo methods

This section describes three variations of Monte-Carlo uncertainty
analysis that have been applied in building energy assessment. The first
variation is two-dimensional Monte-Carlo method that allows aleatory
and epistemic uncertainty to be treated differently in uncertainty pro-
pagation. The second variation is an incremental sampling method that
generate several independent sets of Monte Carlo samples in order to
obtain stable uncertainty results for building thermal performance. The
third variation involves replacing time-consuming energy models with
statistical surrogate models based on machine learning methods.

4.2.1. Two dimensional Monte-Carlo methods
Two-dimensional (2-D) Monte Carlo simulation is the most

straightforward approach for propagating aleatory and epistemic un-
certainty in a different manner. This method is also named the second-
order probability, double loop, two-stage, 2-D Monte Carlo, or nested
Monte Carlo method [70,141,142]. The outer loop simulates epistemic
uncertainty, whereas the inner loop represents aleatory uncertainty.
The advantage of using this method is that the uncertainty in model
predictions arising from epistemic and aleatory uncertainty can be
shown separately although its computational cost is usually very high
due to the two-loop sampling. Fig. 3 shows the probabilistic energy
predictions of two example cases using this method. A single cumula-
tive distribution function (CDF) denotes uncertainty in the predictions
due to the aleatory uncertainty of input variables, while the spread of
CDFs represents uncertainty in the predictions due to the epistemic

uncertainty of input factors. In the case shown in Fig. 3a, the aleatory
uncertainty has a more dominate role in model outputs than the epis-
temic uncertainty, and the opposite trend is shown in the case in
Fig. 3b.

De Wilde and Tian [70] implemented the two-dimensional Monte
Carlo approach to assess the impact of climate change on building
thermal performance in a UK office building. In their study, the outer
loop has 30 realizations using the random Monte Carlo sampling
method and the inner loop generates 80 realizations per outer loop
sample using the Latin Hypercube sampling method. Therefore, 2400
building energy models were run for one future climate scenario.

4.2.2. Incremental sampling method
The incremental sampling method is also called the replicate sam-

pling method as it simply generates several independent samples in
order to assess the stability of uncertainty results from the Monte Carlo
sampling-based methods [110,139]. First, an original sample is ob-
tained using the random or LHS method. Then, the second sample is
generated by the same method. The second sample is used to evaluate
the adequacy of the original sample by comparing the probabilistic
predictions from the original and second samples. If the results from the
two samples are sufficiently similar, then the probabilistic predictions
resulting from the samples represent the theoretical probability dis-
tribution. However, if the results from the two samples significantly
differ, more samples are needed to ensure the convergence of prob-
abilistic outcomes. The advantage of using the incremental LHS method
is that it maintains the stratification of each LHS sample, which implies
that several independent samples can be merged to provide more reli-
able uncertainty results. Note that the sizes of the samples can differ.
This flexibility renders this method more useful by starting with a small
sample size (to reduce computational cost) and then increasing the size

Fig. 3. Results from the two-dimensional Monte-Carlo uncertainty method.
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of the next sample. Janssen [143] combined the incremental Latin
hypercube sampling method with the sample-splitting approach to as-
sess the accuracy of Monte Carlo simulations in the probabilistic design
of a natural ventilating house.

4.2.3. Surrogate model-based Monte Carlo method
As discussed in Section 4.1, forward uncertainty propagation re-

quires many simulation runs to obtain reliable results. Hence, it may be
infeasible or computationally challenging to use dynamic engineering-
based models in uncertainty analysis. This has motivated the develop-
ment of surrogate models that capture the main features of high-fidelity
mathematical models while being efficient for both forward and inverse
uncertainty quantification. Surrogate models can be categorized into
two types: data-fit models and reduced-order models [144]. Data-fit
models are based on regression methods to derive the relationships
between inputs and outputs from a set of simulation results from high-
fidelity models. Reduced-order models are generated by projecting
high-dimensional states and parameters onto reduced-dimensional sub-
spaces. Methods commonly used for the construction of reduced-order
models are eigenfunctions, snapshot-based methods, and high-dimen-
sional model representation (HMDR) methods, all of which are used to
construct reduced base functions. Detailed mathematical descriptions of
the methods can be found in [8,144].

