
Renewable and Sustainable Energy Reviews 121 (2020) 109594

Available online 26 December 2019
1364-0321/© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Spatial and temporal variation in the value of solar power across United 
States electricity markets 

Patrick R. Brown a,*, Francis M. O’Sullivan a,b 

a Energy Initiative, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA 
b Lincoln Clean Energy, LLC, Chicago, IL, 60611, USA   

A R T I C L E  I N F O   

Keywords: 
Solar energy 
Photovoltaics 
Value of solar 
Locational marginal price 
Distributed energy resources 
Merit order effect 
Air pollution 
Capacity value 
Resource adequacy 

A B S T R A C T   

The cost of utility-scale photovoltaics (PV) has declined rapidly over the past decade. Yet increased renewable 
electricity generation, decreased natural gas prices, and deployment of emissions-control technology across the 
United States have led to concurrent changes in electricity prices and power system emissions rates, each of 
which influence the value of PV electricity. An ongoing assessment of the economic competitiveness of PV is 
therefore necessary as PV cost and value continue to evolve. Here, we use historical nodal electricity prices, 
capacity market prices, marginal power system emissions rates of CO2 and air pollutants, and weather data to 
model the energy, capacity, health, and climate value of PV electricity at over 10 000 locations across six U.S. 
Independent System Operators (ISOs) from 2010 to 2017. On the energy and capacity markets, transmission 
congestion in some locations and years results in PV revenues that are more than double the median across the 
relevant ISO. While the marginal public health benefits from avoided SO2, NOx, and PM2.5 emissions have 
declined over time in most ISOs, monetizing the health benefits of PV generation in 2017 would increase median 
PV energy revenues by 70% in MISO and NYISO and 100% in PJM. Given 2017 PV costs, electricity prices, and 
grid conditions, PV breaks even at 30% of modeled locations on the basis of energy, capacity, and health benefits, 
at 75% of modeled locations with the addition of a 50 $/ton CO2 price, and at 100% of modeled locations with a 
100 $/ton CO2 price. These results suggest that PV cost decline has outpaced value decline over the past decade, 
such that in 2017 the net benefits of utility-scale PV outweigh the cost at the majority of modeled locations.   

1. Introduction 

Solar photovoltaics (PV) have demonstrated impressive reductions in 
cost and increases in deployment over the last decade: From 2010 to 
2017, utility-scale system costs fell from 6 $=Wac to < 1.5 $= Wac and 

worldwide deployment increased from 40 GW to >400 GW [1,2]. Yet 
numerous studies have noted that as the deployment of PV (or other 
zero-marginal-cost generation sources such as wind) increases, the value 
of PV electricity tends to decline as PV displaces higher-cost generators 
on the margin and reduces the wholesale price of electricity [3–6]. This 
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“merit-order effect” is most pronounced during times of day when solar 
energy generation is highest, causing the average market value of solar 
electricity to decline even more rapidly than the average electricity price 
[7–9]. At the same time, the adoption of emissions-control technology 
for coal generation over the last decade has reduced the marginal public 
health benefits of PV capacity [10], and continued decarbonization of 
the power sector will further reduce these marginal benefits. 

A number of strategies have been explored for mitigating the 
observed and projected value decline of variable renewables at the 
system level, including long-distance geographic aggregation [11], 
incorporation of energy storage and price-responsive demand [11,12], 
and use of high-capacity-factor system designs [13,14]. Additional an
alyses have shown that siting renewables in locations with high elec
tricity prices [15,16] or high power-system emissions rates [17–19] can 
lead to larger benefits than siting in locations with the highest capacity 
factor. Some studies quantify the levelized cost of electricity (LCOE) of 
PV [20,21] but do not assess variation in the value of solar electricity 

(sometimes referred to as the levelized avoided cost of electricity [22]). 
Others address the relative benefits and costs of PV generation at the 
transmission [23] or distribution level [19,24,25], albeit with coarse 
spatial resolution and for a limited subset of historical electricity price 
years. The significant variability in prices and emissions rates within and 
across electricity markets, the effects of different market structures 
(particularly related to resource adequacy, i.e. capacity), and the large 
shifts in emissions rates and prices over the last decade have yet to be 
synthesized into a consistent framework that captures the spatial and 
temporal variation in the value of PV. 

In this work we address the overarching question: How has the 
declining cost of PV aligned with changing conditions on the U.S. grid, 
and what does that imply for the competitiveness of PV today? More 
specifically: If a marginal addition of solar capacity had been installed at 
the site of a locational marginal electricity price (LMP) node in a given 
year between 2010 and 2017, what benefits would it have provided in 
terms of displaced energy, capacity, public health, and climate change 

Fig. 1. Variation in locational marginal electricity price (LMP) and solar penetration over the time period analyzed. a, Map of all pricing nodes considered in 
this study, with the corresponding ISO for each node indicated by the node color [26–29]. Nodes labeled “non-CAISO WECC” lie outside of the CAISO system territory 
but have LMP and geographic data reported by CAISO. LMP data for a given node are not necessarily available for all years. b, Map of average nodal LMP on the 
day-ahead wholesale market in 2017 [30–36]. c, Yearly statistics for day-ahead nodal LMP by ISO for 2010–2017. d, Solar capacity penetration for each ISO between 
2010 and 2017, given by cumulative installed solar generation capacity (utility-scale and distributed) divided by peak electricity demand within the ISO in each year. 
Data are from EIA, OpenPV, and the respective ISOs [37,38]. Each column on each subplot in c corresponds to a single ISO-year and includes two components: on the 
left, summary statistics including the median (empty black circle), bootstrapped 95% confidence interval for the median (gray bar), inter-quartile range (IQR, 25 %– 
75%; white area between black whiskers), whiskers from the edge of the IQR to 1:5� IQR or the max/min value, whichever is closer (black lines), and outliers 
beyond the edge of the whiskers (gray circles); on the right, colored 101-bin histograms showing the distribution of values for each ISO-year. Sample sizes for each 
ISO-year are given in Table SI.1. Y-axis limits for c exclude some outlying nodes. (For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 
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costs in that year, and what upfront cost would the PV installation have 
had to achieve to break even over its lifetime, assuming that grid con
ditions in that year persist for the life of the PV installation? 

To answer this question we assemble a large temporally- and 
spatially-synchronized dataset of historical day-ahead LMPs, system 
loads, capacity prices, marginal emissions rates and marginal damage 
rates from power system particulate matter emissions (resulting from 
SO2, NOx, and direct PM2.5 emissions), and simulated solar generation, 
spanning more than 10 000 locations and eight years of operation. We 
identify significant variation in the value of PV electricity over time and 
across length scales substantially smaller than the size of Independent 
System Operators (ISOs). Marginal additions of PV capacity at recent 
upfront system costs are found to break even at large fractions of nodes 
for some regions on the basis of energy value, capacity value, and public 
health benefits alone, and at modest carbon prices for the remainder of 
locations. 

