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A B S T R A C T   

Subsurface storage of hydrogen, e.g. in depleted oil and gas fields (DOGF), is suggested as a means to overcome 
imbalances between supply and demand in the renewable energy sector. However, hydrogen is an electron donor 
for subsurface microbial processes, which may have important implications for hydrogen recovery, gas injec
tivity and corrosion. Here, we review the controls on the three major hydrogen consuming processes in the 
subsurface, methanogenesis, homoacetogenesis, and sulfate reduction, as a basis to estimate the risk for mi
crobial growth in geological hydrogen storage. Evaluating our data on 42 DOGF showed that five of the fields 
may be considered sterile with respect to hydrogen-consuming microorganisms due to temperatures >122 ◦C. 
Only six DOGF can sustain all of the hydrogen consuming processes, due to either temperature, salinity or 
pressure constraints in the remaining fields. We calculated a potential microbial growth in the order of 1–17*107 

cells ml− 1 for DOGF with favorable conditions for microbial growth, reached after 0.1–19 days for growing cells 
and 0.2–6.6 years for resting cells. The associated hydrogen consumption is negligible to small (<0.01–3.2% of 
the stored hydrogen). Our results can help inform decisions about where hydrogen will be stored in the future.   

1. Introduction 

Zero-carbon energy generation from renewable sources can help 
mitigate carbon emissions and abate climate change [1–3]. One of the 
most significant challenges for renewable energy is the imbalance be
tween supply and demand [3,4]. The generation of hydrogen (H2) via 
electrolysis of water during periods of renewable energy oversupply and 
subsequent H2 storage is one way of overcoming this imbalance, as H2 
can be recovered and used for electricity generation during periods of 
renewable energy shortage [1,5]. Subsurface storage of H2 in salt cav
erns, depleted gas or oil fields or saline aquifers is being considered as an 
alternative to expensive purpose-built storage containers [6]. However, 
the artificial elevation of the H2 concentration in the subsurface may 
stimulate the growth of H2-oxidizing (hydrogenotrophic) bacteria and 
archaea, here collectively referred to as microorganisms, with possible 
adverse implications for gas injectivity and withdrawal via permeability 
reduction, H2 volume loss and corrosion of metal infrastructure [4,7]. 

Understanding the controls on microbial H2 metabolism is therefore 
highly important. 

Much of the subsurface is characterized by combinations of elevated 
temperature [7], high salt concentrations and high pressure [3], reduced 
void space [8], limited nutrient availability [9] and typically highly 
reducing conditions [9–11]. The evidence for microbial life at depth is 
plentiful (e.g. Refs. [12–16]). Most microorganisms in nature grow in 
biofilms attached to surfaces (communities of aggregated microbial cells 
embedded in a secreted matrix of extracellular polymeric substances 
(EPS)) [17,18]. Even small amounts of biofilm can reduce pore throat 
sizes and increase the flow-path tortuosity, resulting in dramatic de
creases in permeability [19]. 

Hydrogen plays a central role in the energy metabolism of subsurface 
life [9]. Yet, a quantitative assessment of the consumption of H2 by deep 
microbial communities in the context of the global H2 cycle is lacking 
[20]. In underground gas storage sites and oil reservoirs the most 
abundant H2-oxidizers are hydrogenotrophic sulfate reducers, that 
couple H2-oxidation to sulfate reduction to produce hydrogen sulfide 

* Corresponding author. 
E-mail address: eike.thaysen@ed.ac.uk (E.M. Thaysen).  

Contents lists available at ScienceDirect 

Renewable and Sustainable Energy Reviews 

journal homepage: www.elsevier.com/locate/rser 

https://doi.org/10.1016/j.rser.2021.111481 
Received 6 November 2020; Received in revised form 10 May 2021; Accepted 7 July 2021   

mailto:eike.thaysen@ed.ac.uk
www.sciencedirect.com/science/journal/13640321
https://www.elsevier.com/locate/rser
https://doi.org/10.1016/j.rser.2021.111481
https://doi.org/10.1016/j.rser.2021.111481
https://doi.org/10.1016/j.rser.2021.111481
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rser.2021.111481&domain=pdf


Renewable and Sustainable Energy Reviews 151 (2021) 111481

2

(H2S); hydrogenotrophic methanogens that reduce carbon dioxide (CO2) 
to methane (CH4) by oxidizing H2; and homoacetogens that couple H2 
oxidation to carbon dioxide (CO2) reduction to produce acetate [7, 
21–23]. These three groups of microorganisms are, amongst others, 
implicated in causing subsurface corrosion [7,22,24]. 

Several recent reviews discussed the potentially very important role of 
microbial activity in geological H2 storage [6,7,23,25,26]. Gregory et al. 
[7] addressed the many possible abiotic and biotic H2-producing and 
H2-consuming processes in the subsurface. Dopffel et al. [23] character
ized different microbial issues, giving key indicators for the processes, and 
advised in the monitoring and management of microbial activity in sub
surface H2 storage. Strobel et al. [26] summarized the concept and po
tential of underground methanation using experimental data from the Sun 
Storage project [27]. The authors highlighted controls on the growth of 
methanogens and changes in gas composition due to methanogenesis. All 
of the above efforts lacked a quantitative assessment of the processes of 
microbial growth and H2 consumption relevant for H2 storage. Indeed, 
many studies report changes in gas composition, biofilm growth and 
clogging near injection wells but hardly any provide quantitative figures 
on microbial growth or on permeability changes [28]. 

To date it remains unclear how subsurface microorganisms might 
react to elevated H2 concentrations [7] and hence whether microbial 
growth is a concern for H2 storage. Even in natural, non-engineered 
subsurface environments, there is little information on microbial H2 
turnover rates [29] and the behavior and population kinetics of micro
organisms are not fully understood [26]. The majority of the available 
data on microbial H2 turnover rates come from batch cultures at optimal 
growth conditions where the kinetics [29], the pace of life [30,31], the 
physiological states and the prominent organisms may differ widely 
from the subsurface environment [7,30]. A further complication arises 
from the fact that many microorganisms in the deep subsurface are not 
culturable with modern enrichment techniques [12,32]. 

In this work, we review the state-of-the-art understanding of the 
controls of temperature, salinity, pH, pressure and nutrients on micro
bial growth on H2 in the subsurface, with emphasis on the three major 
H2-consuming processes methanogenesis, sulfate reduction and homo
acetogenesis, to determine what reservoir conditions will be unfavor
able to microbial activity and as such more suitable sites for long term 
gas storage operations of 30 years or longer, such as the UK Rough gas 
storage site. 

Physicochemical data from 42 depleted or close to depleted oil and 
gas fields (DOGF) of the British and Norwegian North Sea and the Irish 
Sea as well as five H2 storage test sites provide the base for an evaluation 
of the number of sites where microbial growth of methanogens, sulfate 
reducers and homoacetogens can be expected. Using average nutrient 
contents of the microbial cells and site-specific dissolved ion concen
trations, we calculate significant growth and a small H2 consumption for 
growth-permitting DOGF. 

2. State of the art understanding 

2.1. Likely microbial hydrogen oxidation in hydrogen storage systems 

Hydrogen oxidizing processes may be ranked according to the 

magnitude of their H2 threshold and their standard free energy change 
(ΔG0’), two useful metrics to compare the likelihood of reactions to take 
place and the order at which they proceed (Table 1). The H2 threshold 
defines the concentration of H2 below which it is no longer consumed. 
Given all other factors are at optimum, the microbial population with 
the lowest H2 threshold value is expected to be the most successful 
population in competing for H2 [33]. 

The ΔG0’ marks the thermodynamic favorability of a reaction at 
ambient pressure and temperature, pH 7 and 1 M of all reactants. In 
oligotrophic (nutrient poor) high pressure and temperature environ
ments, the order of the ΔG0’ may be used to determine which reaction is 
more energetically favorable. As can be seen from Table 1, more nega
tive ΔG0’ values (more available free energy) are generally accompanied 
by lower H2 thresholds. Not included in Table 1 are the kinetics which 
describe the rate of the electron transfer in the redox reaction. Abioti
cally, most of the H2-oxidizing reactions are very slow but mediated by 
microbial enzymes the processes are catalyzed [35,39]. 