Data-fit models have been widely used in the building simulation
domain, the most commonly used of which are linear regression models
that have been considered as an effective surrogate model to capture
building energy behaviour [1,13,121,130]. In order to capture non-
linear behaviour, Chen et al. [111] constructed the MARS models to
emulate daylighting simulation models and airflow network models for
passively designed domestic buildings. Gelder et al. [145] provided an
overview of five data-fit models (i.e., polynomial regression, MARS,
kriging, radial basis function networks, and neural networks) and
compared the performance of these methods through a case study.
Recently, Gaussian Process models have been used as emulators for
building simulation models due to their ability to flexibly capture
complex behaviour including multivariable interactions and nonlinear
relationships [9,115,146].

4.3. Non-sampling uncertainty propagation

Non-sampling methods include perturbation methods, most prob-
able point-based methods, operator-based methods, generalized poly-
nomial chaos (stochastic Galerkin and collocation) and classical sto-
chastic differential equations [8,103,104]. Perturbation methods can
tackle large and complex parameterized models by expanding the
random field through Taylor series at the most second-order expansion.
The disadvantage of the perturbation approach is its limitation in
handling large uncertainty in both inputs and outputs [103]. Most
probable point-based methods are suitable for efficient uncertainty
analysis using the first-order and second-order reliability methods
[104,147]. Operator-based methods are used to manipulate stochastic
operators, for instance, by expressing the inverse of the stochastic op-
erator in Neumann expansion [103]. Classical stochastic differential
equations usually deal with idealized processes, including Wiener
processes and Poisson processes using stochastic calculus [148,149]. In
contrast, generalized polynomial chaos methods allow inputs to be
treated as random variables [103]. Generalized polynomial chaos,
which has become a very popular method in uncertainty quantification,
is a classical polynomial chaos in which the stochastic solutions are
expressed as orthogonal polynomials of input variables. This method
shows rapid convergence if the expanded function is dependent on
smooth random variables. A Galerkin projection is usually implemented
to minimize the error of the finite-order expansion and existing com-
puter codes must be changed accordingly. For complex applications, an
alternative choice is stochastic collocation that combines the advantage
of both sampling-based (e.g. nonintrusive) and Galerkin methods (e.g.

fast convergence) [148].
Non-sampling uncertainty propagation methods have been used

only for a few of applications in the field of building energy analysis:
stochastic different equations [150–153] and stochastic collocation
[115,154]. Brohus et al. [150] implemented stochastic differential
equations to quantify the uncertainty of building energy consumption
using two case studies. The first case is a mechanically ventilated
building and the second case is a naturally ventilated atrium. The
building loads are treated as stochastic processes with a time-varying
mean value and a time-varying standard deviation using a white noise
(e.g. stochastic part). The results indicate that the stochastic method
can suitably describe the airflow and energy consumption although the
computational time is high (several hours on an Athlon 1 GHz PC in this
study). Kim [115] created a surrogate model using polynomial chaos
expansion for a five-storey office building located in South Korea. The
point-collocation polynomial chaos method is used in MATLAB due to
its non-intrusive nature. The results suggest that the polynomial chaos
surrogate model is excellent in stochastic model predictions. Note that
the stochastic collocation method can be used not only as a surrogate
model to replace computationally expensive models but also as a
sampling method for uncertainty quantification, which is the focus in
this section. The uncertainty propagation using stochastic collocation
has the advantage of fast convergence compared to the Monte Carlo
sampling-based method [8]. However, further research, especially on
the newly developed polynomial chaos expansion, is required to assess
the suitability of the non-sampling uncertainty quantification in
building energy analysis.

4.4. Non-probabilistic uncertainty propagation

A number of non-probabilistic uncertainty analysis methods are
emerging to quantify uncertainty given limited information, especially
for epistemic uncertainty. Non-probabilistic methods include interval
analysis, fuzzy theory, Dempster-Shafer evidence theory, and the affine
arithmetic model [27,102,155].

