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It is well established that social environment, particularly isolation, has a significant impact on social behaviors
and neuroendocrine responses. Estrogen receptor alpha (ERa) expression in limbic structures and associated
nuclei is related to the display of social behaviors. We hypothesized that the stress of isolation would cause
changes in the pattern of ERa expression in the brain. Using a highly social (typically monogamous and bi-
parental) rodent species, the prairie vole (Microtus ochrogaster), we housed juvenile voles with a sibling, stranger

Iégrvgggis're ceptor alpha or in isolation for either 4 days or 21 days. Housing manipulations began following weaning from parents and
Prairie vole group housed siblings. Rodents may be especially sensitive to manipulations of their social environment during
Social isolation this juvenile period. In particular, female prairie voles are induced ovulators, reliant upon exposure to an un-
MPOA related male (male urine) to become reproductively active. ERoe immunoreactivity was quantified in the medial

BST preoptic area (MPOA), bed nucleus of the stria terminalis (BST), ventromedial nucleus of the hypothalamus
Microtus ochrogaster (VMH) and medial amygdala (MeA). Significantly fewer ERoc immunoreactive (ERaw-ir) cells were labeled in the
Post-weaning social environment MPOA and BST of females isolated for 21 days compared with stranger housed females. Non-significant dif-
Puberty ferences were shown in the VMH and MeA of females. No differences were found in voles isolated for 4 days.
These results suggest that female prairie voles may be more sensitive than males to manipulations of their social

environment during the juvenile period.
© 2009 Elsevier Inc. All rights reserved.

1. Introduction such as the prairie vole (Microtus ochrogaster) [4]. Young prairie voles

(unlike less social rodent species including rats and non-monogamous

Social isolation has profound, and generally detrimental, effects on a
variety of mammalian species from primates to rodents [16,21,51]. More
specifically, among rodent species isolation can produce impairments in
social behavior, stress reactivity and neuroendocrine function [4,27,28].
The developmental timing of isolation is a crucial determinant of
the nature and degree of the impairments it can cause an animal
[20,48,49]. The post-weaning period is likely to be a particularly
sensitive period as in many mammalian species it marks the end of
dependence on maternal (or biparental) care and the beginning of a
trajectory towards sexual maturation [7]. During this period an animal's
social environment may determine future reproductive strategies,
social behavior and stress reactivity [31,32]. Social housing conditions
during discrete developmental time points around puberty have robust
and lasting effects on rodent behavior [22,25].

The post-weaning social environment may represent unique chal-
lenges to a highly affiliative (monogamous and biparental) species
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voles), often remain in the natal burrow as an alloparent, rather than
dispersing [14,15]. The presence or absence of reproductively active
older conspecifics [1,3,43], population density [34], sibling interac-
tions [12,50] and social environment [32] can significantly impact the
behavioral strategy a juvenile will pursue. The neuroendocrine mech-
anisms that modulate behavior in this species, such as estrogen re-
ceptor alpha (ERa), should be especially responsive to manipulations
of the social environment during the post-weaning period. ERoc may
be one mechanism that underlies deficits in individual recognition,
individual discrimination and exploratory behavior caused by isola-
tion in this species [13,40].

In several rodent species (as well as many other vertebrate species)
ERa is concentrated in nuclei associated with social, parental and re-
productive behaviors including the medial preoptic area (MPOA), bed
nucleus of the stria terminalis (BST), medial amygdala (MeA) and
ventromedial hypothalamus (VMH) [10,30,45]. ERac knockout mice
show deficits in social recognition (males) [24], social preference (males)
[42] and reduced aggression and deficits in sexual behavior (males and
females) [38,42]. ERa mediates female rodent sexual [33,37,41] and
social behaviors [6]. Female prairie voles are induced ovulators, reaching
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sexual maturity (increased ovarian weight and lordosis) following
exposure to male urine odor [5]. Therefore, females may be particularly
reactive to the stress of isolation during the post-weaning or juvenile
period as their reproductive state is directly determined by cues from
their social environment. Previous studies on prairie voles demon-
strate this heightened sensitivity among females. For example, cortico-
tropin releasing factor (CRF) immunoreactivity in the paraventricular
nucleus of the hypothalamus (PVN) was significantly elevated and
vasopressin immunoreactivity in the PVN was significantly decreased
in females isolated for 21 days following weaning [44]. Additionally,
isolation has been shown to produce behaviors indicative of depres-
sion and anxiety. In particular, isolated females spent less time explor-
ing open arms of the elevated plus maze, reduced sucrose intake and
increased immobility in a forced swim test [4,18,19].

