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of bioinformatics, digital epidemiology, and disease modeling, describes how it can be applied to address HIV
prevention, and presents issues that need to be addressed prior to implementing a mobile technology big-data
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Although HIV remains a tremendous public health challenge after
3 decades of prevention and treatment efforts, the recent availability
of “big data” from new technologies provides promise for the develop-
ment of new tools and methods to address the HIV epidemic.

In 2011, it was estimated that more than 1.1 million people were
living with HIV/AIDS and 50,000 people were newly diagnosed with
HIV in the United States (CDC, 2013). The challenge to combat the
spread of HIV is particularly salient among men who have sex with
men (MSM), as in 2010, more than half of newly diagnosed HIV cases
were among MSM. Traditional public health strategies struggle to
reach MSM, leading MSM to be less likely to be test for HIV, access
and be retained in care, adhere to treatment, and survive 5 years after
diagnosis (Bogart et al., 2010; CDC, 2002; Hall et al., 2007). Innovative
strategies are needed to provide new tools and better methods of
disease surveillance to improve HIV prevention and treatment and
reduce the disparities among all populations affected by HIV.

The flood of “big data” from mobile technologies, such as social
media, mobile phones, and mobile applications, provides the promise
to be able to use these data to develop new HIV monitoring and epide-
miologymethods, and to provide insights on how to improve HIV inter-
ventions and respond to disease outbreaks. Because of the large and
increasing use of mobile technologies among African Americans,
Latinos, and Gay populations (Smith, 2010; Young, 2012), analyses of
big data from mobile technologies might be particularly helpful in
addressing HIV prevention and treatment efforts among these high-
risk populations (Young and Jaganath, 2013).

Although there is no clear definition, “big data” refers to datasets
that are often characterized by their enormity and complexity (Grant,
2012). These large datasets are available because affordable and
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easy-to-use technologies have increased the ability for public health
researchers to generate large amounts of data (Grant, 2012; Lohr,
2012; Marx, 2013; Murdoch and Detsky, 2013). For example, the
HumanGenomeProject (HGP), completed in 2003,was an international
collaboration to sequence all the base pairs in the human genome. Indi-
vidual labs were tasked to contribute data from certain areas of the
human genome to the HGP database. The combination of these data
and the additional combined data have made HGP a classic example of
big data (genome.gov, 2014). Big data contain not only relational
(structured) data that are conventional in most medical and quantita-
tive datasets, but also unstructured (often free-text) data that can be
useful for secondary analyses and qualitative epidemiologic measures
(Murdoch andDetsky, 2013). Unstructured data are important in health
research because we can use these free-text data to draw inferences
about real-time behaviors and sentiments (Lohr, 2012; Young et al.,
2014). For example, social media sites and search engines can be used
to collect unstructured posts, messages, searches, updates, and tweets
from their users and use these data to inform future public health out-
breaks. Influenza researchers have used these unstructured social
media data (e.g., from Google searches and Tweets) to predict influenza
patterns ahead of the Centers for Disease Control and Prevention (CDC)
to strengthen public health preparedness (Broniatowski et al., 2013;
Ginsberg et al., 2009; Polgreen et al., 2008).

In fact, the majority of work in this area to date has focused on using
big data to respond to influenza outbreaks. For example, Google Flu
Trends was designed to tally the number of search terms at any given
time that were associated with influenza. The Google Flu Trends algo-
rithm looked at searches for terms such as “influenza” and “early signs
of the flu” in order to determine whether these search terms could be
used to monitor cases of influenza. Using data from the CDC's surveil-
lance system (ILINet), a consolidated database of influenza cases report-
ed by the CDC, state and local health departments, and health care
providers, studies have found a high correlation (N .9) between Google
iology and prevention, Prev. Med. (2014), http://dx.doi.org/10.1016/

http://dx.doi.org/10.1016/j.ypmed.2014.11.002
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Flu Trends and ILINet (Cook et al., 2011), suggesting the potential for big
data bioinformatics approaches such asGoogle Flu Trends inmonitoring
influenza outbreaks. Because of the fairly open access to conversations
on Twitter through the “Twitterhose” (Young et al., 2014). Aramaki
et al. (2011), Aramaki et al. (2011) applied a similar approach looking
at Tweet data (from Twitter) in Japan that included keywords associat-
ed with flu-like illness (e.g., cough, fever, and chills). They found that
these tweets had up to a .97 correlation with reported influenza cases
in Japan.

Although these approaches might apply to a broad number of public
health topics, such as influenza, diabetes prevention and management,
substance abuse, and sexual health, there has been limited or no work
that has been conducted on these topics. Research has been conducted
on this topic around HIV epidemiology and prevention, and analysis of
social media big data appears to be feasible for use in that area. After fil-
tering tweets for HIV risk-related keywords and phrases suggesting the
occurrence of present or future HIV risk (e.g. sexual behaviors and drug
use behaviors), researchers found a high correlation between the geog-
raphy of these County-level HIV-related tweets and actual CDC reported
HIV cases (Young et al., 2014). This study provided further evidence that
social media data have the potential to provide a more cost-effective
and real-time alternative for HIV remote monitoring and surveillance.
Social media data have also aided researchers in HIV prevention efforts,
such as HIV interventions and the ability to distribute home-HIV testing
kits to those in need. After analyzing free-text posts fromanonline com-
munity focused on HIV prevention, one study found that individuals
who posted about HIV prevention and testing, compared to those who
posted about other topics, wound up being significantly more likely to
request an HIV self-testing kit (Young and Jaganath, 2013). These
types of insights based on social media could be valuable in providing
health departments with information on howmany tests or prevention
products might be needed, and determining real-time information on
where those health services are about to be requested. More research
is needed to refine the methods of using big data in HIV as well as
other areas of public health, providing an important and necessary
opportunity for HIV and public health researchers.

There has already been criticism about some of the current methods
of using technology data for monitoring health outcomes, including the
reliability and validity of the data and methods (Lazer et al., 2014),
making it important to highlight issues that need to be addressed
prior to using big data from technologies for HIV monitoring. First,
there are usability issueswith big data approaches asmany government
agencies, local organizations, and even academic public health depart-
ments currently lack the infrastructure to handle big data (Grant,
2012; Murdoch and Detsky, 2013). Traditional statistical infrastructure
is not powerful enough to address the complexity of big data and
unstructured data (Grant, 2012; Murdoch and Detsky, 2013). Instead,
collaborations between public health researchers and computer
scientists trained in machine learning/data mining are encouraged and
perhaps essential to provide the necessary infrastructure for storing
and analyzing big data. Second, HIV data need to be released and
updated frequently in order to better develop methods of using big
data to monitor HIV cases. For example, in the HIV twitter study
mentioned above, although tweets were retrieved in real-time during
2012, the most current easily accessible HIV data were from cases in
2009. Therefore, the study could not determine whether social media
might be used to monitor ongoing and future HIV cases, but rather
could only determine an association between tweets and historical
HIV cases (Young et al., 2014). Although theremight be limited changes
in HIV prevalence from one year to the next, providing access to
frequently updated data on HIV cases could help to improve statistical
models designed for public health departments to monitor and respond
to HIV cases.
Please cite this article as: Young, S.D., A “big data” approach to HIV epidem
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This manuscript provides a call for researchers to use technology big
data and explore how they can be used to develop new methods of
monitoring HIV transmission and other public health concerns. Refine-
ment of these digital epidemiology or bioinformatics methods will help
to facilitate the transition from research to practice so that public health
organizations can more readily incorporate these approaches into their
epidemiology prevention and monitoring efforts.
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