The simplest method in non-probabilistic uncertainty propagation is
the interval analysis assuming that an interval scalar consists of a single
continuous domain in the domain of real numbers bounded by a lower
and an upper number [102]. Although the optimal solution (i.e.
minimal and maximal values of output values due to input intervals) is
difficult to find, this method is conceptually simple. Local and global
optimization can be used to overcome this limitation, and an alternative
method involves using a uniform distribution over the input intervals,
which means that no values in this interval are equally likely. Note that
the resulting outputs cannot be interpreted as a probabilistic distribu-
tion but should be treated as the output interval bounds. One of the
problems with using the interval analysis is the dependency issue that
leads to unreliable outputs for uncertainty analysis. The affine ar-
ithmetic model is a generalization of interval arithmetic by considering
the correlation between variables [155]. The affine model is a linear
transformation of uncertainty variables as a separate token [156].
Fuzzy set can be regarded as a direct extension from interval analysis. A
fuzzy number is defined as a membership to describe the vagueness in
the numeric value [44]. The most frequently used membership func-
tions are the triangular and Gaussian probability densities [102]. The
Dempter-Shafer evidence theory is a generalization of classical prob-
ability theory to model input variables as the sets of intervals (e.g. one
or more intervals). The computational cost of using this method can be
very expensive and a surrogate model (as described in Section 4.2.3)
can be used to reduce the computational cost.

Only a number of limited of studies have proposed non-probabilistic
uncertainty methods in the area of building energy analysis
[44,156–158]. Macdonald and Clarke [156] implemented the affine
arithmetic model in the energy conservation equations of the ESP-r
simulation environment. The results indicate that this method not only
reduces the computational efforts but also allows the flexibility of
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algorithm control in order to decrease output uncertainty. Chaney et al.
[157] used the Dempster-Shafer evidence theory for the fusion of
multiple-sensor data in a house simulation model. The advantage of
Dempster-Shafer theory is that the data can be combined from multiple
sources in which these data can be overlapping, contiguous, or even
have gaps. They found that the evidence theory is a very reasonable
approach for providing rich information about occupant interaction
with systems in the house. Kim et al. [159] reported that the Demster-
Shafer theory (DST) can be used to effectively combine five different
experts’ epistemic uncertainty into single uncertainty. The DST is
known as a generalization of the subjective probability theory based on
two principles. In the first principle, the degrees of belief from sub-
jective probabilities are obtained, and the second principle is the ag-
gregation rule (e.g. Dempster's rule, Yager's rule) for combining mul-
tiple degrees of belief. As energy efficiency projects often suffer from
the limited information, more studies are needed to focus on finding
ways to apply these non-probabilistic methods in order to more effec-
tively represent the limited uncertainty information of building para-
meters.

5. Inverse uncertainty quantification in building performance
analysis

Inverse uncertainty quantification is used to infer unknown input
parameters in a model through a mathematical formulation given
measurement data. Observed system outputs can be formulated as
[8,160],

= + +E f(x, θ) δ ε (1)

where E is the real observations (i.e. building energy data), x is the
known parameters (such as monitored weather data), θ is the unknown
parameters that need to be calibrated, f(x, θ) is the model outcomes
predicted by the building energy model or the emulator, δ is the model
discrepancy that capture the differences between predicted and actual
building performances, and ε is the measurement errors. Statistical
methods for inverse uncertainty quantification can be broadly cate-
gorized into frequentist and Bayesian approaches. Prior to inverse un-
certainty analysis, sensitivity analysis is often used to select important
variables because it is difficult and computationally inefficient to infer a
large number of uncertain parameters in model calibration.

5.1. Frequentist techniques

The frequentist technique is a classical parameter estimation ap-
proach that solely relies on measured data to infer unknown parameters
[161–165]. This approach assumes that unknown parameters have true,
fixed values and, accordingly, produce a single estimate and associated
deviation. For linear models, unknown parameter estimates and asso-
ciated confidence intervals can be determined explicitly based on nor-
mality assumption [8]. However, for nonlinearly parameterized pro-
blems, numerical optimization techniques are required, such as
stochastic optimization methods, gradient-based approaches, and hy-
brid methods [8].