The three main microbial processes with implications for H2 storage, 
hydrogenotrophic sulfate reduction, hydrogenotrophic methanogenesis 
(for simplicity from now on just referred to as sulfate reduction, and 
methanogenesis unless otherwise specified) and homoacetogenesis, 
require the highest threshold [H2] and are among the processes with 
lowest ΔG0’ (Table 1). Nevertheless, e.g. sulfate reduction is instanta
neous in most geologic settings [40] possibly due to fast kinetics [35] 
and/or a relatively high availability of sulfate. 

Because sulfate reducers may use the same substrates as sulfur re
ducers (i.e. sulfide and thiosulfate [41,42]), they are here collectively 
referred to as sulfur species reducing microorganisms (SSRM) perform
ing sulfur species reduction (SSR). Direct respiration of sulfur is limited 
by its low solubility (1.6*10− 7 M) and hence requires cell attachment to 
the sulfur particle [43]. However, sulfur readily reacts with sulfide 
formed during the reduction of sulfate to form easily metabolizable 
polysulphides [43,44]. 

Iron (III) reduction relies on the availability of iron oxides and iron- 
bearing minerals such as smectite and chlorite [45,46], as well as the 
availability of organic carbon, since dissimilatory iron reducing bacteria 
(DIRB) are strict heterotrophs, i.e. synthesize cell carbon from organic 
compounds [47]. Iron oxides are abundant in many sediments and 
aquifers [45] but are typically not available in the carbon-rich oil fields 
because they have been reduced over millions of years and are not 
replenished [21]. Meanwhile, bacteria capable of reducing iron are 
frequently isolated from hydrocarbon-contaminated or oil-associated 
sites (reviewed in Ref. [48]). However, the mere observation of iron 
reduction by bacteria, which are given a DIRB enrichment medium in 
the laboratory, does not imply that these bacteria will reduce iron in 
nature. In addition, cell counts are often low to intermediate (10–100 
cells ml− 1) and may include non-hydrogenotrophs (e.g. Refs. [49,50]). 
In non-engineered environments rich in Fe oxides and organic carbon, 
DIRB may have a great advantage over SSRM, methanogens and 
homoacetogens, due to a very high affinity for H2 [45]. We evaluate this 
process as of intermediate relevance for H2 storage in DOGF. 

Many DIRB and a few SSRM can also couple H2 oxidation to reduc
tion of a variety of other trace metal oxides, e.g. MnO4

2⁻/MnO2, CrO4
2⁻, 

Co, SeO4
2⁻, UO2

2, TcO4
− , AsO3⁻, and VO4

− [41,51,52]. After Fe, the most 
abundant metal in sedimentary environments is Mn (~10% of Fe 
abundance) [45,51]. Due to the trace content of these compounds in the 
environment, their reduction has low relevance for H2 storage. 

Oxygen and nitrate are scarce in the subsurface [11,21,53,54] and 
aerobic hydrogen oxidation, denitrification and ammonification hence 
only become significant when contamination of the aquifer occurs, e.g. 
by drilling fluid [55–57]. 

Halogenated compounds are common in aquifers, and may arise 
from contamination or via natural processes in sediment [58,59]. 
However, the concentrations of these compounds are extremely low: In 
aquifers of 170–1000 m depth, chloroflourocarbons reach maximum 
concentrations of ≤1.1 μg L− 1 [59] and for pristine aquifers 

Abbreviations and units 

SSR Sulfur species reduction 
SSRM Sulfur species reducing microorganisms 
DOGF Depleted oil and gas fields 
EPS Extracellular polymeric substances 
M Molarity (mol L− 1) 
MPa Megapascal  

E.M. Thaysen et al.                                                                                                                                                                                                                             



RenewableandSustainableEnergyReviews151(2021)111481

3

Table 1 
Biotic H2-consuming processes ranked according to their free energy yield (ΔG0’) and measured H2 threshold. Not included are Vanadium, Cobalt, Techneticum, Uranium and Selenium reduction, due their limited 
relevance for H2 storage. NA = not available.  

H2- oxidizing process Reaction H2 threshold (nM) ΔG0’ (KJ mol H2
− 1) Typical ambient [H2] (nmol L− 1) Relevance for H2 storage 

Chromate reduction  
1
2

H2 +
1
3

CrO 2−
4 +

5
3
H+→

1
3

Cr3+ +
4
3
H2O (1)     

<0.1 [34] NA NA low 

Aerobic hydrogen oxidation (Knallgas)  

H2 +
1
2
O2→H2O (2)     

0.051 [7] − 237 [7,34] NA low 

Denitrification  

H2 +
2
5
H+ +

2
5

NO −
3 →

1
5
N2 +

6
5
H2O (3)     

<0.05–0.5 [7] − 240.1 [7,34] 
− 224 [4,35] 

<0.05 [4,33,34] low 

Halorespiration  

H2 + halogenated compounds→dehalogentated compounds + HCl (4)     

0.05–0.27 [34] 
<0.3 [36] 
0.27–2 [7] 

− 230 to − 187 [7] NA low 

Iron (III) reduction  

H2 + ferric(oxy)hydroxides → ferrous iron + H2O (5)     

<0.11–0.8 [34,36] − 228.3 [7,36] 
− 182.5 [34] 
− 114 [4] 

0.2 [4,33] 
0.2–1 [34] 

intermediate 

Manganese (IV) reduction  

2H2 +MnO2→Mn(OH)2 + 2H2O (6)     

<0.05 [33] − 163 [4,33] <0.05 [4,33] low 

Arsenate reduction  

H2 +HAsO 2−
4 + 2H+→H3AsO3 + H2O (7)     

0.03–0.09 [34] − 162.4 [34] 0.4–0.7 [34] low 

Ammonification  

4H2 + 2H+ + NO −
3 →NH +

4 + 3H2O (8)     

0.015–0.025 [36,37] − 150 [4,36] <0.05 [4,33] low 

Fumarate reduction  

H2 + fumarate→succinate (9)     

0.015 [36,37] − 86.2 [36] NA low 

Hydrogenotrophic sulfate reduction  

4H2 + SO 2−
4 + H+→HS− + 4H2O (10)     

1-15 [36,37] − 38 [7,36] 
− 48 [34] 
− 57 [4] 

1-2 [4,33] high 

Hydrogenotrophic methanogenesis  

4H2 +CO2→CH4 + 2H2O (11)     

0.4–95 [36–38] − 34 [4,36] 
− 43.9 [34] 

5-10 [4,33] 
7-13 [34] 

high 

Sulfur reduction  

H2 + S→HS− + H+ (12)     

2500 [7] − 33.1 [7] NA intermediate 

Homoacetogenesis  

4H2 + 2CO2→CH3COOH + 2H2 (13)     

328-3640 [36,37] − 26 [4,36] 
− 36.1 [34] 

100< [4], 117–150 [34] high  
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0.003–0.007 μg L− 1 of chlorinated hydrocarbons were measured [58]. 
We evaluate the relevance of this process to H2 storage as negligible. 

Literature on the importance of anaerobic fumarate respiration using 
H2 is scarce. Fumarate may be used as an alternative electron acceptor 
by SSRM [41,60] and homoacetogens [61–64]. In the non-engineered 
subsurface, readily metabolizable organic matter, like fumarate, is 
rare [65]. Oil fields being rich in organic C compounds may contain 
more fumarate. Payler et al. [12] confirmed the presence of fumarate 
reductase, the key enzyme in fumarate reduction, in three out of five 
metagenomes from subsurface brines within sandstone. However, the 
metagenomes belonged primarily to non-H2 utilizing bacteria (Haloru
brum) and fumarate concentrations were not reported. Acknowledging 
the lack of data in this field, we evaluate this process as being of low 
relevance for H2 storage. 