1.1. Analytical approach 

Our analysis covers six major U.S. ISOs: California ISO (CAISO), the 
Electric Reliability Council of Texas (ERCOT), Midwest ISO (MISO), the 
Pennsylvania-New Jersey-Maryland Interconnection (PJM), New York 
ISO (NYISO), and ISO-New England (ISONE), with node locations shown 
in Fig. 1a. At each pricing node for which geographic information and a 
complete day-ahead LMP timeseries could be obtained for a given year 
(a sample size ranging from ~7400 nodes in 2010 to ~ 13 700 nodes in 
2017, as shown in Fig. SI.1 and Table SI.1), the output of a utility-scale 
PV generator is simulated using historical irradiance data from the Na
tional Solar Radiation Database (NSRDB) [39,40] as inputs to a PV 
generation model based on the open-source PVLIB toolbox [41,42]. The 
model accounts for PV module orientation, inverter DC/AC ratio, system 
and inverter losses, and temperature-induced module efficiency losses. 
This analysis assumes the use of horizontal 1-axis-tracking crystalline 
silicon (c-Si) PV arrays with a north/south axis of rotation (tracking 
from east to west throughout each day) and assumes must-run (i.e. 
non-curtailable) PV operation. A companion analysis uses this dataset to 
explore the impact of temporal PV output shaping—through tracking, 
curtailment, and orientation optimization—on the wholesale market 
value of PV energy [43]. 

Modeled PV generation is validated at the monthly timescale against 
reported generation from hundreds of utility-scale PV plants [37,44], 
and at the hourly timescale against reported generation from a ~1  MW 
PV array at the site of the National Renewable Energy Laboratory 
(NREL) [45]. Full validation results are described in the Supplementary 
Information (SI Note 3 and Figs. SI.10–SI.19). 

At each node we assess four separate components of the value of a 
modeled PV generator, measured in $=kWac per year: energy (from the 
LMP), capacity (i.e. resource adequacy), public health benefits (arising 
from the offset of SO2, NOx, and PM2.5 emissions), and climate change 
mitigation arising from CO2 emissions abatement. Capacity revenue is 
given by combining historical capacity market clearing or contract pri
ces with the calculated “capacity credit” for PV—the amount of firm 
generation capacity that a unit of PV capacity can displace while 
maintaining system reliability at the same level, indicating the fraction 
of the PV unit’s peak capacity for which it is compensated on the ca
pacity market. Marginal emissions rates and damages, taken from Aze
vedo et al. [46], are differentiated geographically by U.S. Environmental 
Protection Agency (EPA) Emissions & Generation Resource Integrated 
Database (eGRID) region [47] and temporally by year, hour of day, and 
season [19]. Marginal emissions rates reflect empirical estimates of the 
merit-order response of power system dispatch to a change in demand in 
each hour (here resulting from an increase in PV generation) [17,48], 
with emissions levels typically falling between the operational emissions 
rates of natural gas and coal (Fig. SI.6). Monetized public health benefits 
in Azevedo et al. [46] are calculated using the EASIUR model [49–51], 
and monetized climate benefits are determined from the marginal 

emissions offset multiplied by a chosen carbon price. All monetary 
values are given in 2017 U.S. dollars (inflated from nominal input data 
using the Consumer Price Index [52]), and electric power and capacity 
factors are given in terms of AC output from the PV inverter. 

2. Methods 

2.1. Data sources 

Meteorological data: Meteorological data including global horizontal 
irradiance (GHI, W=m2), direct normal irradiance (DNI, W=m2), diffuse 
horizontal irradiance (DHI, W=m2), surface air temperature (∘C), and 
surface wind speed at 2 m height (m/s) are taken from the National Solar 
Radiation Database Physical Solar Model (NSRDB PSM) [39]. These data 
are derived from satellite observations and are available on a 4 km � 4 
km grid across the continental United States, at 30 min resolution for 
historical data from 1998 to 2017 and at 60 min resolution for a typical 
meteorological year (TMY). The meteorological data for a given time
stamp are assumed to remain constant until the next timestamp; for 
example, the reported insolation, wind speed, and temperature at 8:00 
are assumed to remain constant until 8:30. Historical meteorological 
data are used for all calculations; Figs. SI.9 and SI.21 show the observed 
difference between historical and TMY capacity factors. 

Electricity price: Complete sets of hourly day-ahead LMP data for 
electricity at all reported pricing nodes are obtained from the respective 
ISOs [30–36]. For simplicity, all nodes within California are labeled as 
“CAISO”, even though the CAISO footprint does not cover the entire 
state of California. Only nodes with serially complete LMP availability 
for a given calendar year are utilized. 

The geographic locations of pricing nodes for CAISO, MISO, PJM, 
and NYISO are obtained from publicly-available sources. Node latitudes 
and longitudes for CAISO and MISO are available directly [26,27]. For 
PJM, node locations are inferred from a list of the closest nodes to each 
zip code within the PJM service area [28]; the location of each node is 
taken as the centroid of the centers of all of the zip codes that list that 
node. For NYISO, node locations are resolved at the city or county level 
[29]; if a single node is listed for multiple cities or counties, the location 
of that node is taken as the centroid of the centers of all the cities or 
counties that list that node. Node locations for ERCOT and ISONE are not 
publicly available, and were obtained through correspondence with ISO 
representatives. Only pricing nodes with both LMP and geographic in
formation are used in this analysis. A map of nodal data availability is 
given in Fig. SI.1. 

Capacity market clearing prices are obtained from the respective 
ISOs [53–57]. Pricing nodes are assigned to capacity zones based on 
their geographic locations (for MISO [27], NYISO [58], and ISONE) or 
published node-to-zone listings (for CAISO [26] and PJM [59]). 

Load: Hourly load used in the calculation of PV capacity credit is 
taken from the FERC Form 714 Database [60]. The MISO coverage area 
has changed over the analyzed time period; MISO load in each year is 
taken as the sum of loads for MISO, SMEPA (South Mississippi Electric 
Power Association), Cleco, and Entergy. 

Marginal emissions and damages: Marginal emissions rates for CO2, 
SO2, NOx, and PM2.5, and marginal public health damages for SO2, NOx, 
and PM2.5, are taken from Azevedo et al. [46] and described in detail in 
Siler-Evans et al. [17,48]. Emissions rates are disaggregated by EPA 
eGRID region [47], year, season (Summer, May–September; Winter, 
November–March; Transitional, April and October), and hour of day. 
Marginal damages are calculated using the EASIUR model [49–51] 
assuming a value of a statistical life (VSL) of 8.6 million USD2010 and a 
relative risk of 1.06 per 10 μg/m3 increase in PM2.5 concentration. 
Marginal damages calculated using the AP2 model, which are not used 
in the analysis but are provided for comparison with results from the 
EASIUR model, are shown in Fig. SI.36 [46,61–63] 

PV capacity: PV capacity penetration in Fig. 1d includes utility-scale 
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PV capacity reported in EIA Form 860 [37] and distributed PV capacity 
reported by the OpenPV project [38]. The EIA Form 860 database only 
includes installations greater than 100 kW in capacity, so to prevent 
double-counting between the two data sets, only installations with ca
pacity less than 100 kW are included from OpenPV. Capacity penetra
tion is calculated by dividing the sum of utility-scale PV and distributed 
PV capacity by the peak ISO-wide demand in each year. The DC/AC ratio 
χ is assumed to be 1 for installations reported in the OpenPV dataset. For 
the purpose of PV capacity quantification in Fig. 1d, CAISO includes all 
of California; ERCOT includes all of Texas; PJM includes all of Ohio, 
Pennsylvania, New Jersey, Delaware, Maryland, West Virginia, and 
Virginia; MISO includes all of North Dakota, South Dakota, Minnesota, 
Wisconsin, Iowa, Illinois, Indiana, Michigan, Arkansas, Louisiana, and 
Mississippi; NYISO includes all of New York; and ISONE includes all of 
Maine, Vermont, New Hampshire, Massachusetts, Rhode Island, and 
Connecticut. 

