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The ability to predict a particular meal is achieved in part by learned associations with stimuli that predict
nutrient availability. Ghrelin is an orexigenic peptide produced by both the gut and brain that rises before
anticipated meals and it has been suggested that pre-prandial ghrelin increases may act as a signal to predict
meal delivery. Here, we used wild type and ghrelin receptor deficient mice to test the hypothesis that ghrelin
signaling is necessary for the processing of emotionally relevant stimuli, spatial learning and habituated
feeding responses. We tested spatial and fear-related memory with the Morris water maze and step through
passive avoidance tests, respectively and utilized food anticipatory activity to monitor habituated feeding
responses following two weeks of a meal feeding paradigm. Our results indicate that ghrelin signaling
modulates spatial memory performance and is necessary for the development of food anticipatory activity.
Collectively, these results suggest that ghrelin receptor signaling is necessary for adaptations in the
anticipatory responses that accompany restricted feeding.
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1. Introduction

An organism's ability to predict the onset of a meal is a vital
function modified by nutrient status and environmental stimuli. The
ability to predict a particular meal is achieved in part by learned
associations with stimuli that predict nutrient availability [24,30,40]
thus ensuring adequate restoration of energy homeostasis. In some
situations, environmental cues associated with palatable foods induce
feeding in calorically replete animals [12,23] referred to herein as
“non-homeostatic” feeding. Taken together, these observations
underscore the impact of learning on both homeostatic and non-
homeostatic feeding behaviors.

Restricted feeding schedules, in which food is present for only a
few hours per day, are often used to induce food anticipatory activity
(FAA) in rodents. Restricted feeding increases stress hormones [26]
and palatable foods can induce FAA in the absence of caloric need [20];
suggesting that restricted feeding can be an emotionally relevant
experience. Environmental cues associated with the delivery of a meal
induce neuronal activation within both hypothalamic and extra-
hypothalamic brain regions including the hippocampus, amygdala
and frontal cortex [11,20,26] suggesting that meal anticipationmay be
influenced by cognitive processing.

Ghrelin is a 28 amino acid peptide that increases food intake
[21,34,35] and gut motility [19]. Plasma ghrelin levels peak before the
expected meals in both humans and animals [5,8,33] and drop
postprandially [36], suggesting that ghrelin may act as a meal
initiation signal. Endogenous ghrelin signals through a seven
transmembrane G coupled protein receptor (GHSR) that is constitu-
tively active [13] and present in many brain regions including the
hypothalamus, hippocampus, thalamus, and ventral tegmental area
(VTA) [9,43]. Interestingly, ghrelin cell bodies have been identified
within the hypothalamus [4] and projections from these neurons are
found within the septum and amygdala. In addition, ghrelin signaling
within the hippocampus has been reported to modulate spine density
and spatial learning [7]. Thus, it is possible that ghrelin may initiate
feeding through its actions on circuits which mediate cognition and
reward.

In the current manuscript we tested the hypothesis that ghrelin
signaling is necessary for the processing of emotionally relevant
stimuli, and hippocampal-dependent learning. We further hypothe-
sized that ghrelin mediates habituated feeding responses. This was
achieved by investigating the performance of wild type or ghrelin
receptor deficient (GHSR−/−) mice in step through passive avoid-
ance and Morris water maze paradigms. In addition, we utilized FAA
to measure habituated feeding responses in wild type and GHSR−/−
mice. Our results suggest that ghrelin receptor signaling is necessary
for hippocampal-dependent learning and habituated responding for
food.

http://dx.doi.org/10.1016/j.physbeh.2010.10.017
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2. General methods

2.1. Subjects

Ghrelin receptor null mice (GHSR−/−) and their wild type
littermates (n=8/group) weighing 25–30 gwere housed individually
in a vivariumwith a 12:12 light/dark schedule. The temperature of the
room was maintained at 25 °C. All animals had ad libitum access to
standard chow diet (Teklad, 3.41 kcal/gm, 0.51 kcal/gm from fat) and
water throughout the study unless otherwise noted. The GHSR−/−
mice used in this study were a gift from Jeffery Zigman and Joel
Elmquist at the University of Texas Southwestern Medical Center in
Dallas, TX and were generated as previously described [43]. All
procedures were approved by the Institutional Animal Care and Use
Committee at the University of Cincinnati and are in accordance with
the guidelines set forth by the American Psychological Association.

2.2. Body composition analysis

Body composition was evaluated using a whole body NMR
instrument (Echo-MRI, Waco, TX). Body composition analysis was
obtained by placing each mouse into a clear Plexiglas tube and
subsequently scanning them for 45 s. All mice were measured prior to
the meal feeding protocol to determine baseline composition.