2.2. Environmental controls on microbial growth 

Microbial growth and H2 consumption rates vary with nutrient 
availability and environmental variables (e.g. Refs. [17,66].) Each strain 
is adapted to an optimum set of nutrients and environmental conditions 
where potentially the greatest growth rates occur. Beyond the optimum 
conditions, organisms may grow but at reduced rate or they become 
dormant. In this section, we discuss the requirements for nutrients, and 
the overall impact of temperature, salinity, pH and pressure on the 
growth of the major microbial H2–oxidizers in DOGF, in the ranges 
relevant to H2 storage. The specific activity of microbial strains grown at 
optimum conditions varies as well (reviewed in Ref. [67]) but the 
elucidation of differences between strains is beyond the scope of this 
review. 

2.2.1. Nutrients 
The nutrient requirements of H2-oxidizing microorganisms are 

poorly elucidated. Often, only a limited number of single strains within 
each diverse metabolic group have been investigated, which are unlikely 
to be representative of all strains. Below we summarize the few knowns. 

Apart from water of sufficient thermodynamic activity (see section 
2.2.4), hydrogenotrophs require H2 as a source of electrons (energy), an 
electron acceptor and a carbon source for cell division, as well as a set of 
macro and trace elements and various organic nutrients [68]. Microor
ganisms can only access H2(aq) and hence the solubility of H2(g) is of 
direct relevance for all H2-consuming reactions. Given a gas phase of 
~100% H2 in an H2 storage system, the equilibrium solubility of H2 
exceeds the highest threshold value of an H2-consuming microorganism 
of 3.6 μM (Table 1) by ~3 orders of magnitude at ambient pressure and 
temperature and under static conditions (Fig. A1a), with further in
crease at higher pressures (Fig. A1b and c). While under non-static 
conditions hydrogenotrophs will consume part of the H2, these figures 
suggest no limitation by the H2 solubility on microbial growth under H2 
storage conditions. 

Elemental requirements include the macro elements C, N, H, P, Ca, 
Mg, S and Fe (>95% of the microbial cell dry weight), and the trace 
elements Co, Mn, Ni, Mo, Cu, Zn, W as well as Se for some metabolic 
groups [69,70]. For optimum growth, many microorganisms addition
ally require different vitamins (e.g. lipoic acid, biotin, riboflavin, folic 
acid, thiamine, etc.), yeast extract, coenzyme M, aromatic acids and 
phospholipids or a combination of these (e.g. Refs. [8,63,71–73]). 

Nutrients may be assimilated from the solution or directly from 
minerals (e.g. Refs. [74–77]), the latter being of particular importance in 
oligotrophic environments [75]. Carbon, sulfur, phosphorous and iron 
are amongst the key elements released by mineral weathering [75]. The 
extent to which subsurface microbial communities depend on mineral 
weathering is unknown [75]. For soils, Huang et al. [78] analyzed that 
>50% of the 1100 microbial strains were capable of mineral weathering, 
as tested by their ability to mineralize biotite. 

Microbial cell carbon may be assimilated from CO2 alone (autot
rophy) or from organic carbon compounds (heterotrophy) [79]. Ta
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Methanogens and homoacetogens can grow autotrophically or hetero
trophically, and several can grow mixotrophically (e.g. Refs. [64,80, 
81]). SSRM typically grow heterotrophically but some grow autotro
phically or mixotrophically [82,83]. Nitrogen may be assimilated from 
ammonia and nitrate or by nitrogen-fixation (diazotrophy). Diazotrophy 
is common amongst SSRM, methanogens and homoacetogens [84–87], 
though homoacetogens often inhabit ammonia-rich environments [86]. 

Little is known about the differences in the nutrient requirements on 
the level of functional groups and the variation in nutrient requirement 
within a functional group. SSRM have a higher requirement for iron 
(1.8*10− 6 M) than is usually observed for microorganisms [88] while 
methanogens have a higher requirement for sulfur with optimal levels 
ranging from 0.03 to 0.79 mM (reviewed in Ref. [89]). 

Literature on when nutrients become limiting is also scarce. Sulfate 
reduction may occur down to 5–77 μM sulfate [90,91]. Specific data on 
the phosphorous requirement of the major H2-oxidizing microbial 
groups are outdated/lacking but research on other extremophiles in
dicates that phosphorous concentrations as low as 1.7 μM may be suf
ficient for growth [92]. Methanogens of the order Methanosarcinae 
require 29.6 mM Mg for optimum growth and growth ceases at 16.5 mM 
(reviewed in Ref. [89]). When grown under optimum conditions, the 

growth rate of autotrophs may be limited by the rate of transfer of H2 
and CO2 from gas to liquid, as was shown for the methanogen Meth
anobacterium thermoautotrophicum [93] and for the sulfate reducers 
within Desulfotomaculum sp. [94]. 

Carbon is unlikely to be limiting in the hydrocarbon-rich DOGF [54, 
95,96] but this is not a given in saline aquifers with no history of oil or 
gas. Sulfate is present in significant concentrations in most DOGF 
(Table 2) but H2 injection can cause sulfate depletion due to accelerated 
growth of SSRM [97]. Nitrogen in the form of the preferred N-source, 
ammonium [98], may be limiting in DOGF [49,54,88] but nitrate levels 
of may be elevated [49], often due to contamination by drilling fluid 
[55–57]. 

2.2.2. Temperature 
Temperatures of 22.5–80 ◦C or 20–100 ◦C have been suggested for H2 

storage based on a recommended depth range of 500–2000 m for H2 
storage in DOGF and saline aquifers [99–101]. Microorganisms are 
classified according to their preferred growth temperature: psychro
philes grow optimally below 20 ◦C, psychotrophs grow optimally at or 
above 20 ◦C and may tolerate temperatures below 5 ◦C, mesophiles grow 
between 20 and 45 ◦C, thermophiles grow above 45–50 ◦C, and 

Fig. 1. Distribution of optimum growth temperature, critical growth temperature, optimum pH values and critical salinity for 101–143 methanogens (a–d), 19–88 
homoacetogens (e–h) and 165–277 sulfur species reducing microorganisms (SSRM) (i–l). Distributed between the graphs for the different groups of H2-oxidizers are 
the temperatures, pH values and salinities of 42 depleted oil and gas fields (DOGF) and five test sites for H2 injection. Where ranges of a parameter were given (see 
Table A4), the lower end value was plotted. 
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hyperthermophiles show optimal growth at temperatures of 80 ◦C or 
above [102,103]. The upper limit for life is 121–122 ◦C [104,105]. 

High temperatures alter the energetic properties (e.g., vibrational 
modes) of biomolecules in their aqueous solvent, change the substrate 
solubility or viscosity and the ionization of the aqueous medium [106]. 
Adverse effects of high temperature include DNA denaturing or damage, 
decreased protein stability, hydrolysis of ATP and ADP, amongst others 
[104,106]. The metabolic strategies of thermophiles are highly diverse. 
For a discussion, the reader is referred to Ref. [107]. 

Thermophiles and hyperthermophiles are challenged by increased 
reaction rates at elevated temperature which can imply that abiotic re
action rates are so fast that there is no benefit to the microorganism if it 
catalyzes the reaction [39]. High-temperature-adapted microorganisms 
are therefore thought to produce enzymes with faster reaction rates 
[108]. 

Most cultivated hydrogenotrophic methanogens are mesophiles but 
known optimal growth temperatures for methanogens range from 15 to 
98 ◦C (Fig. 1a). A considerable number of methanogens favor temper
atures above 60 ◦C (Fig. 1a). The highest temperature that a methanogen 
was found to grow under is 122 ◦C (Methanopyrus kandleri) (Fig. 1b) 
[105]. 

Cultivated SSRM typically have optimum growth temperatures of 
20–30 ◦C or 50–70 ◦C (Fig. 1i), where sulfur reducing archaea have 
higher optimum growth temperatures than sulfur and sulfate reducing 
bacteria. The full range for optimum growth of SSRM spans 10–106 ◦C 
(Fig. 1i). The critical temperature for growth of cultivated SSRM is 
113 ◦C (Pyrolobus fumarii) [109]. 

Homoacetogens typically have optimum growth temperatures be
tween 20 and 30 ◦C (85% of the here gathered cultivated strains; 
Fig. 1e). Thermophilic growth at temperatures ≥60 ◦C has been reported 
for eight strains, only (e.g. Moorella mulderi, Thermoanaerobacter kivui, 
Acetogenium kivui) [110–112]. Corresponding upper limits for growth 
are 70–72 ◦C (Fig. 1f) [110–112]. 