2.2. PV generation 

2.2.1. Model formulation 
Time-resolved alternating-current (AC) PV power generation for a 

PV generator at each pricing node is simulated using the open-source 
PVLIB Python toolbox originally developed at Sandia National Labora
tories [41,42,64], with input meteorological data taken from NSRDB as 
described above. Numerical assumptions for PV system characteristics 
are listed in Table 1. Assumptions generally match those used in the 
PVWatts model for crystalline silicon modules [65,66] and recent PV 
industry trends [1,67]. 

For a given node location, the solar position and extraterrestrial DNI 
are calculated at each timestamp, and airmass is determined from the 
calculated solar position. For 1-axis tracking, the tracker angle ψ is 
calculated at each timestamp from the solar position, axis tilt (θ), and 
axis azimuth (φ), subject to the maximum tracker angle ψmax and ground 
coverage ratio κ. “Backtracking”—a reduction in the tracker angle ψ 
during times close to sunrise and sunset to prevent shading between 
parallel rows of panels—is employed for all tracking simulations [68]. 
Direct and diffuse plane-of-array (POA) irradiance are calculated ac
cording to the Reindl diffuse sky model [69,70], taking into account the 
solar position, array orientation, measured irradiance (GHI, DNI, and 
DHI) from NSRDB, airmass, extraterrestrial DNI [71,72], and ground 
albedo (which contributes to diffuse POA irradiance at nonzero tilt an
gles). Off-normal reflection losses for direct POA irradiance are calcu
lated from Fresnel’s equation as in Ref. [65] assuming indexes of 
refraction nair ¼ 1 for air, nar given in Table 1 for the antireflection 
coating, and nglass ¼ 1.526 for glass. Global POA irradiance is calculated 
from the sum of direct (after reflection losses), sky diffuse, and ground 
diffuse POA irradiance. PV cell temperature is calculated using the 
Sandia PV Array Performance Model [73] assuming open rack mounting 
with polymer backplane modules, taking into account surface air tem
perature and wind speed from NSRDB and global POA irradiance. DC 

power output as a fraction of nameplate DC capacity P0
dc is given by 

Pdc

P0
dc
¼

IPOAG

1000
ð1þ γðTcell � 25�CÞ Þ

�
1 � ηsystem

�
(1)  

where IPOA
G is global POA irradiance (W=m2), γ is the temperature co

efficient of the PV cell, Tcell is the calculated PV cell temperature, and 
ηsystem is the DC system losses. AC power output as a fraction of name
plate AC capacity is calculated as in PVWatts [65] incorporating the 
DC/AC ratio χ and nominal inverter losses ηinverter. When ðPdc =P0

dcÞ�

χ > 1, the AC output is clipped to the nameplate AC capacity. Fig. SI.8 in 
the Supplementary Information shows the sensitivity of calculated AC 
capacity factor to changes in each of the variables listed in Table 1. 

2.2.2. Model validation 
To assess the accuracy of the PV generation model and the suitability 

of the model assumptions noted above, modeled PV capacity factors are 
validated against two sets of empirical data: monthly reported genera
tion from hundreds of utility-scale PV plants from the EIA Form 860 [37] 
and Form 923 [44] databases; and hourly reported generation for a 
single PV installation from the PVDAQ database [45]. Monthly valida
tion is relevant for assessing the accuracy of PV revenue calculations, 
which scale with capacity factor; hourly validation is additionally rele
vant for average value and value factor calculations, which depend on 
the temporal profile of PV generation throughout each day. 

Monthly validation: The EIA Form 860 database includes information 
on plant location, nameplate AC capacity, installation date, and tech
nical design parameters for every utility-scale power plant in the U.S. 
For PV plants, these data include PV module technology, array tilt angle 
(θ), tracking strategy employed, and nameplate DC capacity (which, 
when divided by the nameplate AC capacity, gives the DC/AC ratio χ). 
The EIA Form 923 database reports monthly electricity generation for 
the majority of the plants included in the EIA 860 database. For each PV 
plant shared between the Form 860 and Form 923 databases, we 
simulate the plant capacity factor using the reported system parameters 
and historical insolation at the site of the plant and compare the simu
lated results (averaged over each calendar month) with the historical 
reported monthly generation of the plant over the years 2014–2016. The 
data are subsetted to include only those plants with DC/AC ratio be
tween 0.5 and 2.5 and either a single fixed-tilt orientation or one-axis 
tracking; dual-axis-tracking plants, plants employing concentration or 
multiple orientations, and plants lacking orientation data are dropped 
from the sample. All 1-axis tracking installations are assumed to have 
θ ¼ 0∘. Plants with less than 0.1 MWh of reported generation in any 
month of a given year and plants with an annual reported capacity factor 
of less than 5% for a given year are also dropped from the sample, as well 
as plants with less than a full year of operation for any given year. The 
cleaned validation dataset includes 542 plants for 2014, 800 plants for 
2015, and 1170 plants for 2016. The temperature coefficient γ is 
assumed to be � 0.4%/∘C for plants employing crystalline silicon PV 
modules and � 0.2%/∘C for plants employing thin-film PV modules. 
Other simulation parameters not reported in the Form 860 database are 
taken from Table 1. 

Figs. SI.10–SI.12 in the Supplementary Information display the lo
cations of the plants in the validation set and reported and simulated 
generation for 2014–2016. Simulation accuracy is assessed in terms of 
the Pearson correlation coefficient (CC), mean absolute error (MAE), 
mean bias error (MBE), relative mean bias error (rMBE), root mean 
square error (RMSE), and relative root mean square error (rRMSE) be
tween the monthly simulated and reported capacity factor for each plant 
in each year. Validation metrics are displayed in Figs. SI.13–SI.15 and 
discussed in SI Note 3. 

Hourly validation: The PVDAQ database includes time-resolved 
power generation data for over 100 PV installations across the U.S., 
with varying levels of detail regarding the system design parameters for 
each installation. We select system number 1332, a 1.135 MWac fixed- 

Table 1 
Default assumptions for PV generation model.  

Parameter Symbol Value Units 

Axis tilt, 1-axis tracking 
array 

θ 0 degrees from horizontal [∘] 

Axis azimuth φ 180 degrees clockwise from north 
[∘] 

DC/AC ratio χ 1.3 fraction [.] 
DC system losses ηsystem  14 percent [ %] 
Nominal inverter losses ηinverter  4 percent [ %] 
Temperature coefficient γ � 0.4 percent relative to 25∘C [%/∘C] 
Maximum tracker angle ψmax  60 degrees from center [∘] 
Ground coverage ratio κ 0.33 fraction [.] 
Ground albedo β 0.2 fraction [.] 
Antireflection coating index nar  1.3 fraction [.]  
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tilt PV array at the site of the National Renewable Energy Laboratory, for 
hourly validation purposes, as it is the largest array in the database and 
includes data on system azimuth (180∘), tilt (16.8∘), and DC/AC ratio 
(1.02). Hourly validation results are discussed in SI Note 3; Figs. SI.16 
and SI.17 display simulated and measured PV output for the validation 
site over the years 2014–2016, and Figs. SI.18 and SI.19 display simu
lation accuracy statistics (CC, MAE, MBE, rBME, RMSE, and rRMSE) 
binned by month and by hour of day. 