Prairie voles are one of a limited number of mammalian species
which can display social monogamy and biparental care of offspring
[2]. Interestingly, the degree of these social behaviors displayed by
males varies between different geographic populations. Males from
populations displaying diminished prosocial behaviors have greater
ERa expression, particularly notable in the MeA and BST [10]. Addi-
tionally, higher levels of ERa expression in discrete nuclei (including
the MeA and BST) positively correlate with aggression in male Siberian
hamsters and mice [29,46]. A broader comparative study of rodent
species demonstrated a similar inverse relationship between ERa and
the degree of prosocial behaviors displayed in males [11]. This relation-
ship has been most clearly demonstrated by experimental increases in
ERa in the MeA of male prairie voles through viral vector encoding
resulting in a decrease in social behaviors [9].

In the present study, we measured ERoe immunoreactivity in prairie
voles following post-weaning isolation for 4 or 21 days. Given the
nature of the deficits in social behavior which occur following isola-
tion, and the relationship between ERa expression and prosocial be-
havior, we predict that changes in the number of ERx immunoreactive
(ERa-ir) cells will be notable in the MPOA, BST, MeA and VMH, and that
these changes will be most prominent in females.

2. Methods
2.1. Subjects and groups

Subjects were laboratory-bred male and female prairie voles
(M. ochrogaster), descendants of a wild stock originally caught near
Champaign, Illinois. Our stock was systematically outbred ensuring
that all mating pairs did not share any common grandparents. Prairie
voles were maintained on a 14:10 light:dark cycle and allowed food
(Purina high-fiber rabbit chow) and water ad libitum. Breeding pairs
were maintained in large polycarbonate cages (48.2 cm long x 26.6 cm
wide x 15.5 cm high) and provided with cotton for nesting material.
Within 24 h of birth litters were sexed, weighed and marked for iden-
tification. Litters in excess of six were culled and only mixed sex litters
were used. Offspring from the breeding pairs (subjects) were housed
in these same cages (with dam, sire and littermates) until they were
weaned at 21 days of age and randomly placed into one of three hous-
ing conditions in smaller (29 cmx 19 cmx 12.7 cm) cages: isolation
(singly housed), sibling (housed with a sibling of the same sex and
age), stranger (housed with and unfamiliar stranger of the same sex
and age). Conditions were maintained for 4 or 21 days. Animals in all
conditions were housed in a single-sex colony room. All husbandry
and experimental procedures were approved by an IACUC committee,
ACC no. 04-078.

2.2. Brain tissue collection and ERc immunocytochemistry
At either 25 (4 day housing conditions) or 42 (21 day housing

conditions) days of age animals were anesthetized by intraperitoneal
injection with a combination of ketamine and xylazine, followed by

cervical dislocation. Brain tissue was processed using spin fixation [8].
Brains were removed and placed in a 4% paraformaldehyde solution
for 20 min. Brains were then removed from the solution and blocked
into thirds, divided just before the optic chiasm and halfway through
the cerebellum, exposing the lateral ventricles in the two rostral
divisions. Brains were immersed and gently spun in 4% parafor-
maldehyde, and 5% acrolein (pH 8.6) solution for 4 h. Individual stir
bars were placed in each scintillation vial and spun on a stir plate for
4 h. After fixation, brains were placed in a 25% sucrose solution then
changed 24 h later. Tissue was then embedded in a gelatin solution
for microtoming. The upper left corner of the embedding mold was
notched to discern between left and right sides. Brains were sectioned
on a freezing microtome at 40 pm. Alternate sections (every 240 pm)
were used for immunocytochemistry.