2.2.3. Salinity 
The relevant salt concentration range for H2 storage is 0–5 M NaCl 

[100], at which highly diverse prokaryote communities can be found 
[113]. Microorganisms are classified according to their salt tolerance: 
Non-halophilic microorganisms grow up to 0.2 M NaCl, slight halophile 
grow at 0.2–0.5 M NaCl, moderate halophile between 0.5 and 2.5 M 
NaCl, and extreme halophile that grow best in hypersaline media con
taining 2.5–5.2 M NaCl [113]. 

High salt concentrations exert osmotic stress [114], requiring any 
microorganism living at high salt concentrations to maintain its intra
cellular environment at least isosmotic with the environment [113]. 
Two main strategies to achieve osmotic balance exist: the salt-in strat
egy, and at the exclusion of salt and biosynthesis/accumulation of 
organic ‘compatible’ solutes [115]. For a discussion of these strategies in 
relation to different metabolic pathways, the reader is referred to 
Ref. [115]. Commonly, salt tolerance/requirement is enhanced at 
increased temperatures [113] but there are many examples of meso
philic halophiles. 

Most cultivated hydrogenotrophic methanogens favor salt concen
trations up to 0.77 M NaCl (the approximate salinity for seawater) but 
16 known strains survive under more halophilic conditions. Two 
extremely halophilic mesophilic hydrogenotrophic methanogens, will 
tolerate salt concentrations of ~3.3–3.4 M, Methanocalculus halotolerans 
FR1T [116] and Methanocalculus natronophilus [117] (Fig. 1d). 

The large majority of cultivated SSRM grow optimally at low salin
ities between 0 and 0.4 M NaCl. However, thirtyfour SSRM (all meso
philes) have upper salinity limits for growth of ≥1.7 M NaCl (Fig. 1l). 
The Desulfovibrio oxyclinae, Desulfohalobium utahense and Desulfoha
lobium retbaense, have some of the highest upper salinity limits for 
growth of 4.0–4.2 M NaCl [118–120] (Fig. 1h). 

The salt tolerance of homoacetogens is poorly investigated. The 
majority of cultivated homoacetogens have low optimum salinities of 

0–0.4 M NaCl. However, a few strains, i.e. Natroniella acetigena and 
Acetohalobium arabaticum, grow optimally around 2.5 M NaCl and will 
tolerate salinities up to 4.3–4.4 M (Fig. 1h) [121,122]. The upper growth 
temperatures for these strains are 42 and 47 ◦C, respectively [121,122]. 

A clear upper salinity limit to microbial activity has not been 
established [23,115]. It appears to be the brine composition, rather than 
the salinity alone, that puts a hard limit on microbial growth [12], see 
section 2.2.4. Salt tolerances based on activity measurements from 
natural microbial communities match results from laboratory studies on 
cultivated microorganisms for most metabolic pathways [115]. For 
sulfate reduction, however, activity measurements of natural microbial 
communities (using any available electron donor) indicate an upper 
salinity limit of 4.7–8.1 M NaCl [123–125]. 

2.2.4. Brine complexity 
Natural brines contain dissolved ions whose interaction is extremely 

complex and may cause physicochemical stressors to brine habitability 
such as low water activity (aw), high ionic strength, chaotropy (ability to 
disrupt the network of H2-bonds between water molecules) or a com
bination of these [12]. Most bacteria grow well at a aw around 0.98 (the 
approx. aw for sea water) but relatively few species can grow at a aw of 
0.96 or lower [126]. Halophilic microorganisms, including halophilic 
methanogens are one exception; several can grow at a aw as low as 0.75 
[127] in Refs. [126,128]. Steinle et al. [129] challenged these limits by 
detecting SSR in a nearly MgCl2 saturated brine with a aw of ~0.4. 

There are indications of a more important role of chaotropy over aw 
in limiting microbial life [128]. Chaotropic agents include MgCl2, CaCl2, 
FeCl3, KI, LiBr, LiCl while examples of kosmotropic agents are NaCl, KCl, 
Na2SO4, MgSO4, K2SO4, FeSO4 [130]. As such one may speculate that 
most subsurface brines due to their dominance of NaCl and richness in 
sulfate are kosmotropic and albeit also stress-inducing, more permissive 
of microbial growth [12,128]. Yet, the interactions between chao- or 
kosmotropic agents, aw and other physicochemical properties of brines 
may be very complex and are hitherto not understood [12]. The further 
elucidation of this topic is subject to more research and beyond the scope 
of this paper. 

2.2.5. pH 
The brine pH may affect the growth of microorganisms via 1) a direct 

effect on the growth metabolism, and 2) an effect on the redox reaction. 
With respect to the former, most methanogens, homoacetogens and 
SSRM are adopted to a pH of 6.5–7.5 (Fig. 1c, g, k). Most methanogens 
and SSRM cannot grow outside the pH range 4–9.5 [26,131,132] 
(Fig. 1c, k). Seven known methanogens can endure a critical pH-value of 
10 (e.g. the Methanocalculus natronophilus and alkaliphilus [133]). At the 
other end of the spectrum, nine known methanogens can endure acidic 
conditions of pH <5, e.g. the Methanoregula boonei, the Meth
anothermococcus okinawensis, the Methanosarcina spelaei and the Meth
anocaldococcus bathoardescens [134–137]. 

Eighteen known SSRM are adapted to highly alkaline environments 
above pH 10, e.g. the Desulfonatronovibrio hydrogenovorans, the Desul
furispira natronophila and the Desulfovibrio vietnamensis [138–140]. 
Twentysix known SSRM grow down to a pH <5. Nine known SSRM, all 
of them sulfur reducers, grow down to a pH of 1, e.g. the Thiobacillus 
caldus, the Sulfolobus acidocaldarius, the Acidianus infernus and brierleyi, 
and the Stygiolobus azoricus [141–144]. 

Six known homoacetogenic strains have high critical pH values of 
10.0–10.7, i.e. Clostridium ultunense, Natroniella acetigena, Fuchsiella 
alkaliacetigena and ferrireducens, Peptostreptococcus productus B-52 and 
Moorella sp HUC22-1 [145–149]. The Clostridium drakai, ljungdahlii, 
scatologenes, coccoides and thermoautrophicum are the most acidophilic 
known strains; they can tolerate pH values as low as 3.6–4.5 [150–154]. 

2.2.6. Pressure 
Pressure ranges for H2 storage of 5–20 MPa [99] or 1–50 MPa [100] 

have been reported. Life at high pressure requires homeostatic changes 
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[103]. The high pressures encountered in pore spaces in the crust are 
generally less inhibitory to microbial cellular activity than the high 
temperatures, partly because of the relatively high osmotic pressure of 
cytoplasm [102], in particular in thermophiles and hyperthermophiles 
[39]. Membrane fluidity, and DNA and protein synthesis are among the 
most pressure-sensitive cellular components and processes [103,155, 
156]. Different adaptive mechanisms and strategies are used by micro
organisms to survive in high-pressure environments, including efficient 
expression and activity of proteins used in protein folding complexes 
(prefoldins), membrane fluidity maintaining, robust biocatalysts [156], 
and EPS [18] or spore formation [103]. 