The most commonly used point estimation methods are maximum
likelihood estimation (MLE) and least squares estimation (LSE) [166].
MLE computes a probability density function that compares measure-
ments with model predictions using testing parameter values and yields
parameter values that maximize the function. LSE is a special case of
the MLE that calculates the weighted sum of the squares of the differ-
ences between measurements and model predictions. A key difference
between the two methods is that LSE assumes that measurement errors
are normally distributed whereas MLE handles a non-Gaussian error
distribution. Andersen et al. [151] applied MLE for the estimation of
building envelope-related parameters in the grey-box model of a
building. Reddy and Andersen [167] compared different classical esti-
mation methods, including MLE and LSE, through a case study in which

parameter values in different chiller models are estimated based on
hourly measurements from a chiller. The main issue of using these in-
verse methods is that the confidence intervals of parameters are not
presented explicitly in detail. For linear models, confidence intervals of
inferred parameters can be derived by most of the available statistical
programs. Estimation of confidence intervals in non-linear models is
more difficult, and please refer to [8] for detailed description.

Another way to quantify the uncertainty in parameter estimation is
the bootstrapping technique [17,168]. Based on the research from
Banks et al. [168], the bootstrapping method is a better choice for a
complex system because the sensitivities required for asymptotic theory
are too complicated to compute for constant variance data. For non-
constant variance data, local variation in the data would determine the
choice of bootstrapping or asymptotic theory.

5.2. Bayesian techniques

Bayesian techniques have been increasingly used in estimating un-
known parameters in building energy models [169–173]. The key fea-
ture of Bayesian methods is that expert knowledge can be incorporated
with measurements into the model calibration process. In the Bayesian
approach, unknown parameters are assigned with prior distributions
that quantify prior beliefs about true parameter values based on expert
knowledge collectively derived from a pool of available data sources
such as surveys, technical reports, and industry standards. Prior dis-
tributions are updated using measurements through a Bayes’ theorem in
which the likelihood of matching observations with model prediction
drives the updating process. This updating process combines prior
knowledge with new observed information and leads to improved dis-
tributions of unknown parameters, also known as posterior distribu-
tions.

Ideally, when a large number of find-resolution observations are
available, Bayesian calibration methods will result in posterior dis-
tributions that are close to true values regardless of initial prior beliefs
about true parameter values. In reality, however, available observed
data are often aggregated to the whole building level and are in-
sufficient to infer a set of uncertain parameters. The effects of prior
estimates on calibration outcomes have been investigated by increasing
the range of prior estimates and altering the distribution shape to a
uniform distribution in comparison to the original triangular distribu-
tions with tighter uncertainty ranges [46]. This comparative study
showed that, while the change in the distribution shape has a more
substantial effect on calibration results than the change in the dis-
tribution range, all cases nevertheless showed the same trend of updates
from given prior estimates. An urban data analysis study based on
Bayesian inference that disaggregated total energy use data into energy
use per building type also found that while posterior distributions were
significantly influenced by the choice of the prior distributions, they
shifted toward the same position when they were considerably updated
from the prior distributions [174].

Bayesian approaches have been formulated to calibrate a set of
unknown parameters in the energy model with consideration of mea-
surement errors [13,35,175]. In addition to measurement errors, the
discrepancy between the model and the reality was recognised as an-
other major uncertainty source. In order to account for the model dis-
crepancy, Heo et al. [9] proposed a Bayesian approach that accounts for
three types of uncertainties: (a) parameter uncertainty, (b) model dis-
crepancy, and (c) observation errors. The approach (as shown in Fig. 4)
follows the mathematical formulation developed by Kennedy and
O’Hagan [160] that uses the Gaussian process (GP) models to emulate a
computer model and to capture differences between model predictions
and observations due to the inability of the simulation model to re-
present the real behaviour. The Bayesian calibration method was de-
monstrated to substantially reduce uncertainty in posterior distribu-
tions that correspond well to true values under three levels of
uncertainty consistent with different audit levels [4].
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Using GP models as part of the calibration process is recognised as
computationally expensive when the dimension number of calibration
parameters or the number of data points is large. In order to alleviate
the computational burden, Li et al. [176] proposed the application of a
linear regression emulator that includes the main parameter and
parameter interaction effects for predicting monthly energy consump-
tions. Through a case study, the linear model emulator was demon-
strated to correctly capture the behaviour of the simulation model and
yields similar calibration results to those when using GP models, with a
significantly reduced computational time. Tian and Choudhary [13]
also showed the suitability of using a linear regression model for pre-
dicting annual energy consumptions and employed a linear regression
model as an emulator to calibrate a typical school building model
against a collection of annual energy data of schools. In another study
[35], a cooling capacity degradation model was used in the calibration
process to estimate the ageing effect on the chiller maximum cooling
capacity with the use of measured water temperature and flowrate data.