2.3. Energy, capacity, and emissions abatement value 

2.3.1. Wholesale energy value 
Annual energy revenue Renergy in $=kWac per year for a PV generator 

at a given node is given by 

Renergy¼
XN

t¼0

Pt

Pmax
Πt

� τ
60

�
(2)  

where t is a timestamp, N is the number of timestamps in the year (e.g. 
17520 for 30 min timestamps in a non-leap year), Pt is the modeled AC 
power output of the PV system in timestamp t, Pmax is the peak AC power 
output of the PV system, Πt is the LMP in timestamp t, and τ is the period 
of the timestamp in minutes (i.e. 30 min for historical PV output). As the 
native period of the LMP (60 min) is longer than that of the modeled PV 
output (30 min), the LMP is resampled to match the period of the PV 
output, with new timestamps taking the value at the most recent existing 
timestamp (i.e. forward-filled). 

The average value of PV electricity V in $=MWh at a given node is 
given by 

V ¼
PN

t¼0Pt Πt
PN

t¼0Pt
: (3) 

The PV value factor VF at a given node indicates the ratio between 
the average value of PV electricity V and the average price of electricity 
at that node: 

VF¼
V
Π
¼

 PN
t¼0Pt Πt
PN

t¼0Pt

!

�
N

PN
t¼0Πt

: (4)  

2.3.2. Capacity value 
The capacity credit of PV can be calculated using a number of 

different methods [74–78]. The most rigorous method is to calculate the 
system-wide loss of load expectation (LOLE) following the addition of 
the specific PV generator, then to determine the equivalent capacity of a 
conventional firm generator that, if added to the system in place of the 
PV generator, would result in the same LOLE [77]. This calculation re
quires a large amount of system- and generator-specific operational 
data. A commonly-used approximation method with fewer data re
quirements, which has historically been used by MISO, PJM, NYISO, and 
ISONE in addition to several studies in the literature [15,75,76,79–81], 
is to identify the capacity credit as the capacity factor of the PV gener
ator during a specified subset of (typically high-load or 
high-loss-of-load-probability) hours over a given time period. Here we 
use the capacity-factor approximation method, which has been shown to 
agree reasonably well with the more rigorous LOLE-based method for PV 
[82]. 

PV capacity credit ξ for a given node and year is given by 

ξ¼
PN

t¼0αt Pt
PN

t¼0αt Pmax
; (5)  

where αt is 1 if t is a critical-load hour and 0 otherwise. Two different 
rules for identifying critical-load hours αt are used here. In the peak net- 
load method, a specified percentage of hours with the highest net load 
are labeled as critical, where net load is ISO-wide demand minus 
simulated utility-scale solar generation and ISO-reported wind 

generation (where available) in the specified year. ISO-wide solar gen
eration is simulated as described above for purposes of monthly model 
validation, using utility-scale solar plant locations and system parame
ters from the EIA Form 860 database [37] for plants located with each 
ISO boundary. Hourly wind generation is taken from the respective ISOs, 
and is available since 2010 for ERCOT and MISO and since 2011 for 
CAISO, ERCOT, and PJM [32,33,83–86]. For NYISO and for years 
outside these ranges, wind is ignored and net load is taken as demand 
minus solar generation. Figs. SI.32 and SI.33 show the capacity credit 
under different peak-hour thresholds and load assumptions. 

In the ISO-specified method, critical hours are defined by the ISOs as 
follows:  

� MISO: Hours beginning at 2pm, 3pm, 4pm from June–August (276 h) 
[87].  
� PJM: Hours beginning at 2pm, 3pm, 4pm, 5pm from June–August 

(368 h) [88].  
� NYISO: Hours beginning at 2pm, 3pm, 4pm, 5pm from June–August, 

and hours beginning at 4pm, 5pm, 6pm, 7pm from December–Feb
ruary (728 h in a non-leap year) [89].  
� ISONE: Hours beginning at 1pm, 2pm, 3pm, 4pm, 5pm in 

June–September, and hours beginning at 5pm, 6pm in October–May 
(1096 h in a non-leap year) [90]. 

For both methods, the capacity credit for a given node and year is 
calculated using modeled PV generation during the specified year. Some 
ISOs and literature studies [81,91] use multiple years of operational 
data to calculate PV capacity credit; here, for consistency across ISOs 
and to maintain any historical correlation between PV availability and 
net load, we use the production profile Pt for a single year to assess the 
capacity credit and revenue for that year. Modeled nodal PV output Pt at 
30 min resolution is downsampled via trapezoidal integration to match 
the 60 min resolution of system load and wind generation (e.g. PV 
output for the 8:00 bin is given by the integral of PV output between 
8:00–9:00). 

PV capacity revenue Rcapacity ([$=kWac per year]) is given by 

Rcapacity¼

PN
t¼0αt Pt Πcapacity

t
PN

t¼0αt Pmax
; (6)  

where Πcapacity
t is the historical capacity price in $=kWac per year. Ca

pacity prices are defined over different intervals across the different 
ISOs: for CAISO, capacity prices are defined by calendar year (January 
1–December 31); for MISO, PJM, and ISONE, capacity prices are defined 
from June 1–May 31; for NYISO, capacity prices are defined by season 
(May 1–October 31 for summer and November 1–April 30 for winter). If 
the capacity price is defined by calendar year (e.g. for CAISO), equation 
equation (6) simplifies to Rcapacity ¼ ξ Πcapacity. 

2.3.3. Emissions mitigation 
The annual marginal CO2 emissions abatement MCO2 in ton=kWac per 

year at a given node is given by 

MCO2 ¼
XN

t¼0

Pt

Pmax
mt (7)  

where mt is the hourly marginal CO2 emissions rate in the eGRID region 
containing the node. Annual marginal abated public health cost H in $=
kWac per year at a given node is given by 

H¼
X

z2½SO2 ;NOx ;PM2:5 �

XN

t¼0

Pt

Pmax
hzt (8)  

where hz
t is the hourly marginal damage rate of species z in the eGRID 

region containing the node. 
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2.4. Limitations of this analysis 

We note the following caveats and limitations before describing our 
results.  

� The PV system services considered here include a combination of 
private benefits (resulting from market earnings from the LMP and 
capacity market) and public benefits (from air pollution and green
house gas mitigation) [92]; unless clearly stated otherwise, we do not 
include the impact of explicit subsidies (such as the investment tax 
credit or renewable energy credits procured to meet renewable 
portfolio standards) or implicit subsidies (such as net energy 
metering), which would entail a public-to-private wealth transfer 
from taxpayers and ratepayers to the solar owner. There are two 
potential interpretations within which the private and public bene
fits considered here can be put on equal footing. The first interpre
tation is to consider these values in a hypothetical policy 
environment where market-based policies capture the external cost 
of emissions, such that the total revenues calculated here are 
equivalent to private monetary gains by the solar owner. The second 
interpretation is from the point of view of a centralized power system 
planner. In this interpretation all benefits are public; net revenue 
represents the net benefit to society of avoided expenditures for 
energy and capacity provision and realized public health and climate 
benefits. We note that PV can result in further benefits and costs on 
the distribution system, including impacts (positive and negative) on 
distribution system losses, congestion, and upgrade requirements or 
deferral [93]. These factors have been explored in other studies 
[94–96], but require significantly more data on distribution system 
structure than is publicly available from the ISO sources used here.  
� As we take the historical LMPs, loads, and marginal emissions rates 