An upper pressure limit to microbial life has not been established 
[23]. At 30–50 MPa, the growth of various mesophilic, 
atmospheric-pressure-adapted microorganisms is inhibited [155] 
whereas pressure effects are generally favorable for the growth of 
hyperthermophiles; above 100 ◦C, elevated pressures are required to 
maintain a liquid environment [104]. Microorganisms that grow opti
mally at 10 MPa or above are obligate and facultative piezophiles, where 
the former do not tolerate ambient pressure and the latter do [103]. A 
recent publication listed all identified piezophiles and grouped them 
according to their growth temperature optimum [103]. The list of spe
cies is rather short (and as we find incomplete despite being published in 
2020), possibly due to the fact that, to date, it has not been possible to 
isolate genes associated with piezophily, so the effects of pressure on any 
particular organism can only be determined empirically [103,156]. 
Empirical efforts however, do not commonly include pressure tolerance 
in the description of the environmental growth constraints of a micro
organism. In addition, most mesophiles and thermophiles from habitats 
with pressures of <50 MPa will grow in enrichment cultures incubated 
at atmospheric pressure [32]. The large majority of identified cultivated 
piezophiles are psychrophiles (27 strains) [103], the relevance of which 
is low to our study. Only four mesophilic strains were reported, three of 
them hydrogenotrophic sulfate reducers (the Desulfovibro profundus, 
piezophilus, and hydrothermalis), growing optimally at 10–40 MPa [103]. 
Eight thermophiles were identified, including one hydrogenotrophic 
methanogen, Methanococcus thermolithrophicus, growing optimally at 50 
MPa. The hyperthermophilic group hosts the hydrogenotrophic Meth
anopyrus kandleri and Methanocaldococcus jannaschii growing optimally 
at 20–75 MPa, respectively. Examples of hydrogenotrophic piezophiles 
that are not included in Ref. [103] are the mesophilic SSRM Paracoccus 
pantrotrophus and Pseudodesulfovibrio indicus which growth optimally at 
30 and 10 MPa, respectively [157,158], and the thermophilic SSRM 
Piezobacter thermophilus and Archaeoglobus fulgidus TF2 which grow 
optimally at 30 and 42 MPa, respectively [73,159]. 

A temperature dependence of the pressure response was reported for 
the SSRM Desulfovibrio indonesiensis which has similar growth rates at 
high and ambient pressure 45 ◦C but reduces its growth rate at 20 ◦C and 
30 MPa relative to at 0.1 MPa [160]. Elevated pressure may increase the 
maximum growth temperature by 2–12 ◦C relative to lower pressure 
(0.1–3 MPa) [104,105,161]. 

2.2.7. Inhibitors 
Exposure to hydrogen sulfide, H2S, and its bisulfide ion, HS− , causes 

damage to microbial proteins and coenzymes [89,162]. It remains un
clear whether H2S or HS− is responsible for the toxicity effect but there is 
general consensus that H2S can penetrate the microbial cell membrane 
more easily than HS− [162]. Hydrogen sulfide dissociates with a pK1 of 
6.99 at 10 MPa and 25 ◦C to form >99% HS− at pH 8.5 [163]. 

Growth of SSRM and methanogens is adversely affected at concen
trations of H2S > 3.8–4.0 mM [164–166]. At 5.0–6.3 mM H2S growth is 
completely inhibited for SSRM [164,166], without however stopping all 
metabolic activity [164]. For methanogens and homoacetogens 3.8–7.5 
mM H2S and total sulfide concentrations of 3.3 mM, respectively, stop 
the growth [162,166]. In systems with circumneutral pH and ferric ion 
concentrations above 1 mM, the concentrations of H2S are predicted to 
be kept below toxic levels due to its precipitation in makinawite [44]. 

Carbon dioxide pressure above 1 bar can be toxic for microorganisms 
as shown for the SSRM Desulfotomaculum geothermicum and the metha
nogen Methanothermococcus thermolithotrophicus [167]. For many an
aerobes like methanogens and homoacetogens, oxygen is toxic too [62, 
102]. 

Nitrate inhibits homoacetogenesis [168], and ammonium [169] and 
sulfate inhibit methanogenesis (reviewed in Ref. [170]), with minimum 
inhibitory concentrations varying depending on the environment [166, 
169]. For instance, sulfate concentrations as low as 2*10− 4 M were 
shown to inhibit methanogenesis for 10 h in lake sediments, possibly by 
competition with SSRM for available H2 and C-substrate [165] (see 
section 2.3). Under H2 storage conditions however, sulfate is likely not 
to affect methanogenesis, because sulfate inhibition was shown to be 
reversed by addition of H2 [165]. For a discussion of an inhibitory effect 
of H2, see section 2.5. 

2.2.8. Summary of environmental growth constraints 
Acknowledging the lack of data for the pressure sensitivity of many 

microorganisms [103], and considering a general abundance of nutri
ents in DOGF (Table 2), we evaluate temperature and salinity as the 
most crucial environmental factors constraining the growth of homo
acetogens, methanogens and SSRM in DOGF. Pressures encountered in 
the crust are documented to have less effect than temperature on mi
crobial cellular activity, particularly in thermophiles and hyper
thermophiles [39,102]. The pH does not pose a similar constraint to the 
growth of homoacetogens, methanogens and SSRM because the pH 
ranges for growth typically span two to three pH units (not shown) and 
for most species they include typical aquifer pH values of 6–7 [171] 
(Table A4). Brine complexity and inhibitors were not included in this 
analysis due a lack of information on the brine composition of DOGF 
beyond a limited set of dissolved ions. 

Fig. 2 shows the critical temperature versus critical salinity for 287 
cultivated strains and reveals that salt tolerances up to 1–1.7 M are 
widely distributed over the entire temperature range while salt toler
ances >1.7 M are only found at a critical temperature tolerances of 
40–50 ◦C. Hence, from the point of view of minimizing microbial im
pacts on H2 storage, sites with temperatures >55 ◦C and salinities >1.7 
M are preferred. 

Growth of cultivated strains in all of the investigated microbial 
groups may occur up to 72 ◦C (Fig. 1). Above 72 ◦C, cultivated homo
acetogens will not grow, and at 80–94 ◦C sulfate reducers cease to grow. 

Fig. 2. Critical temperature (without salinity stress) versus critical salinity 
(without temperature stress) for methanogens, homoacetogens and SSRM. 
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Thirty-six cultivated SSRM and eleven methanogens have optimum 
growth temperature of ≥80 ◦C (Fig. 1a and i) and will still grow, albeit at 
reduced rate, beyond their optimum temperatures. The maximum 
growth temperature for known methanogens and sulfur reducers is 
122 ◦C and 113 ◦C, respectively. The upper limits for salinity and pH that 
allow growth of cultivated strains from all of the major groups of H2- 
oxidizing microorganisms are 3 M NaCl and pH 10.2, respectively. The 
upper pressure limit for most mesophiles is 30–50 MPa. 

2.3. Growth regulation by competition and syntrophy 

Homoacetogenic bacteria are ubiquitous in anaerobic sediments [63, 
173] and often co-exist with SSRM and methanogens [15,174], as 
revealed by a combination of molecular (16S RNA gene sequences) and 
culturing (e.g. metabolites, radiotracer) techniques. Few habitats have 
been identified in which homoacetogens compete with other H2-con
sumers (culturing studies) [173,175]. Exceptions include a 
low-temperature and low-salinity petroleum reservoir where homoace
togens dominated over methanogens and SSRM (molecular study) [60], 
a granite groundwater at 400 m depth where cell numbers of metha
nogens and homoacetogens were balanced (molecular study) [81], and 
subsurface marine sediments where mixotrophic homoacetogenesis 
outperformed methanogenesis (culturing study) [80]. 

Kinetic advantages of SSRM and methanogens (i.e. a higher affinity 
for H2, expressed as a low Michaelis-Menten constant, KM, or Monod half 
saturation constant, KS (H2 concentration at which growth rate reaches 
half maximum growth rate), and a higher maximum growth/reaction 
rate, Vmax or μmax for Michaelis-Menten kinetics and Monod kinetics, 
respectively) were proposed as the underlying cause for the few exam
ples of the poor competitiveness of homoacetogens [176]. Very limited 
information on the H2 consumption kinetics of homoacetogenic bacteria 
is available in literature [177]. The available data show that μmax differs 
by one order of magnitude between strains (0.02–0.5 h− 1) [4,177]. This 
may or may not be lower than the μmax for SSRM 0.057–5.5 h− 1 [4,38, 
178] and methanogens 0.032–1.4 h− 1 [38,178]. Krumholz et al. [176] 
showed that homoacetogens were not able to compete effectively for H2 
in the presence of SSRM in a subsurface sandstone ecosystem at 30 ◦C 
regardless of pH2, and despite significant homoacetogenesis at excess 
H2. Findings by Berta et al. [4] for a groundwater sediment held under 
excess pH2 and 20 ◦C contrasts this as homoacetogenesis rates were up to 
21 times higher than SSR. 