Since posterior distributions cannot be analytically derived for
building energy models, Markov Chain Monte Carlo (MCMC) methods
have been used to approximate theoretical posterior probability dis-
tributions by randomly drawing samples through the parameter space.
Metropolis and Metropolis-Hastings algorithms are the most commonly
used MCMC methods for computation of posterior distributions. These
algorithms generate a random walk by sampling a proposed point from
a jumping distribution based on the current point in an iterative manner
and accepts the proposed point when it satisfies an acceptance criterion
[177]. The choice of the jumping distribution substantially influences
the number of points required to converge to the target distribution.
Consequently, the algorithms often take a long time to move toward the
high-probability density region by inefficiently exploring the entire
parameter space. A Hamiltonian Monte Carlo method has been pro-
posed and demonstrated to improve the inefficiency of the MCMC
method by adding an auxiliary variable that enables faster movement
through the parameter space [177]. It has been demonstrated by
Menberg et al. [178] and Chong et al. [179] that this method sub-
stantially improved convergence speed in comparison to the random
walk MCMC method for calibration of building energy models.

6. Application of uncertainty analysis in building performance
assessment

This section discusses four applications in which the relevance of
uncertainty analysis is demonstrated: building stock analysis, HVAC
system sizing, variations of sensitivity index, and optimization under
uncertainty. It should be noted that there are many types of applica-
tions where uncertainty analysis is useful in building energy analysis.
The four applications are selected in this section to demonstrate the
ways of implementing the uncertainty analysis techniques in building
energy assessment. Table 3 shows the references for the four types of
applications.

6.1. Building stock analysis

Significantly less research has been performed on building stock in
comparison with individual buildings. One of the major reasons is high
uncertainty/heterogeneity in input parameters for building stock ana-
lysis [180,181]. In order to overcome lack of the available data, un-
certainty analysis has been implemented in recent research to in-
corporate possible variations of parameter values in assessing the
energy performance of building stock.

Forward uncertainty analysis has been used in building stock
usually to obtain the distributions of energy performance by varying
unknown parameter values in the building stock model. Hughes et al.
[131] used the forward Monte-Carlo uncertainty analysis method to
generate the distribution of England's domestic energy consumption in
2010 by propagating input uncertainty, including individual dwelling
type, dwelling age, and indoor set-point temperature in the total stock
model. They emphasized the importance of using global sensitivity
analysis methods to correctly identify key influential parameters.

Fig. 4. Flow chart of Bayesian calibration method.

Table 3
Application of uncertainty analysis in building energy assessment.

Application Type References

Building stock Forward [118,122,129,131,169]
Inverse [13,19,20,169,170,183,198]

HVAC sizing – [35,56,116,138]
Sensitivity analysis Indicator variation [14,17,111,134,184]
Optimization – [21,22,187,189,190]
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Kavgic et al. [118] applied the Monte Carlo method to predict prob-
abilistic energy consumptions for space heating of the housing stock in
Belgrade. The results demonstrate that the uncertainty in influential
variables should be considered for the energy analysis of the building
stock as it leads to large uncertainty in energy predictions. Li et al.
[182] introduced coupling thermal and airflows methods to simulate
the potential of natural ventilation of building stock in northern China.