3. Method

3.1. Fear potentiated learning

One-trial learning, step through passive avoidance behavior was
measured according to Adler et al. [1]. Briefly, the mice were placed
into a two sided chamber, one side was illuminated and the other side
was dark. Upon being placed into the illuminated chamber the mice
were allowed to enter into the dark compartment. Since mice prefer
dark to light, they normally entered within 5 s. Two additional trials
were delivered on the following day. After the second trial,
unavoidable mild electric footshocks (0.75 mA, 2 s) were delivered
through the grid floor. After entering into the dark side of the
chamber, the mice could not escape the footshock. After this single
trial, the mice were immediately removed from the apparatus and
placed into their home cage. The consolidation of passive avoidance
behavior was tested 24 h later. In that testing session each mouse was
placed into the illuminated chamber and the latency to enter the dark
compartment was measured up to a maximum of 900 s.

3.2. Spatial learning

Morris water maze: The MWM consisted of a circular fiberglass
pool (122 cm diameter, 75 cm height; Rowland Fiberglass Inc.,
Ingleside, TX) filled with water (17–19 °C, 43 cm deep). A clear
glass platform (10.5 cm×10.5 cm; square) was submerged 1 cm
below the water surface. The pool was situated in a room that
contained extramaze cues visible to the mice during testing
(42 cm×76 cm posters printed with contrasting patterns and
shapes). Latency to escape the water was calculated for each trial by
overhanging digital video camera and computer controlled TopScan
software (Cleversystem Inc., Reston, VA) and used as index of spatial
learning and memory ability.

3.2.1. Fixed position platform
At the onset of each trial, an individual mouse (Wild type or GHSR

−/−) was placed into the water at one of four possible starting points
(N, S, W, and E). The starting location for each trial was varied and all
start locations were used in a given day. A trial was terminated and
the latency was recorded when the mouse found and climbed onto
the platform for 5 s. If the mouse did not reach the platform within
1 min, the trial was terminated, and the mouse was placed on the
platform for 5 s. Each mouse received three trials per day, 30 min
apart, for four consecutive days. The training started each day 1 h into
the dark phase and was performed in a well-lit room. Each trial was
digitally recorded for subsequent path analysis utilizing the Clever-
system TopScan software (Reston, VA). On the 4th day a probe trial
was performed where the hidden escape platform was removed from
the pool and each animal was allowed to swim for 60 s. The amount of
time spent in the quadrant of the pool where the platform had been
located was quantified.

3.3. Conditioned locomotor activity

To determine if GHSR−/− mice were able to acquire feeding-
induced increases in locomotor activity, GHSR−/− mice and their
wild type littermates underwent a meal feeding regimen in which
each animal was given chow plus water from 1200 to 1600 h and
water alone for the remainder of the day. Food intake was monitored
daily in meal-fed mice and after 14 d, the meal-fed mice consumed
the same amount of chow during the 4-h access period as they did in
24 h prior to testing. The point being that the mice had learned to
adjust their intakes to account for 24 h of calories in 4 h. On test day
(day 14) feeding responses weremeasured every 30 min for 2 h of the
4 h feeding session to observe differences in the initiation of feeding
responses in each group. Each mouse had a home cage fitted with a
locomotor activity monitoring unit (Lafayette Instruments, Lafayette,
IN). The total activity for each animal was collected over a 24 h period
on days 1 and 14 beginning at 1000 h. Conditioned locomotor activity
was monitored between 1000 and 1200 h on day 1 and day 14.

3.4. Statistical analysis

Data were analyzed using STATISTICA version 6.0 for PCs. All data
were analyzed using analysis of variance (ANOVA) and LSD post-hoc
comparisons were used to asses the source of significant main effects.

4. Results

4.1. Body weight

Mice lacking a functional ghrelin receptor (GHSR−/−)were leaner
(F(1,13)=9.43, pb0.008) and weighed significantly less (F(1,12)=
15.34, pb0.002) (Fig. 1A–B) compared to their wild type littermates,
suggesting that deletion of functional GHSRs has long term metabolic
consequences.

4.2. Fear potentiated learning

Next, we assessed the ability of GHSR−/− and wild type mice to
acquire fear potentiated learning utilizing a step through passive
avoidance procedure. Both GHSR−/− and wild type mice displayed
significant delays in step through latencies (F(3,20)=15.22, pb0.01)
Fig. 2, suggesting that both groups learned to avoid the foot shock
contingency.