Environmental conditions may be a crucial determinant for the 
competitiveness of homoacetogens, as low temperatures (~15 ◦C) [179, 
180] and low pH values [62,181] favor their growth over methanogens. 
Under excess pH2, homoacetogenic strains with high μmax such as Ace
tobacterium bakii will outcompete methanogens [180]. The outstanding 
metabolic flexibility of homoacetogens for utilizing a vast variety of 
substrates may additionally explain why homoacetogens can compete 
with more specialized microorganisms like SSRM or methanogens [63, 
180,182]. 

As for the competitiveness of methanogens and SSRM, the H2 
thresholds of methanogens may be comparable (1–15 nM) or higher 
(>15–95) than for sulfate reducers and significantly lower than for 
sulfur reducers (≪2500 nM; Table 1), indicating an advantage of sulfate 
reducers over methanogens and sulfur reducers in most non-engineered, 
low pH2 environments. In line with this, Lackner [183] recently 
reviewed that sulfate reducers outcompete methanogens for H2 in most 
studies. However, at excess H2, methanogens and sulfate reducers would 
be expected to process equal shares of the in situ H2 pool [178]. Also, 
since concentrations of sulfate are much lower than bicarbonate in 
non-marine natural environments [38] (Table 2), the growth of sulfate 
reducers at excess H2 will be limited by the availability of their electron 
acceptor, making it possible for methanogens to compete [38]. As a 
general rule pH values below 7 favor the growth of methanogens over 
sulfate reducers [132]. Above pH 7.5, sulfate reducers grow faster than 
methanogens and would be expected to outcompete them [132]. 

Syntrophic relationships between different functional groups have 
been documented frequently (whereby the metabolic products of one 
group serve as substrates for the other). For example, SSRM and 
homoacetogens were shown to participate cooperatively in microbial 
induced corrosion of steel where SSRM grew on acetate produced by 
homoacetogenesis [68]. Substrate provision by the co-cultured Desul
fovibrio vulgaris enhanced growth of the dehalogen Dehalococcoides 
ethenogenes 195 by 24% and caused three times higher dechlorination 
rates [184]. Syntrophy may also explain the detection of a combination 
of the SSRMs Desulfovibrio and the homoacetogens Acetobacterium in 
petroleum and subsurface CO2 reservoirs [60,185], and the presence of 
H2-producing heterotrophs along with methanogens in petroleum res
ervoirs where the latter rely on H2-transfer by the former [186]. 

2.4. Microbial ecology in natural gas and petroleum reservoirs 

Recent years have seen a considerable effort in describing deep 
subsurface microbial communities, including those from gas and pe
troleum reservoirs. Isolated hydrogenotrophic microbes from these 
habitats are from the SSRM families Hydrogenothermaceae, Sulfurospir
illaceae, Rhodobacteraceae, Ectothiorhodospiraceae, Desulfomicrobiaceae, 
Peptococcaceae, Archaeoglobaceae, Desulforobacteraceae, Desulfobulba
ceae, Desulfovibrionaceae, Syntrophobacteraceae where the latter seven 
families are known with certainty to be capable of thiosulfate reduction 
[22,54,96,97,187–194], the Eubacteriaceae and Sporomusaceae families 
which host homoacetogenic strains [96,190,195], and the methanogen 
families Methanosarcinaceae, Methanobacteriaceae, Methanomicrobiaceae, 
Methanopyraceae, Methanococcaceae, Methanocalculaceae and Meth
anosaetaceae [97,116,190] in addition to uncultured microbial taxa [54, 
188,189,194,196]. Our collection of hydrogenotrophs (Fig. 1) lists many 
strains from the above microbial families, including the strain that holds 
the highest critical temperature for a methanogen, Methanopyrus kand
leri. Sulfur reducing families that define the upper temperature limits for 
SSRM like Thermoproteaceae and Pyrodictiaceae were not reported. The 
cause for their absence may be a predominance of mesophilic and 
thermophilic sites but may also reflect a generally stronger growth of 
sulfate reducers over sulfur reducers in oil and gas reservoirs. 
Ranchou-Peyrouse et al. [97] showed that the microbial community in 
35 out of 36 subsurface wells from seven natural gas storage sites was 
dominated by sulfate reducers. 

2.5. Effect of high hydrogen concentrations on microbial metabolism and 
community structure 

A range of studies investigated the metabolism of methanogens at 
excess H2 and ambient pressure, with unambiguous results. Conrad et al. 
[197] demonstrated that excess H2 stimulated methanogenesis and 
growth rates in a paddy soil (species not specified). Opposed to this, 
results by Topcuoglu et al. [186] and Stewart et al. [198] suggest an 
inhibitory effect of high partial pressures of H2, pH2, expressed as a 
~10-fold drop in the growth yield (cells per mole CH4) of Meth
anocaldococcus jannaschii and a slight drop of ~0.1–0.7 h− 1 in the 
growth rate. Similar observations were made for Methanothermobacter 
thermoautotrophicus [199]. However, within the excess H2 experiment, 
higher H2 concentrations stimulated growth [186], suggesting a com
plex influence of pH2. Methanogens seem to express a pH2-dependent 
change in their ecological strategy, i.e. maximum growth rate vs. 
maximum growth yield, as a means to cope with different environmental 
conditions [186]. Indeed, M. jannaschii is capable of sensing subtle 
changes in dissolved H2 concentration and restraining the 
energy-intensive growth of flagella to H2-limiting conditions whereas at 
excess H2 cells are mostly flagella devoid [200]. 

Only few studies investigated microbial H2 turnover at high pH2 of 
up to 1.5–24.8 MPa [4,201,202]. The growth of methanogens 
(M. jannaschii) was strongly inhibited at high pH2 [201]. However, the 
authors added CO2 at a pressure of at least 0.2 MPa to the hydrogen gas 
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mixture where a pCO2 of 0.1 MPa can already be toxic some metha
nogens [167]. Hence it is not clear whether H2 or CO2 performed the 
toxic action. For homoacetogens and SSRM, the H2 consumption was 
shown not to change in response to different pH2 of 0.1–3.5 MPa [4, 
202], indicating neither stimulation nor toxicity at different levels of 
excess H2. The comparison to limiting H2 conditions was not made. 

Apart from the microbial metabolism, the microbial community may 
also change in response to high pH2. Given a pertubation by H2 injection 
it can be anticipated that other types of microorganisms, e.g. the in 
hydrocarbon reservoirs common fermenters [21,95,97,187], will 
decrease in abundance while hydrogenotrophs will increase [7], in line 
with the Baas Becking principle [203]. An increase in hydrogenotrophs 
in response to H2 addition was recently confirmed for soils, however H2 
consumption increased in only one of the investigated soils, suggesting a 
pronounced influence of the indigenous microbial community [204]. 
Bioreactor experiments support a decrease in microbial diversity in 
response to high pH2 [205,206]. Puente-Sanchez et al. [207] were the 
first to report differences in the subsurface H2-consuming community in 
response to varying pH2 within the Iberian Pyrite Belt. Ranchou-Peyruse 
et al. [97] showed that town gas storage with more than 50% H2 
changed the microbial community from a predominantly sulfate 
reducing community to a dominance of methanogens, and this balance 
was active even decades after injection stopped, possibly via H2 trapping 
in the microporous system [97]. It was suspected that all sulfate was 
initially used up by SSRM following increased growth of methanogens 
[97]. 

3. Evaluating the potential hydrogen consumption in DOGF 

3.1. Calculation of the microbial growth 

We screened 42 DOGF in the North Sea and the Irish Sea and five H2 
storage test sites for temperature, salinity, pH and pressure data (Fig. 1, 
Table A4). We discovered significant differences in the salinity of the 
DOGF as reported by different sources [172,208]. Because we relied on 
the solution compositions for the calculation of the potential microbial 
growth in the fields, which are available from Ref. [172], we chose to 
use the salinity data from the same source. 