as fixed, our results are relevant for assessing how a marginal unit of 
PV capacity—a “price-taker” in the context of the energy and ca
pacity markets—competes with existing incumbent generators, and 
the impact of replacing existing generation with new PV generation. 
In the framework of Lamont [4] and Baker et al. [97], we thus 
address the “short-run” value of solar, as opposed to the medium- or 
long-run value, where the generation mix and associated price of 
electricity would be allowed to respond to additions of solar capac
ity. If a significant amount of PV generation capacity is installed at a 
given node or within the node’s balancing area, LMPs and the value 
of PV electricity at that location, as well as the PV capacity credit and 
marginal emissions offset, would decline due to the merit-order ef
fect noted above. Other studies have employed econometric methods 
to assess the degree of causal relationship between solar deployment 
and solar value decline at the level of states or ISOs [98–100]; the 
data presented here could be used to increase the spatial resolution of 
such studies in subsequent work.  
� We do not consider the impact of solar forecasting for participation 

in the day-ahead market; in effect we assume that the hourly day- 
ahead availability of each PV generator is perfectly predictable. A 
real PV plant would likely balance its participation in the day-ahead 
and real-time markets based on its confidence in output forecasts, 
expected divergence between day-ahead and real-time prices, and 
the magnitude of penalties imposed for deviation from scheduled 
generation. We also note that while most utility-scale PV plants sign 
multi-year power purchase agreements (PPAs) rather than rely solely 
on market revenues, the PPA value should scale with changes in the 
market value in a competitive market (with additional adjustments 
from applicable subsidies and the value of electricity price hedging, 
which are not included here). 
� In the quantification of climate impacts, we only consider opera

tional emissions of CO2, in keeping with the implementation of 
contemporary CO2 taxation and cap-and-trade schemes. In a com
plete lifecycle assessment, both PV and the marginal generation 
sources displaced by PV (primarily natural gas and coal, with the 

time-varying mix of displaced generation accounted for in the mar
ginal emissions data used here) are responsible for additional non- 
operational emissions associated with component manufacture, 
plant construction, and, in the case of fossil-fired generation, fuel 
extraction and transport. Recent studies report that the levelized 
non-operational greenhouse gas emissions (GHG) of PV installed in 
the U.S. are lower than non-operational emissions for coal and nat
ural gas [101,102]. Quantifying GHG emissions in a lifecycle (rather 
than operational) framework would thus increase the modeled value 
of PV for climate change mitigation. The inclusion of additional 
environmental and health effects besides the CO2 and particulate 
matter impacts included here (including human toxicity, aquatic and 
terrestrial ecotoxicity, and freshwater eutrophication) would further 
increase the value of PV [102]. 
� The monetized health and climate benefits assessed here are sensi

tive to assumptions, particularly regarding the value of a statistical 
life (VSL) and discount rate. Climate benefits are difficult to quantify 
given the presence of positive and negative feedbacks, nonlinear 
tipping points, and the intergenerational nature of climate impacts 
[103], and the appropriateness of using cost-benefit analysis to 
assess environmental impacts or existential risks such as climate 
change is open to debate [104,105]. We do not assert that the prices 
assumed here for abated health and climate damages are the “right” 
prices; we simply explore the implications of assuming values widely 
used in the literature [10,17]. The quantitative values of our results 
will change for different assumptions regarding these prices, but the 
directionality of the trends will be the same. The impact of alterna
tive assumptions on the results presented here can be explored using 
the open-source computer code provided in the “Data and computer 
code availability” section.  
� The presence of an emissions cap and trade program can complicate 

an assessment of the marginal emissions offset of solar. Under a 
firmly binding cap, a ton of emissions offset by new solar generation 
would be replaced by a ton of emissions from another source. There 
are two cap and trade programs for carbon emissions active in the 
regions explored here: the California cap and trade program, and the 
Regional Greenhouse Gas Initiative (RGGI) for Connecticut, Dela
ware, Maine, Maryland, Massachusetts, New Hampshire, New Jer
sey, New York, Rhode Island, and Vermont (covering all of ISONE 
and NYISO and part of PJM). As shown in Fig. SI.3, over the time 
period analyzed, market clearing prices for CO2 have been low: less 
than 15 $/ton for California (within $3 of the floor price in all years) 
and less than 7 $/ton for RGGI in all years [106,107]. SO2 emissions 
are also subject to a cap and trade program under the EPA Acid Rain 
Program, but prices have been consistently low over the time period 
analyzed: 42 $/ton in 2010 and 3 $/ton or less in subsequent years, 
compared to a maximum of 1074 $/ton in 2006 and a median public 
health cost ranging from 8000 $/ton to 47000 $/ton over the regions 
and time period analyzed [46,108]. For the assessment of the climate 
benefits of a marginal unit of PV generation, we subtract the clearing 
price for CO2 in the California cap and trade program and RGGI for 
nodes covered by these markets from the applied carbon price, as the 
clearing price is already factored into the LMP value. Effectively we 
negate the effect of existing cap and trade regulations on energy 
prices, then re-apply a uniform hypothetical carbon price across the 
ISOs. We do not model the effects of a higher carbon price on the 
merit-order dispatch stack; if formally implemented, a higher carbon 
price would make lower-emissions generators more likely to be 
dispatched, thus decreasing the marginal emissions rate of CO2 and 
other pollutants and decreasing the emissions benefit of PV. No 
correction is made for the market clearing price of SO2 given the very 
low price of SO2 allowances over the time period analyzed compared 
to the social cost. 
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3. Components of the value of PV electricity 

3.1. PV energy value 

Fig. 2a displays a map of the modeled yearly energy revenue for PV 
arrays on the day-ahead wholesale market in 2017, and Fig. 2b and c 
displays trends in revenue and value factor differentiated by ISO for each 
year from 2010 to 2017. Maps of the spatial distribution of revenue and 
value factor for each year, as well as maps and trends for the average 
value of solar electricity in $/MWh, are displayed in Figs. SI.23–SI.25 in 
the Supplementary Information. 

It is notable that the sunniest locations are not always the most 
profitable locations to install solar: the median nodal LMP revenue in the 
northeast (ISONE and NYISO) is greater than the median nodal LMP 

revenue in Texas (ERCOT) in three out of the seven years analyzed, 
despite the ~20% higher median PV capacity factor in ERCOT. Two 
observations indicate that variation in solar revenue between sites is 
dictated more by variation in nodal LMP than by variation in capacity 
factor. First, the yearly variability in revenue (Fig. 2b) is much greater 
than yearly variability in capacity factor (Fig. SI.20a): median revenues 
over all ISOs and nodes range from 67 $=kWac per year in 2017 to 110 $=
kWac per year in 2014 (a 65% difference), while median capacity factors 
range from 22.5% in 2011 to 24.7% in 2016 (a 10% difference) and 
median LMPs range from 28.1 $/MWh in 2016 to 48.5 $/MWh in 2014 
(a 73% difference). Second, spatial trends in yearly revenue (Fig. 2a) 
more closely match spatial trends in average LMP than capacity factor 
(Fig. 1b, Fig. SI.21), and variance arising from congestion is larger than 
variance arising from capacity factor in most of the ISOs analyzed 

Fig. 2. Modeled yearly PV revenue (a) on the day-ahead wholesale electricity market in 2017, and yearly statistics for PV revenue (b) and value factor (c) 
by ISO for 2010–2017. Each marker in a represents one pricing node. Statistics in b-c are displayed in the same format as Fig. 1c. The value factor is the ratio of the 
average value of a MWh of solar electricity to the average price of electricity over the year. 
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(Fig. SI.30). These effects manifest most strongly in the observation of 
“hotspots” within the PJM ISO along the east coast where the yearly 
solar revenue is in some years more than double the median across the 
ISO as a whole. 