Sections were incubated in a rabbit polyclonal antibody (anti-ERa
C1355, Millipore 06-935) at a concentration of 1:800 for 48 h. Sections
were rinsed in KPBS and then incubated in a secondary fluorescent
antibody, Alexa-Fluor 546 goat anti-rabbit IgG (Invitrogen A11010) at
a concentration of 1:200 for 1.5 h. Sections were rinsed in KPBS and
then were mounted and coverslipped using Prolong gold mounting
media with DAPI (Invitrogen P36931). Tissue from the animals in the
4 day housing conditions was run separately from tissue from animals

MeA

Fig. 1. Measurements of ERa immunoreactivity (ERa-ir). Shaded boxes approximate
the areas quantified within the BST, MPOA, VMH and MeA.
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in the 21 day housing condition. This can produce interassay variabi-
lity, therefore these results were not compared statistically. Negative
controls of primary and secondary only were run on tissue prior to the
collection of any experimental data.

2.3. ERa quantification and statistical analyses

Images were captured using a Nikon 80i epifluorescent microscope
and SPOT camera. Analysis of images was performed using Image ]/
NIH image software. Within each nucleus (MPOA, MeA, VMH, BST) a
standardized sampling area was used to count the number of cells im-
munoreactive for ERa. The sampling grid size for each area (unilateral)
is as follows: MPOA 320x 320 pm, BST 300x 300 um, VMH 150 x
150 pm, MeA 250x 320 pm (w x h). Sampling grids were used to en-
sure that the differences were not the result of observer variability that
might occur when identifying the borders of each nucleus. Cell counts
from each nucleus were bi-lateral and taken from sections matched in
rostral-caudal orientation for each subject. Nuclei were identified
according to evident landmarks and Paxinos and Watson [39]. Fig. 1
shows the approximate location of sampling grids within each section.
DAPI label on each section facilitated the identification of the borders
of each area of interest (MPOA, MeA, VMH, BST). The MPOA was iden-
tified by a contiguous anterior commissure located above the third
ventricle and optic chiasm. Measures within the BST were taken in the
more rostal and anterior-medial divisions of the nucleus. The VMH
was approximate to Figs. 36 and 37 in Paxinos and Watson [39]. The
MeA was identified by the location of the ascending optic tract. The
sampling grid was placed twice on each side including measures of the
entire MeA (MePD and MePV). In all cases grids were drawn to scale
with a pixel to micron conversion within Image J/NIH image. All cells
that had identifiable borders within the grid were counted and marked
within the image file to avoid double counts. Original and quantified
images were saved separately. In all cases cell counts were taken by
two observers blind to the condition of the subject and the average was
calculated. All quantification was done on grayscale images.

All statistical procedures were performed using SPSS 16.0 and all
data were tested for assumptions of normality and equal variance prior
to analyses. Data from 4 day and 21 day housed animals were analyzed
separately as immunocytochemistry for this tissue was performed at
different time points. A significance level of p<0.05 was used for all
tests; if the significance level was p<0.01 this was noted. MANOVA
(with sex and housing condition as independent variables) analyses
were used on the data. Fisher's LSD post-hoc tests were performed if
the overall MANOVA was significant.

3. Results

No statistically significant differences in the number of ERo-ir cells
were found between left and right sides of any nucleus, therefore total
cell counts from both sides of each subject were added and compared
between groups.

3.1. 4 day housing conditions

No significant differences were found among the 4 day housing
groups. Within the MPOA, no significant differences in the number of
ERa-ir cells were found as a result of housing conditions [F (5, 26) =
1.91, p=0.16)], sex [F (1, 26) =3.797, p=0.062] or their interaction
[F (2, 26) = 0.896, p = 0.420]. Within the BST no significant differences
were found as a result of housing conditions [F (3, 25) = 2.44, p =0.108],
sex [F (1, 25) =2.77, p=0.108] or their interaction [F (3, »5)=0.339,
p=0.716]. Within the VMH no significant differences were found as a
result of housing condition [F (5, 25) =0.712, p =0.500], sex [F (1, 25) =
0.955, p=0.338] or their interaction [F (325) =0.913, p=0.414]. No
differences were found in the sub-divisions of the MeA (MePD and
MePV) so total cell count comparisons are presented. Within the MeA

no significant differences were found as a result of housing condition
[F (2.20) =1.593,p =0.228], sex [F (120) = 1.085, p = 0.310] or their inter-
action [F (220) =0.772, p=0.475].