The environmental data from the DOGF and H2 storage test sites 
were aligned with the constraints for growth of methanogens, homo
acetogens and SSRM (Figs. 1–2) to select in which fields growth can be 
expected. For the few fields that fulfil the growth constraints of all 
investigated microorganisms, we calculated a first-order estimate of the 
microbial growth using the elemental cell composition as a proxy for the 
nutrient requirement [209,210] (Text A.1). 

Our calculations assumed that the supply of N and C are covered by 
diazotrophic and autotrophic growth, respectively. Requirements for 
trace elements were neglected in the calculation due to a lack of infor
mation on the relevant trace element contents in the reservoirs. Where a 
nutrient for a specific field was not available we used the average value 
from the fields given in Table 2. Any effect of the pH2 on microbial 
growth was neglected. We assumed that cells neither die nor are 
removed, and that nutrients are not replenished by inflow, re- 
mineralization from decaying biomass or mineral dissolution. Simulta
neous growth by different microorganisms was not considered. 

Percentages of nutrients in the cells (Text A.1) were converted to 
mass using a wet cell mass of 1.77*10− 12 g for methanogens [211], 
3.2–6.2*10− 13 g for homoacetogens and 7.81*10− 13 g for SSRM. The cell 
wet weight of homoacetogens was calculated by dividing the cell vol
ume of 1.62–3.14 μm3 for the subsurface mixotrophic homoacetogen 
Acetobacterium psammolithicum [176] with an assumed bacterial density 
of 1*10− 12 g μm− 3 [212]. The cell wet weight of SSRMs was calculated 
using a cell dry weight of 3.125*10− 13 g for Desulfovibrio desulfuricans 
[213] and dividing this with a general bacterial dry weight to wet weight 
ratio of 0.4 [214]. Subsequently, the concentrations of C, H, O, Ca, K, Na, 
S, Mg, P and Fe in the DOGF (Table 2) were divided by the mass of the 

respective cell nutrient per microbial cell calculated above. This resulted 
in the maximum cell count within each microbial group, G, that could 
potentially be created based on a single nutrient, where the lowest G 
indicated the limiting nutrient for cell growth. For an example of those 
calculations, see Text A.1. 

3.2. Estimation of the cell-specific hydrogen consumption 

Hydrogen may be consumed by growing and resting microbial cells 
at rates of 0.02–5.0*105 nM h− 1 for homoacetogens, 0.02–5.8*105 nM 
h− 1 for methanogens and 0.005–130*105 nM h− 1 for SSRM (Tables A1- 
A3), the latter considering sulfate concentrations in the range of 
0–2.3*10− 2 M in the DOGF (Table 2). In a few studies, the microbial H2 
consumption was related to growth (Tables A1-A.3), enabling the 
calculation of the H2 consumption per synthesized cell and the time for 
when the microbial cell count G would be reached (Text A.2). 

3.3. Calculation of the hydrogen consumption in a hydrogen storage 
system 

We calculated the minimum H2 consumption for the DOGF Frigg and 
Hamilton by dividing the H2 consumption per synthesized cell with the 
microbial cell count. The calculation of the moles of H2 the in aquifer 
anticipated equal volumes of H2 and water and used the ideal gas law 
and the field size, temperature and pressure data in Table 2 and 
Table A3. The percentage of H2 that was consumed as a function of 
growing and resting microbial cells was calculated by dividing the po
tential H2 consumption with the H2 concentration in the reservoir. Text 
A.3 shows our calculations for the Frigg reservoir and methanogens. 

4. Results and discussion 

4.1. Characterization of the likelihood for microbial growth in 42 DOGF 

Using the environmental limits constraining microbial growth on H2, 
we analyzed the physicochemical parameters for 42 DOGF in the British 
and Norwegian North Sea and the Irish Sea and five H2 storage test sites 
(Fig. 1, Table A4). Of the 47 fields, five fields have a temperature of 
122 ◦C or higher and may be considered sterile with respect to H2- 
consuming microorganisms. Where long-term injection of cold sea water 
has been a practice, cooling of reservoirs is a likely scenario. Therefore, 
any H2 storage operation in these fields will require a renewed mea
surement of the reservoir temperature. Thirty-two fields have a tem
perature >72 ◦C, implying that homoacetogenesis cannot take place. 
Fifteen DOGF have temperatures >90 ◦C and <122 ◦C and pressures of 
18.2–44 MPa where (piezophile) hyperthermophilic methanogens and 
SSRM, principally sulfur reducers, will grow. 

Of the fifteen sites with temperatures <72 ◦C where all investigated 
groups of microorganisms will grow, only nine fields (Frigg, Hamilton, 
Hamilton North, Camelot, the V gas field complex, Veslefrikk, Ketzin, 
Lehen and Lobodice) fulfill the remaining pressure and salinity re
quirements for growth. Five fields, Lennox, North Morecambe, South 
Morecambe, Leman and Rhyl, have salinities ≥4.4 M where no culti
vated microbial H2-oxidizing microorganisms can grow but not culti
vable SSRM may still be active. This finding is supported by stable gas 
compositions at the similarly saline H2-storage test sites of the H2STORE 
project, Emsland and Altmark (Fig. 1, Table A4), where low microbial 
populations of ~102 cells ml− 1 were present [215]. Hamilton North, 
Camelot and The V gas field complex with salinities of 2.9–5.0 M may 
permit the growth of SSRM and homoacetogens. The Viking field has 
temperatures of 65–80 ◦C and a salinity of 3.8 M and so is likely to host 
only mesophilic SSRM, although pressures >30 MPa could become 
growth inhibiting [155]. The H2-storage test site Ketzin has similar 
salinity to the Viking field but a lower pressure (4.0 M NaCl, 35 ◦C, 6 
MPa). Here SSRM were suspected to cause a 2–4% decrease in H2 and a 
reduction in the concentration of sulfate from 22 to 8*10− 3 M [215]. 
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4.2. Microbial growth estimates for two low-temperature and low-salinity 
DOGF 

Our first order approach to calculating microbial growth, designed to 
give a first approximation to microbial numbers, only, yielded a 
maximum of 1*108 methanogenic cells mL− 1, 1*108 SSRM cells mL− 1 or 
2*108 homoacetogenic cells mL− 1 in the Frigg reservoir. The Hamilton 
reservoir [120] could host a maximum of 1*107 methanogenic cells 
mL− 1, 2*107 SRCM cells mL− 1 or 6*107 homoacetogenic cells mL− 1. 
These cell counts describe a maximum cell growth for each hydro
genotrophic group because simultaneous growth of hydrogenotrophs 
was not considered. The higher growth of homoacetogens over SSRM 
and methanogens results from a lower wet cell mass that causes a lower 
nutrient demand per cell (see Text A.1). Our calculations are in line with 
total cell concentrations of 105-1015 cells/mL− 1 in oil reservoirs [216], 
and equal to or up to four order of magnitudes higher than cell counts 
from gas reservoirs (0.001–1.2*107 cells mL− 1) [49,96,189]. 

Acknowledging that trace elements were not accounted for in our 
calculation, N and P are the first limiting nutrients in the reservoirs Frigg 
andHamilton However, this does not imply that microbial growth is N 
and P limited, as many microorganisms may use of ammonium as N- 
source (not measured), and in the Hamilton reservoir the C:P ratio was 
between 59:1 and 158:1, whereas the limiting C:P ratio for microbial 
growth is in the range of 400:1 to 800:1 (reported for the SSRM 
D. desulfuricans) [217]. At moderately acidic pH values such as the pH of 
5.8 in the Hamilton reservoir, P may further be continuously replenished 
by mineral buffering with apatite. 

4.3. Hydrogen consumption in two low-temperature and low-salinity 
DOGF 

The H2 consumption in the Frigg reservoir by homoacetogens con
stitutes <0.01–3.2% of the H2 in the aquifer, <0.01–1.3% for metha
nogens and <0.01–1.3% for SSRM. In the Hamilton reservoir, the rates 
are <0.01–2.0%, <0.01–2.3% and <0.01–0.5% for homoacetogens, 
methanogens and SSRM, respectively. For actively growing cells these 
consumption rates may be reached after only 0.1–19 days, which is the 
time it takes for the microorganisms to grow up to their maximum cell 
counts, based on the dissolved nutrient concentrations. Resting cells, i.e. 
cells that undergo no or only very little cell division, need 2.5–3.5 
months (SSRM) or up to 3.6–6.6 years (methanogens) to reach the 
maximum cell count and consume the given percentage of H2. 