4.3. Hippocampal-dependent learning

We then addressed hippocampal-dependent learning in GHSR−/−
mice. Three days of training, in which each mouse was allowed to
independently navigate to a submerged platform within the MWM,
induced significant decreases in escape latencies in wild type mice
(pb0.01); however this effect was absent in GHSR−/− mice (Fig. 3A).
After training GHSR−/− mice were unable to efficiently locate the
position where the platform had been as evidenced by a reduced
number of entrees into the paired quadrant (Fig. 3B), suggesting
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Fig. 1. A) Body composition and B) body weight in wild type and GHSR−/− mice after
16 weeks on standard chow diet *=pb0.05.
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Fig. 3. A) Acquisition of spatial learning across eleven trials of training and
B) expression of spatial learning on test day only represented as total number of
entrees into paired quadrant in wild type and GHSR−/− mice *=pb0.01.
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that GHSR−/− mice display deficiencies in the expression of spatial
learning.

4.4. Food anticipatory behavior

The meal feeding protocol employed here significantly increased
anticipatory locomotor activity in wild type mice (pb0.01); however
this effect was absent in GHSR−/− mice (Fig. 4A). After training wild
type and GHSR−/− mice consumed equal amounts of food.
Specifically both groups consumed their daily ration of chow in the
first 2 h of the 4 h feeding period (Fig. 4B), suggesting that each group
was capable of adapting intake levels to cope with the restricted
feeding schedule.

5. Discussion

The goal of the current experiments was to test the hypothesis that
ghrelin receptor signaling is necessary for the processing of
emotionally relevant stimuli, hippocampal-dependent learning and
food anticipation. Here, we report that mice lacking functional ghrelin
Passive Avoidance
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Fig. 2. Passive avoidance learning represented by average step through latencies in wild
type and GHSR−/− mice after 4 days of spatial learning training *=pb0.01.
receptors (GHSR−/−) display impaired hippocampal function and
are unable to acquire anticipatory locomotor activity associated with
restricted feeding. Importantly, the ability to anticipate meals
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Fig. 4. A) Food anticipatory activity and B) feeding responses in wild type and GHSR−/−
mice after 14 days of meal feeding *=pb0.01.
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prepares an organism for the consumption, absorption and metabo-
lism of a caloric load [41]. This concept assumes that peripheral
hormones which convey information relating to energy balance can
access central circuitry responsible for eliciting feeding. Here, we
assume that gastric ghrelin accessing central circuitry is responsible
for the behavioral effects observed. However, future studies are
required to rule out any contribution from the central ghrelin system.
Meal onset is controlled bymany factors including, pre-meal surges in
metabolic hormones [8], time of day, and learned associations with
stimuli that predict meal delivery [23,30,40]. In the context of
learning, meal anticipation alone can drive food consumption
independent of metabolic need, and this is exemplified by the ability
of learned environmental cues to stimulate feeding in sated animals
([39], for review see [12]). Moreover, environmental cues that signal
the availability of palatable foods activate brain reward circuitry
[28,29], an effect that presumably occurs through learning. Further-
more, the propensity of cues to induce feeding in periods of satiation
suggests that learning may also be a significant contributing factor to
the current rise in obesity in humans [42]. Taken together, the ability
to predict food availability can bemodified by learning and yields both
adaptive and maladaptive effects on food intake.

The hippocampus is one brain structure implicated in the
regulation of learning and memory which also mediates feeding. For
example, humans with hippocampal damage will initiate feeding only
minutes after completing a meal ([10,27]). In addition, food sated
animals with hippocampal lesions show increased appetitive
responding relative to controls [6], suggesting that intact hippocam-
pal function is necessary for the inhibitory control of food intake.
Ghrelin receptors are present within the hippocampus, raising the
possibility that ghrelin receptor signaling within hippocampal
neurons may mediate hippocampal function. This possibility was
examined by investigating spatial learning in GHSR−/− mice. Here,
we report that mice lacking a functional ghrelin receptor were unable
to acquire normal spatial learning. Moreover, when tested after
training, GHSR−/− mice displayed decreased retention of the spatial
learning task. This finding is in agreement with previous studies
which report that ghrelin binds to hippocampal neurons where it
promotes long term potentiation, dendritic spine formation and
enhanced spatial memory performance using a spontaneous alterna-
tion task [7]. Our observations support these findings and in addition,
suggest that signaling through the ghrelin receptor is necessary for
hippocampal mediated behaviors.