Inverse analysis has been used to estimate the unknown parameters
of energy models in a given building stock based on actual energy data
[170,183]. Tian and Choudhary [13] used the MCMC method in the
OpenBUGS program to infer input distributions of the key variables
influencing gas use in London secondary schools. They pointed out that
the availability of building stock information is the key to selecting a
suitable method for building stock energy models. The inverse method
proposed in their study is suitable to make full use of the available
energy data in order to improve the reliability of the building stock
model. Tian et al. [19] used the R stan program, a new probabilistic
language of full Bayesian statistical inference with Hamiltonian Monte
Carlo, to estimate the locally varying energy use intensity in the do-
mestic building stock of London. The results suggest this Bayesian
hierarchical model can provide more reliable results compared to the
geographically weighted regression method.

6.2. HVAC system sizing

Several studies have focused on sizing HVAC system using un-
certainty quantification [35,56,116,138]. Peak heating/cooling loads of
HVAC systems are usually calculated based on standardized design day
data using the deterministic method [26], which does not provide
sufficient and transparent information about the possible range of
building loads and their likelihoods. Dominguez-Munoz et al. [116]
proposed a probabilistic approach to consider the uncertainty of input
factors influencing peak cooling loads. Twenty uncertain factors are
considered to calculate peak cooling loads using a simple lumped heat-
balance model. Sun et al. [56] further explored the HVAC sizing issues
for both heating and cooling loads using uncertainty analysis, which
can replace the safety factor commonly used in HVAC industry. This
uncertainty analysis include five groups of uncertainty sources: me-
teorological weather, microclimate, building, system, and occupant.
Their analysis framework uses multiple actual year data instead of the
design day method, which provides rich probabilistic information on
heating/cooling demands to support risk-based sizing. The framework
includes sensitivity analysis to find important factors influencing
heating/cooling loads. Huang et al. [35] also proposed a probabilistic
method for HVAC system design using multiple performance indicators
(e.g., economic, energy, user satisfaction, and environmental criteria).
Kim et el. al. [107] presented a multi-criterion stochastic decision
making process for selecting the optimal HVAC system using the
Bayesian Markov chain Monte Carlo method. In this study, Bayesian
inference was used to obtain unknown quantities (expected utilities and
weighting factors) in the formulation of a multi-attribute utility func-
tion. The Bayesian method provides a formal platform to quantify
subjective preferences of diverse decision makers in a probabilistic
manner and to mitigate the ambiguity of the multi-criterion decision
making problem that involves multiple stakeholders.

6.3. Indicator of sensitivity analysis

Uncertainty analysis can be used to estimate the variations of a
sensitivity index affecting building thermal performance in order to
provide more reliable and robust sensitivity analysis [184]. Assessing
uncertainty of sensitivity analysis in the field of building energy ana-
lysis is still uncommon [17]. Bootstrap can be used to compute the
variations of sensitivity index for ranking factors influencing building
energy by a random sampling with replacement from an original da-
taset. Tian et al. [17] described the implementation of the bootstrap

technique in detail for building energy analysis. Chen et al. [111] ap-
plied the bootstrap approach to obtain the confidence intervals of SRRC
in assessing the thermal performance of a high-rise residential building.

6.4. Optimization under uncertainty

Optimization under uncertainty, which is also called robust design
optimization (RDO) or reliability based design optimization (RBDO), is
used to maximize the responses of a system (e.g. mean or median) while
minimizing the system variability of responses (e.g. variance or stan-
dard deviation) [185]. In contrast, the deterministic optimization is
only focused on maximizing the system responses. Building energy
performance is affected by a number of uncertain factors, such as
weather variations, occupant behaviour, and randomness of thermal
properties. Hence, the optimal design solution derived by the de-
terministic approach may not be the optimal choice in reality when all
uncertainty sources impact building performance. Optimization under
uncertainty is not a new challenge in engineering problems. However,
only very limited studies are available on optimization under un-
certainty in building energy analysis [21,22,186–188].