While we focus on the years 2010–2017 for the bulk of this study 
given more complete data coverage across all ISOs for these years, PJM 
and NYISO provide LMP data dating back to 2001 and 2000, respec
tively. As shown in Figs. SI.26–SI.28, the hotspots noted above, partic
ularly on Long Island and the Delmarva peninsula, have been observed 
for more than a decade, and the same collection of nodes tend to remain 

at the high extreme of the nodal revenue distribution from year to year. 
Disaggregation of the LMP into the marginal costs of energy, congestion, 
and losses (Figs. SI.29–SI.31) shows that these hotspots are driven by 
high congestion prices, which increase wholesale market revenues by 
more than 50 $=kWac per year for some years. While the observed rev
enue dispersion is long-lived, the magnitude of the revenue at these 
nodes tends to rise and fall in line with trends in the ISO median revenue, 
driven by year-to-year variation in the energy price. 

There is also notable variation in value factor between the different 
ISOs. ERCOT demonstrates the highest median value factor in each year 

Fig. 3. Capacity value of PV by ISO. a, Historical capacity price by ISO resource-adequacy zone [53–57]. Zone maps are shown in Fig. SI.7 in the Supplementary 
Information. Prices for CAISO are weighted average (median for 2010–2011 due to data availability) capacity contract prices; prices for MISO, PJM, NYISO, and 
ISONE are market-clearing prices. ERCOT is not included in this analysis as it does not have a capacity market. Intervals before the capacity market became active in 
a given ISO (before the 2010/2011 season in ISONE and before the 2013/2014 season in MISO) are assigned a price of zero. Data for CAISO, MISO, PJM, and ISONE 
reflect annual capacity auction prices, while data for NYISO include both summer and winter capacity auction prices. Markers are located at the beginning of the 
corresponding compliance period; lines between markers are guides to the eye. b, Distribution of modeled PV capacity credits across all nodes in each ISO from 2010 
to 2017, given by the average capacity factor of a modeled 1-axis-tracking PV array during “critical-load hours” over each year. Red curves indicate capacity credit 
calculated assuming ISO-specified critical-load hours; blue curves indicate capacity credit calculated with the top 7.04% of net load hours (ISO-wide demand minus 
modeled utility-scale solar and ISO-reported wind production) taken as critical-load hours. c, Distribution of modeled PV capacity revenues by ISO over time for PV 
arrays at all modeled ISO nodes. Revenues are calculated using the top 7.04% of net load hours for CAISO and the ISO-specified hours for MISO, PJM, NYISO, and 
ISONE. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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(Fig. 2c); given ERCOT’s low solar penetration, high air conditioning 
load during sunny periods, and high price cap for electricity (associated 
with ERCOT’s unique status as the only “energy-only” electricity market 
among the ISOs considered here), PV generation is likely to coincide 
with high-price periods in the ERCOT system, increasing its value factor. 
CAISO demonstrates the most pronounced decline in value factor over 
the period studied—from a median value factor of 1.09 in 2010 
(1.06–1.12 at the central 95% of nodes) to 0.87 in 2017 (0.72–0.96 at 
the central 95% of nodes)—coinciding with its 15� increase in solar 
capacity penetration over this time period (Fig. 1d). 

3.2. PV capacity value 

In markets where the LMP is administratively capped at an upper 
limit, additional payments to generators are necessary to ensure that 
there is adequate incentive to install sufficient generation capacity to 
meet demand across all hours. These “capacity payments” are made 
either through bilateral contracts between grid operators and individual 
generators (in the case of CAISO), or through a capacity market that 
clears seasonally or yearly (in the case of MISO, PJM, NYISO, and 
ISONE). Fig. 3a shows the historical capacity prices for the five ISO 
capacity markets considered here [53–57], and Fig. 3b shows the nodal 
distribution of calculated capacity credits for 1-axis-tracking PV over 
2010–2017. Where possible, capacity credits are shown using both 
ISO-defined critical hours (red curves) and the highest 7.04% of net-load 
hours (blue curves) per year, where 7.04% is the average of the number 
of hours used by MISO, PJM, NYISO, and ISONE for PV capacity credit 
assessment [87–90]. 

As shown in Fig. 3b and Fig. SI.33 and noted in Refs. [75,82], the 
capacity credit is sensitive to the number of hours counted as critical; in 
general the higher the number of hours considered, the lower the ca
pacity credit for PV. The high fraction of hours and explicit inclusion of 
winter evenings in the ISO-defined capacity credit calculations for 
NYISO and ISONE, in conjunction with the relatively low capacity factor 
of PV in the Northeast, leads to a low capacity credit for these ISOs. As 
CAISO does not specify specific hours for the PV capacity credit 

calculation, we only include the capacity factor calculated over 
peak-net-load hours, which has fallen from a median value of 53% in 
2010 to 25% in 2017 as increased PV generation has pushed 
peak-net-load hours to the morning and evening. 

Fig. 3c shows the calculated capacity revenues over time, using the 
ISO-defined critical hours for MISO, PJM, NYISO, and ISONE and the top 
7.04% of net-load hours for CAISO. For most nodes and years the ca
pacity revenue is small compared to the energy revenue (Fig. 2b), but for 
some nodes—particularly those centered around New York City, and the 
Boston area in 2017—the capacity revenue can reach 40%–80% of the 
energy revenue. The PJM and NYISO markets demonstrate the most 
within-ISO variability in capacity revenues, driven by large variation in 
capacity prices between their constituent capacity zones: in NYISO the 
interquartile range (IQR) of capacity revenues is � 25$=kWac per year in 
each year, and in both PJM and NYISO the IQR is � 42$=kWac per year in 
at least one year. 

3.3. PV health and climate benefits 

Marginal public health benefits from PV generation arising from SO2, 
NOx, and PM2.5 emissions mitigation have been declining with time in 
MISO, PJM, NYISO, and ISONE (Fig. 4a), as noted by Millstein et al. 
[10]. In spite of this decline, median public health benefits in 2017 are 
still substantial, equating to roughly 70% of median 2017 energy reve
nue in MISO, 100% in PJM, and 70% in NYISO (Fig. 2b). The majority of 
public health benefits over the time period analyzed have resulted from 
SO2 mitigation, as shown in Fig. SI.35, which disaggregates benefits by 
pollutant. Some of the highest-health-benefit nodes—such as those in 
New York City—do not necessarily have high marginal emissions rates, 
but have large associated damages resulting from their high population 
density. 

CO2 emissions offsets associated with PV generation, shown in 
Fig. 4b, have been more stable than SO2, NOx, and PM2.5 offsets over the 
time period analyzed, suggesting that the decline in air pollutant emis
sions has primarily resulted from the adoption of tighter air-quality 
standards and installation of SO2- and NOx-control technologies. 