It has been suggested that the hippocampus and amygdala
represent two functionally distinct neuronal substrates in regards to
their ability to modify learning andmemory systems [14,15,17,22,25].
The amygdala is hypothesized to integrate emotional experience with
memory to gain control of future behaviors [14]. Restricted feeding
induces neuronal activation within the stress-associated brain regions
and leads to an increased release of stress hormones at the predicted
time of meal [26] suggesting that reducing food availability can be an
emotionally salient event. Ghrelin positive neurons exist within the
hypothalamus, and these neurons project to the amygdala [4]. When
administered directly into the amygdala, ghrelin modulates anxiolytic
behavior [3] suggesting that this hypothalamic–amygdalar projection
is functionally relevant. Collectively, these observations led us to
examine the possibility that ghrelin receptor signaling may regulate
amygdala-dependent function. The GHSR−/− mice used here
displayed normal step through latencies in the passive avoidance
paradigm, suggesting that deletion of the ghrelin receptor had no
effect on amygdalar-dependent learning. It is of interest to note here
that both intracranial [7] and intra-amygdalar [3] ghrelin adminis-
tration augments step down passive avoidance latencies. One
interpretation of these data is that ghrelin acts upon a yet to be
identified receptor within the amygdala, thus deletion of this specific
GHSR was without affect. It is also possible that in these studies,
ghrelin spread to adjacent brain regions or in the case on third
ventricular injections, acted synaptically through hypothalamic
circuits which express GHSR and project to the amygdala [4] to
exert its effects of anxiety-like behavior. In either case, our results
suggest that signaling through the GHSR does not alter amygdalar-
dependent learning.

Food anticipatory activity (FAA) is one way to measure habituated
feeding responses.When food availability is restricted to a few hours a
day, rodents develop food anticipatory activity patterns in which
increases in activity are detected within 1–3 h prior to meal delivery.
This behavior is thought to recapitulate foraging strategies that might
be employed in the wild to procure a meal [32]. Functional anatomical
studies suggest that FAA is controlled by a distributed set of nuclei
comprised of the hippocampus, periventricular thalamic nucleus and
the dorsomedial nucleus of the hypothalamus [26]. Ghrelin receptors
are present within this septohippocampal-thalamo-hypothalamic
circuitry hypothesized to mediate FAA [9] suggesting that ghrelin is
capable of signaling within these regions. In the present study, wild
type and GHSR−/− mice habituated to the meal feeding regimen as
evidenced by their ability to become calorically replete within a 4 h
timeframe. Additionally, anticipatory increases in locomotor activity
were antecedent to the habituated feeding response. However, this
behavioral anticipatory response was absent in GHSR−/− mice
despite the fact that these mice initiated feeding normally thus
suggesting that intact ghrelin signaling is necessary for FAA but not
meal initiation. In terms of meal initiation, the only endogenous
neural peptide which reliably initiates feeding is neuropeptide Y
(NPY). Rodents are nocturnal animals and thus typically consume
their largest meal at the onset of the dark period. Functional deletion
of the NPY gene attenuates meal initiation during this period
indicating that endogenous NPY signaling is required for meal onset
under normal circumstances [31]. Both ghrelin and centrally
produced orexin activate NPY containing neurons in the arcuate
nucleus [37,38] thus it is possible that in the absence of the functional
ghrelin receptor orexin may be capable of activating NPY neurons and
thus initiating the feeding response.

The finding that ghrelin signaling modulates meal anticipation is
consistent with recently published work which reports that GHSR-KO
mice displayed attenuated FAA [2,18]. In these studies, GHSR-KOmice
were capable of eliciting food anticipatory responding, but not to the
same degree observed in wild type control mice. One difference
between these studies is that the GHSR−/− mice and GHSR-KO mice
were generated in different laboratories and were backcrossed to
somewhat different strains to maintain the colony. Moreover, the
GHSR−/− mice used here did not display FAA, that is, the locomotor
pattern after fourteen days of meal feeding was not significantly
different from activity levels prior to meal feeding, whereas in the
former study the FAA activity levels were merely attenuated. It is
possible that these differences are due to the strain differences
present in the two different mouse models, or the method of
monitoring FAA. However, it is clear that both studies confirm that
ghrelin receptor signaling modulates FAA. Consistent with this notion
is the observation that central ghrelin administration increases
locomotor activity in ad libitum fed rodents [16]. Thus it is possible
that apart from its effects on food consumption, pre-prandial rises in
plasma ghrelin facilitate meal seeking behavior.

It is important to mention here that each of these findings could be
source specific as we used a single genetic mouse model to examine
each function. Thus, future studies are needed to confirm each of these
findings in isolation as well as in combination with different
methodologies to alter ghrelin receptor function.

In summary, the studies presented here suggest that ghrelin
receptor signaling is required for hippocampal but not amygdalar
dependent learning. In addition, we report that ghrelin receptor
signaling mediates the increases in locomotor activity that precede
meal delivery, but not habituated feeding under a restricted access
regimen. It has been suggested that the initiation of feeding is
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controlled by indicators that reliably signal the presence of ameal [40]
which can be nutrient signals or environmental stimuli as well as
stimuli associated with food itself [11]. Thus, cues which are learned
and associated with the delivery of a particular meal represent an
important aspect of feeding behavior, especially when the availability
of food is limited.

Collectively, these results suggest that ghrelin receptor signaling is
necessary for adaptations in the anticipatory responses that accom-
pany restricted feeding; perhaps through its ability to regulate
learning.
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