Gang et al. [189] developed an uncertainty-based optimization
method for the design of district cooling systems. In their study, vari-
ables are classified into three groups: outdoor weather, building design/
construction, and indoor conditions. Through sensitivity analyses, they
show that indoor conditions are the most important factor influencing
the performance of district cooling systems, while the variations in
building design/construction have the least influence. Hopfe et al.
[190] performed the S metric selection-evolutionary multi-objective
optimization algorithm (SMS-EMOA) for robust optimization of
building design. To reduce the computational burden, a Kriging meta-
model was created to replace computationally expensive energy
models. A case study building located in the Netherlands was used to
demonstrate the suitability of this method of combining the meta-model
and SMS-EMOA. Kim et al. [188] presented a multi-criterion stochastic
optimal selection of a double glazing system for an office building. In
their study, LHS samplings and stochastic objective function were used
with the GP emulator, genetic algorithm and Pareto optimality for
stochastic performance optimization.

7. Software for uncertainty analysis

The section firstly describes the software used in forward and in-
verse uncertainty analysis of building energy use as shown in Table 4.
Then the software for construction of surrogate models and sensitivity
analysis in building environment is discussed since these two methods
are closely linked to uncertainty analysis as described in Section 4.1.5
and Section 4.2.3, respectively.

Forward uncertainty analysis needs computer programming in three
steps: obtain the sampling of input parameters, create and run building
energy models, and present and summarise probabilistic results. The
programming languages for creating and running building energy
models were described in Section 4.1.3. Simlab, a free development

Table 4
Software for uncertainty analysis.

Function Notes Software

Forward uncertainty 1D Monte Carlo R lhs package [192], Simlab [191],
Dakota [195], Crystal ball [194]

Building energy
models

GURA-W [37], jEPlus [137], Excel
VBA [2], R language [136]

2D Monte Carlo R mc2d [196]; Dakota [195]
Inverse uncertainty – R Brugs, [199]; R stan [201],R BACCO

[200], OpenBugs [197], Dakota [195]
Surrogate model – Matlab [204], R caret [203]
Sensitivity analysis – R sensitivity [205], Simlab [191]
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framework for sensitivity and uncertainty analysis [191], has been
widely used in building energy analysis as it provides a number of
sampling methods, including the random sample, Latin hyper-cube
sampling, and Sobol method [3,52,59,123,128]. R environment pro-
vides many sampling methods, such as Latin hyper-cube [192], Sobol
sequence [193], and Halton sequence [193]. Crystal ball, a spreadsheet-
based environment for risk analysis [194], has been used in uncertainty
analysis of building energy use [122]. Another excellent computing
environment for uncertainty analysis is the Dakota developed by USA
Sandia National Laboratories that has advanced abilities to handle
mixed epistemic-aleatory uncertainty, optimization under uncertainty,
and Bayesian calibration [195]. The R mc2d package can be easily used
to run 2-D Monte Carlo simulations [196]. Analyst also offers their own
computing procedure for 2-D Monte Carlo simulations based on 1-D
Monte Carlo methods.

Inverse uncertainty analysis requires more complicated computa-
tion, especially for Bayesian computation. The Bayesian inference Using
Gibbs Sampling (BUGS) programs (WinBugs or OpenBugs) provide a
flexible software environment for the Bayesian analysis using the
MCMC method [197] to infer unknown parameters [13,198]. The R
computing environment also provides the interface for the BUGS pro-
grams [199] and the Gaussian-process-based Bayesian method [200]
(as described in Section 5.2). The R stan package [201] supports full
Bayesian statistical inference with the advanced computation method,
Hamiltonian Monte Carlo, which was used to compute the distribution
of energy use intensities in London in a more efficient way [19].

Surrogate models have been used to expedite the computation of
both forward and inverse uncertainty analysis in building energy as-
sessment. R environment has many good packages for machine learning
computation and an overview of these methods is available in R task
view [202]. A meta package of Classification and Regression Training
(caret) [203] is particularly useful because it combines a large number
of machine learning methods to easily create several machine learning
models and compare their predictive performance. Matlab also provides
a number of machine learning methods and a helpful reference book
has also been presented [204].