Fig. 4. Public health and climate benefits from PV generation by ISO. a, Distribution of modeled public health benefits associated with SO2, NOx, and PM2.5 
mitigation by 1-axis-tracking PV arrays across nodes within each ISO. Marginal damage rates are calculated using the EASIUR model [46]. b, Modeled CO2 abatement 
associated with PV generation at nodes within each ISO. Marginal emissions rates are from Azevedo et al. [46]. Marginal damages and emissions rates are differ
entiated by operational year, eGRID region, season, and hour of day; nodes are assigned to eGRID regions based on their geographic location (Figs. 1 and SI.4). 
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While average CO2 emissions rates across ISOs have declined as a result 
of increased natural gas and renewables generation (Fig. SI.5) [109], the 
distribution of marginal generators has undergone little change [10], 
leading to a relatively small change in marginal CO2 emissions rates over 
time (Fig. SI.6) [46]. 

4. PV system breakeven costs 

To assess the competitiveness of an investment in PV capacity at a 
given node, we calculate the net present value (NPV) of PV electricity 
assuming that the value of PV services described above (energy, ca
pacity, and emissions mitigation) for a given year is maintained for the 
duration of the plant’s life, solving for the “breakeven” upfront cost that 
would set the NPV to zero. 

The NPV is given by 

NPV¼
XL

t¼1

ððRþ CCO2MCO2 Þð1 � dÞt � COMÞð1 � TÞ þ Dt
ð1þiÞtCPVT

ð1þ ρÞt

� CPVð1 � δÞ (9)  

where L is the lifetime of the PV array; R is the yearly PV revenue, 
including contributions from energy (Fig. 2b), capacity (Fig. 3c), and 
public health (Fig. 4a) where noted; CCO2 is the price on carbon emis
sions; MCO2 is the annual marginal CO2 displaced per unit of PV capacity 
in a given ISO (Fig. 4b); d is the annual degradation rate in PV output; 
COM is the annual operations and maintenance cost; T is the combined 
federal and state tax rate; Dt is the percentage of the upfront cost 
depreciated in year t using the 5-year Modified Accelerated Cost Re
covery System (MACRS), assuming the PV owner can completely 
monetize the tax benefits of depreciation; i is the annual inflation rate; ρ 
is the real weighted average cost of capital (WACC); δ is the federal 
investment tax credit (ITC); and CPV is the upfront system cost [110]. 
Numerical values and sources for financial parameters are given in 
Table 2. The effects of state and local subsidies are not included here, 
and the ITC is set to δ ¼ 0% unless noted otherwise. Calculated break
even costs are sensitive to input assumptions, particularly regarding the 
WACC, as shown in Fig. SI.37. 

Fig. 5b shows the distribution in calculated breakeven PV cost across 
all nodes in 2017 considering different collections of PV services, 
compared to observed upfront PV system costs (Fig. 5a) [1]. Under the 
stated financial assumptions and considering the value of energy, ca
pacity, and public health benefits (green curves, leaving out climate 
benefits), PV would break even at the 2017 upfront cost of 1.44 $=Wac at 
30% of the modeled nodes, ranging from 0% of nodes in CAISO, MISO, 
and ISONE to ~ 50% in NYISO and ~60% in PJM. 

At a carbon price of 50 $/tonCO2 (corresponding to the central value 
for 2020 historically used by the U.S. federal government [117]), PV 
would break even at ~75% of the modeled nodes, ranging from 5% in 
CAISO to 100% in ERCOT, MISO, and PJM. A small reduction in upfront 
PV cost would deliver large gains: with a 10% reduction in PV upfront 
cost, PV would break even at 90% of modeled nodes and 50% of CAISO 
nodes. 

At a carbon price of 100 $/tonCO2, which approaches the floor price 
estimated to be necessary to achieve the goals of the 2015 Paris agree
ment (floor price estimates in the literature range from 116 $/tonCO2 to 
at least 220 $/tonCO2 [118–122]), PV at today’s upfront cost would 
break even at 100% of nodes in all ISOs. A recent macroeconomic study 
reports a global social cost of carbon of 417 $/tonCO2 [123]; at this 
carbon price, PV would break even at all nodes in all years on the basis of 
climate benefits alone at a PV system cost of 3 $=Wac. 

If only market revenues from energy and capacity are counted 
(neglecting social benefits from abated emissions), median breakeven 
costs in 2017 range from 0.50 $=Wac in MISO to 0.85 $=Wac in NYISO. An 
alternative metric is the breakeven carbon price: as shown in Fig. 5c, at 
the 2017 upfront PV cost of 1.44 $=Wac, median breakeven carbon prices 
range from 0 $/tonCO2 in PJM to 60 $/tonCO2 in CAISO in 2017 if 
energy, capacity, and public health values are included, and from 45 
$/tonCO2 in PJM to 80 $/tonCO2 in ISONE if only energy and capacity 
are included. 

As noted above, energy and capacity revenues and the value of 
abated emissions demonstrate a large amount of variability from year to 
year, so the breakeven costs for 2017 shown in Fig. 5b and c do not hold 
for all years. Some of the drivers of this variability—such as variations in 
gas price, hydropower availability, and capacity price—are relatively 
cyclical, while others—such as the decline in PV value factor and ca
pacity credit in CAISO and the decline in marginal health benefits 
associated with the adoption of emissions-control measures—reflect 
longer-term trends that appear unlikely to change direction. To illustrate 
the effect of year-to-year price variations, Fig. 5d shows the calculated 
breakeven PV costs using different yearly profiles for energy and ca
pacity prices, including a 50 $/ton CO2 price but leaving out marginal 
health benefits (which, as noted above, appear unlikely to return to the 
high levels witnessed early in the decade). Breakeven costs for 2017 are 
near the bottom of the distribution over the years analyzed, as natural 
gas prices (and correspondingly LMPs) in 2017 were at the low end of 
their distribution over 2010–2017 [132]. Averaging the calculated en
ergy, capacity, and climate benefits over 2010–2017 (heavy black lines 
in Fig. 5d), PV breaks even at 2017 PV costs at ~85% of modeled nodes, 
from �25% in MISO and ISONE to ~55% in NYISO, 80% in CAISO, and 
� 98% in ERCOT and PJM. 

The discussion above addresses PV generators in a hypothetical 
policy environment where health and climate impacts are internalized. 
Fig. 6 shows PV system breakeven costs averaged over 2010–2017 under 
alternative economic assumptions. Starting from a baseline including 
energy and capacity market revenues alone, Fig. 6 compares the impacts 
of reducing financing costs (here demonstrated by lowering the WACC 
from the default assumption of 7% [115] to 4%, reflecting values used 
by the EPA [125] and reported by other sources [126–128]); including 
the 30% ITC, which at the time of this writing applies to systems built 
before 2020 [124]; monetizing health benefits at 2017 levels (Fig. 4); 
and applying different levels of carbon pricing. The relative impact of 
these different assumptions varies by ISO: in lower-emissions systems 
such as CAISO, NYISO, and ISONE the 30% ITC has a larger impact on 
PV profitability than the individual contributions of public health ben
efits or a 50 $/ton CO2 price, while in MISO the individual contributions 
of public health benefits and carbon pricing are both larger than the ITC. 
At a PV system cost of 1.44 $=Wac, PV breaks even at 1% of modeled 
nodes across the U.S. on the basis of energy and capacity revenues with 
default financial assumptions; at 33% of nodes with a reduction in the 
WACC from 7% to 4%; at 51% of nodes with health benefits monetized 
at 2017 levels; at 64% of nodes with the 30% ITC; at 83% of nodes with a 

Table 2 
Default assumptions for net-present-value calculation.  