In a real aquifer system, nutrients are likely to at least partly be 
replenished by decaying cells, mineral weathering and inflowing brine, 
and cells will continue to consume H2 beyond the time it takes to reach 
the maximum cell count (maintenance). As such our H2 consumption 
estimates may be regarded as minima. On the other hand, considering 
that, with the exception of one study (Berta et al. [4]), our calculations 
employ laboratory H2 consumption rates at optimal nutrient supply and 
optimal physicochemical conditions (Tables A1-A.3), the H2 consump
tion in the oligotrophic subsurface is likely overpredicted. Comparing 
the employed laboratory H2 consumption rates to H2 consumption rates 
by SSR and methanogenesis in oil and natural gas reservoirs of 
~0.4–330 nM h− 1 and 0.02–1205 nM h− 1, respectively (SO4

2− : 
8.3–805*10− 5 M; HCO3

− : 3.5–246*10− 4 M) [49,187], shows that the 
field H2 consumption by SSR is 1.5 times to five orders of magnitude 
lower, and 1.4 times to 7 orders of magnitude lower for methanogenesis. 
Within the operation and injection wells of a natural gas reservoir, H2 
consumption rates by SSR and methanogenesis were 2393 and 4475 nM 
h− 1, respectively [49], which falls within the lower range of the values 
reported from laboratory studies. Acknowledging the unknown but 
presumably low pH2 in above experiments, and that maintenance re
quirements were not included in our H2-consumption calculations, we 
expect the actual H2 consumption in a H2 storage system to lie within the 
higher range of our calculated values. 

Our upper end results are in agreement with H2 losses of ~3% by 

methanogens and 2–4% by sulfate reducers at the H2 storage test sites in 
Lehen, Austria [27] and Ketzin, Germany [215], respectively. Reports 
from H2-rich town gas in Beynes, France, reports are contradictive 
ranging from no H2 consumption during storage operations [218] to 
significant (unspecified) reductions of H2 and CO2 contents along with 
increases in CH4 [219,220]. A H2 consumption of 17% by methanogens 
at the Lobodice town gas storage site over a time span of seven months 
[218,221] seems exceptional in the light of our calculations and the 
reported SSR and methanogenesis rates from the field. With a very low 
salinity of 0.03 M, temperatures of 20–45 ◦C, a pH of 6.7 and 4 MPa 
pressure, Lobodice is among the few sites which has highly favorable 
conditions for microbial growth considering all of these parameters 
(Table A4). The high H2 consumption at Lobodice highlights the importance 
of environmental parameters for controlling microbial activity, as H2 storage 
may face serious economic and technical problems if a site with 
growth-favoring conditions is selected. 

As mentioned, Berta et al. [4] measured high H2 consumption rates 
under excess H2 and oligotrophic conditions (P < 9.7*10− 7 M; SO4

2− ≤

9.5*10− 4 M; DOC = 2.6*10− 4 M), indicating that nutrient scarcity does 
not imply low H2 consumption. A comparison to the nutrient concen
trations in the DOGF reveals that many of them have a higher nutrient 
status (P = 0.002–0.452*10− 3 M; SO4

2− = up to 23.1*10− 3 M; organic 
acids = 1.2–8.1*10− 3 M, Table 2), implying that H2 consumption in 
DOGF under excess H2 conditions may be even higher than reported in 
Ref. [4]. The experiment by Berta et al. [4] is further highly relevant 
because cells were at steady state, i.e. at the predominant growth stage 
in nature, but still consumed vast amounts of H2. Indeed the H2 con
sumption of cells at steady state or resting may be just as high as or 
higher than for growing cells but growth is low or absent 
(Tables A1-A.3). 

4.4. Knowledge gaps and future research 

More work is needed to predict the magnitude of microbial growth, 
H2 consumption rates, and (not least) the mutual interaction of micro
bial processes in DOGF. The list of unknowns and uncertainties is long. 
To begin with are the poorly elucidated nutrient requirements of mi
croorganisms, especially in mixed cultures (e.g. Ref. [69]). Adding to 
this are the missing or incomplete datasets on the physical environment 
of certain reservoirs along with their gas phase and brine compositions, 
including chaotropy and kosmotropy characteristics. A better elucida
tion of the latter would allow a calculation of the dominating microbial 
processes via their free energies of the reaction. Combined with an 
analysis of the microbial community and metabolism this could give 
new insights into whether or not we can theoretically predict which 
microbial processes occur in DOGF and to which extend. 

A further complication is the non-cultivability of many microor
ganisms in the deep subsurface, including DOGF [12,32,54,97,187]. 
Considering tiny culturabilities of ≤0.1 % of the total viable cell count in 
many subsurface environments [32], any attempts to assign sterile 
habitats or quantify microbial H2 consumption via cultivated microor
ganisms, only, are characterized by a significant uncertainty. In gas 
reservoirs, the percentage of cultured bacteria may be higher, ranging 
between 86 and 95 % within each phylum [97]. Field-based metabolic 
activity measurements could circumvent any non-cultivability issues 
observed in laboratory experiments. Initially, however, DNA-based 
laboratory tests are recommended to obtain general cell numbers. The 
number of cultivable microbes may be maximized using a large array of 
modern cultivation techniques [222–227]. 

The lack of knowledge about the changes in microbial ecology as a 
response to increased H2 concentrations beyond the level of functional 
groups is one of the major hurdles in our attempt to understand of the 
effect of high H2 concentrations on the subsurface microbiology. 
Emerging evidence on the subject highlights species-specific responses 
to high pH2 [97,205,207], and that H2 injection may leave its fingerprint 
on the subsurface microbial community for decades [97]. Knowledge 
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about the initial effect of a drastic increase in pH2 in the subsurface is 
lacking. Considering the pressure increase and the toxicity of high pH2 
on some methanogens [186,199,201], one possibility is that more EPS 
will be produced as a response to the perturbation with elevated H2 
pressures, as has been shown for other types of perturbation [18,217, 
228], with possible adverse effects on gas injectivity and withdrawal. 

Future research should address the effect of high pH2 on the me
tabolisms of different functional groups in different geological settings 
and under changing nutritional supply and physicochemical conditions. 
Mixed culture studies at low and high pH2 can give insight into 
competitive and syntrophic relations under these conditions and reveal 
changes in the microbial community structure caused by the pertubation 
with elevated H2. More base-line research includes determinations of the 
critical salinities and pressure tolerances that to date are missing for 
many cultivated strains, as well as the study of the brine compositional 
effects on the microbial community and metabolism. Future lab-based 
research should aim to employ chemostat studies that mimic the natu
ral environment [17]. 

5. Conclusion 

In this work we presented the growth conditions of 518 cultivated 
strains from the three major groups of H2-oxidizing microorganisms and 
aligned those with physicochemical data from 42 DOGF in the British 
and Norwegian North Sea and the Irish Sea to predict where microbial 
growth can be expected in a future H2 storage scenario. Our results can 
–with some certainty- exclude life in several high-temperature, i.e. 
deeper reservoirs. For low-salinity and low-temperature reservoirs our 
initial calculations indicate significant microbial growth and a small H2 
consumption, both of which may further increase during repeated 
storage cycles, giving replenishment of nutrients by mineral weathering, 
decaying microbial cells and inflowing water. Hence, from the point of 
view of minimizing H2 loss, clogging and corrosion, sites with more 
extreme conditions may be chosen over low-temperature and low- 
salinity reservoirs where the majority of microorganisms can prolifer
ate. Yet, any storage operation will have to consider increased opera
tional difficulties and costs with increased depth. Experimental 
investigations of subsurface life on H2 are needed to verify our calcu
lations and manifest whether H2 consumption in low-temperature 
aquifers is a threat to H2 storage. All sites of interest to H2 storage 
should be carefully investigated and tested for microbial growth 
beforehand. 
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