Sensitivity analysis is often used together with uncertainty analysis
as discussed in Section 4.1. R sensitivity package [205] offers several
global sensitivity analysis methods, including standardised regression
coefficients, Morris screen method, Sobol indices, extended Fourier
amplitude sensitivity test, and kriging-based sensitivity analysis. The
Simlab program [191] mainly contains a set of global sensitivity ana-
lysis based on sampling-based methods, such as standardized (rank)
regression coefficient, Morris method, and Sobol sensitivity indicators.
The Simlab program has been used widely in building energy analysis
[72,113,114,134]. The latest version of Simlab 4 provides a closer link
to the R statistical environment [191].

8. Conclusions and further work

In this paper, the research progress of uncertainty analysis in
building energy assessment was reviewed from the following four as-
pects. The state-of-art research development of data sources for un-
certain parameters relevant to building energy performance were firstly
described. The next two sections discussed the detailed methods of both
forward and inverse uncertainty quantification in building energy
analysis. The third aspect of this review involved the four types of ap-
plications in implementing uncertainty analysis when assessing
building performance. For the final aspect, the software available that
can be used in uncertainty analysis of building energy use were de-
scribed. The research trends of uncertainty analysis when assessing
thermal performance in buildings from this overview are summarized
as follows.

(1) Previous research on data sources for uncertainty analysis relevant
to building energy performance has provided a firm foundation for

developing different types of uncertainty analysis. The construction
of a database of uncertainty quantification, such as the GURA-W
workbench, would be beneficial to provide transparent and robust
uncertainty quantification for the whole community of building
energy simulation.

(2) Occupant behaviour is a complicated factor that has a significant
impact on building energy performance. Implicit models are likely
to remain dominant in simulating the variations of occupant be-
haviour in the near future.

(3) Among the forward uncertainty quantification methods, the sam-
pling-based Monte Carlo method is the most widely used forward
uncertainty method in the field of building energy assessment be-
cause this method is intuitive and only requires running energy
models a number of times.

(4) Recent research has focused on Bayesian inverse computation to
infer unknown parameters in building energy models because this
method can incorporate the prior information on unknown para-
meters from previous studies, site surveys, and industry standards.

(5) Specialized tools (such as Matlab, R, and jEPlus) have been devel-
oped to generate samples from specified uncertainty distributions
and to create and run a large number of building energy models for
uncertainty analysis.

Uncertainty analysis has been ready to become a mainstream
method in assessing building thermal performance from this overview
because the relevant statistical methods are mature and the sufficient
applications of these methods in building energy analysis are becoming
available. More connection between the fundamentals of uncertainty
quantification and the features of building energy analysis should be
built to provide more flexible analysis for achieving sustainable high-
performance buildings. The recommendations for further research on
uncertainty analysis of building energy are presented as follows.

• More effort still needs to be placed on rigorously quantifying the
uncertainty of input parameters, which is regarded as the most
difficult task in ensuring the quality of uncertainty analysis results.
The databases for quantifying uncertainty input parameters need to
be constructed in terms of various indicators, such as building types,
climate characteristics, and new or existing buildings.

• More attention should be paid to better simulate stochastic occupant
behaviour and interactions with other systems in buildings by using
both implicit and explicit occupant models.

• For the sampling-based methods, further studies are required to
provide clear guidance on the sampling size to provide converged
probabilistic outcomes for building energy analysis.

• Further research on the 2-D Monte Carlo method is required since
this approach can be used to represent both aleatory and epistemic
uncertainty in building energy assessment. New visualization
methods should be explored to show the complicated uncertainty
results.

• Both non-sampling and non-probabilistic uncertainty methods are
useful as alternative forward uncertainty quantification approaches
when only very limited information is available. Further research is
needed to suitably apply these methods in building energy assess-
ment.

• Many issues still need to be addressed in applying Bayesian inverse
computation. It is important to clearly understand how the avail-
ability of energy use data in combination with prior beliefs specified
as prior distributions affects the posterior distributions of input
variables inferred from Bayesian computation. Many new methods
(such as Hamiltonian Monte Carlo) have not been sufficiently ex-
plored to test the relevance in calibrating building energy models.

• Considering a number of uncertain factors at the design stage, fur-
ther research on optimization under uncertainty (robust design) is
required for low-energy buildings.
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