Parameter Symbol Value Units Reference 

PV array lifetime L 30 [years] [1] 
Revenue (energy, 

capacity, health) 
R calculated [$=kWac per 

year]   
CO2 price  CCO2  [0, 50, 

100] 
[ $/tonCO2]   

CO2 displacement  MCO2  calculated [ton=kWac per 
year]   

Degradation rate d � 0.5 [%/year] [111, 
112] 

Operations & 
maintenance cost 

COM  20 [$=kWac per 
year]  

[1] 

Federal & state tax rate T 28 [ %] [113] 
5-year MACRS 

depreciation in year t 
Dt  variable [ %] [114] 

Inflation rate i 2.5 [ %] [1] 
Real weighted average 

cost of capital 
ρ 7.0 [ %] [115] 

Investment tax credit δ 0 [ %]   
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50 $/ton CO2 price; and at � 99:9% of nodes with a 100 $/ton CO2 
price. It is notable that under 2010–2017 electricity prices and repre
sentative 2017 policy conditions (namely, including the 30% ITC but 
without a substantial price on CO2 or air pollutant emissions), 
utility-scale PV breaks even at nearly two-thirds of modeled nodes. 

5. Conclusions 

While the marginal value and upfront system cost of PV have both 
declined over the last decade, the results described here suggest that cost 
decline has outpaced value decline, such that in 2017 the net benefits of 
utility-scale PV outweigh the cost across the majority of U.S. electricity 
markets when the social benefits of particulate matter and CO2 emis
sions abatement are included. Current cap-and-trade market prices for 
CO2 and SO2 emissions are much lower than estimates of the social cost 

of emissions, suggesting that emissions caps should be lowered (or that 
emissions floor prices should be raised) in order to provide appropriate 
incentives for low-carbon generation sources such as PV. A next-best 
alternative to instituting appropriate emissions prices is to tailor PV 
deployment support mechanisms to reflect spatial differences in the 
benefits of PV generation. Persistent transmission congestion over the 
time period analyzed results in variation in the energy, capacity, health, 
and climate benefits of a unit of PV generation capacity depending on its 
location of interconnection with the electric grid. As shown in Fig. 4a, 
nodal public health benefits from PV generation in the New York ISO 
have varied by roughly a factor of 2 across the state in any given year 
from 2010 to 2017, but existing renewable energy credits reward gen
eration equally, irrespective of its location within the state. 

The analysis described here applies primarily to utility-scale gener
ators on the transmission grid, which are exposed to the spatially- and 

Fig. 5. Observed capital cost and distribution of breakeven costs for PV arrays across all modeled nodes. Observed PV capital costs (a) are taken from Fu et al. 
[1] for a 100 MW 1-axis-tracking PV array. The U.S. Department of Energy SunShot PV cost target for 2030 is included in a for context [116]. Each trace in b shows 
the percentage of nodes across each ISO that would break even below the corresponding upfront system cost on the y-axis, assuming that the nodal revenue in 2017 
persists for the lifetime of the system. Colored traces and areas indicate the cumulative inclusion of revenue from the wholesale energy (LMP) market (purple), 
capacity market (blue), public health benefits (green), carbon mitigation assuming a 50 $/ton CO2 price (orange), and carbon mitigation assuming an additional 50 
$/ton CO2 price (100 $/ton total) (red). Dotted lines are included at 1.44 $=Wac, the 2017 observed PV system cost, to guide the eye. c, Breakeven CO2 prices for PV 
in 2017, assuming an upfront system cost of 1.44 $=Wac. Note that in c, PV breaks even at CO2 prices above the plotted line; in plots of the breakeven PV system cost 
(b,d), PV breaks even at upfront costs below the plotted line. d, Breakeven upfront costs for energy, capacity, and climate benefits for 2010–2017 profile years, 
assuming a 50 $/ton CO2 price. In d, colored arrows along the leftmost y-axis indicate the observed upfront PV system costs for each year shown in a. The black trace 
labeled “mean” is the nodal average breakeven cost, including all available years of data for each node. Fig. SI.38 in the Supplementary Information shows yearly 
breakeven costs under alternative carbon price assumptions. (For interpretation of the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 
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temporally-varying signals provided by the LMP. Residential and small 
commercial electricity customers on the distribution grid typically are 
not exposed to such signals, leading to installation incentives that are 
not necessarily matched to the system value of PV energy. Passing the 
spatial and temporal signals from the LMP (along with appropriate 
emissions prices) as far into the distribution system as possible could 
help steer PV deployment to congested high-price locations, reducing 
prices for other electricity consumers and ensuring that distributed and 
utility-scale solar generators can compete on equal footing [129]. 

It is important to emphasize that the breakeven costs shown here are 
for a marginal unit of PV capacity. As grid conditions change—through 
continued deployment of renewables, expansion of transmission ca
pacity, retirement of existing plants, shifts in the price of natural gas, 
variations in hydropower availability, changes in climate and demand 
patterns, and evolution in other factors—there will be associated 
changes in LMP, net load, and marginal emissions rate profiles, leading 
to corresponding changes in the breakeven cost for PV and other tech
nologies. Current electricity market designs, particularly regarding 
resource adequacy, will also need to be adjusted to adapt to generation 
mixes dominated by low- and zero-marginal-cost sources [130,131]. On 
the whole, the upfront cost whereat PV breaks even is expected to 
decline with increasing PV penetration [6], necessitating continued cost 
reductions for PV. Nevertheless, the experience so far in CAISO, where 
despite its 5–10� higher PV penetration than the other ISOs, PV would 
still break even at most nodes at an upfront cost within 10% of observed 
2017 costs, suggests that there is still considerable room for competitive 
PV expansion across the continental U.S., particularly in the interior and 
mid-Atlantic regions. The strategies presented here for assessing the 
locational value of PV electricity can be extended to other distributed 
energy resources such as wind power [16] and energy storage [110], and 
incorporation of spatial, temporal, and technological resolution will 
become increasingly important as the electric power system evolves and 
relies increasingly on variable renewable energy resources. 

Data and computer code availability 

Python scripts for data acquisition, data cleaning, modeling, vali
dation, analysis, and visualization, along with nodal LMPs and numer
ical results described above, are available at https://doi.org/10.5281/ 
zenodo.3562896.DJ3O6myVLVh5Qa. 
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Fig. 6. Distribution of breakeven costs for PV arrays across all modeled nodes under alternative economic assumptions. Each trace shows the percentage of 
nodes across each ISO (or, for the leftmost subplot labeled “USA”, across all ISOs and nodes) that would break even below the corresponding upfront system cost on 
the y-axis, assuming that the nodal revenue in the modeled years persists for the lifetime of the system. Breakeven upfront costs are averaged over 2010–2017 based 
on energy and capacity revenues under the default assumptions listed in Table 2 (black trace) and under alternative assumptions: decreasing the WACC from ρ ¼ 7% 
to 4% (purple trace); including nodal public health benefits from SO2, NOx, and PM2.5 mitigation at 2017 levels from Fig. 4a (green trace); setting the investment tax 
credit to its 2019 value of δ ¼ 30% (blue trace) [124]; including climate benefits averaged over 2010–2017 valued at 50 $/ton CO2 (orange trace, showing the same 
results as the black “mean” trace in Fig. 5d); and including climate benefits averaged over 2010–2017 valued at 100 $/ton CO2 (red trace). Alternative assumptions 
are applied individually to the baseline case and are not cumulative. Dotted lines are included at 1.44 $=Wac, the 2017 observed PV system cost [1], to guide the eye. 
Fig. SI.38 in the Supplementary Information shows individual yearly breakeven costs for each assumption. (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.) 
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