3.2. 21 day housing conditions

Statistically significant differences in the number of ERa-ir cells
were found in the MPOA, BST and VMH among voles housed in the
21 day housing conditions.

Overall results from the MPOA reveal that housing condition [F (32g) =
0.848, p=0.439] and sex [F (1, 28) =0.268, p=0.609] were non-
significant but their interaction was [F (2.28) = 3.163, p<0.05]. Isolate
females had significantly fewer ERa-ir cells in the MPOA than stranger
housed females (p<0.05). The difference between isolate females and
sibling housed females was non-significant (p = 0.72). Isolate females
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Fig. 2. ERa immunoreactivity (ERa-ir) cell number, 21 day housing conditions. Open
bars represent females, closed bar represent males. a. MPOA: Isolate females had signif-
icantly fewer labeled cells compared with stranger housed females and isolate males.
b. BST: Isolate females had significantly fewer labeled cells compared with stranger housed
females and isolate males. c. VMH: Isolate males had significantly fewer labeled cells that
sibling housed males. Asterisks designate groups that are statistically different at p<0.05.
N's are 4-6 per group.
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Fig. 3. ERa immunoreactivity (ERa-ir), 21 day housing conditions. a. MPOA, Isolate female, 400x magnification b. MPOA, Stranger housed female, 400x magnification. c. BST, Isolate
female 200x magnification. d. BST, Stranger housed female 200x magnification. AC: anterior commissure, V: ventricle.

had significantly fewer ERa-ir cells than isolate males (p<0.05)
(Figs. 23, 3a and b).

Overall results from the BST were: housing condition [F (317) =
0.609, p=0.555], sex [F (1,17) =0.514, p =0.483] and their interaction
[F (217) =0.123, p=0.885]. In post-hoc comparisons isolate females
had significantly fewer ERa-ir cells in the BST than stranger housed
females (p<0.05). The difference between isolate females and sibling
housed females was non-significant (p =0.295). Isolate females had
significantly fewer ERa-ir cells than isolate males (p<0.05) (Figs. 2b,
3candd).

Overall results from the VMH demonstrate that housing condition
was significant [F (15) =4.388 p=0.028]. Sex [F (4, 18) =2.388, p=
0.140] and the interaction of sex and housing condition [F (;, 15) = 0.161,
p=0.853] were non-significant. Isolate males had significantly fewer
ERa-ir cells in the VMH than stranger housed males (p<0.05). The dif-
ference between isolate males and sibling housed males, was non-
significant (p =0.053) (Fig. 2¢).

No differences were found in the sub-divisions of the MeA (MePD
and MePV) so results from total cell count comparisons are presented.
No significant differences were found in the MeA as a result of housing
condition [F (5,0) =0.200 p =0.820], sex [F (1,20) =0.065, p=0.801]
or their interaction [F (2,20) =0.275, p=0.762].

4. Discussion

Female prairie voles isolated for 21 days had significantly fewer
ERa-ir cells in the MPOA and BST compared with stranger housed
females and isolate males. No significant differences were found
among any groups in the four day housing conditions. These results

along with previous studies [4,18,19,44] suggest that females are
particularly sensitive to the stress of isolation during the post-weaning
period.

The role of ERa in the regulation of female rodent sexual behaviors
is well established and has been convincingly demonstrated in knock-
out mice models, as well as administration of selective antagonists
[33,37]. In particular, ERa in the MPOA regulates aspects of proceptive
and receptive behaviors [23,26]. The data in the present study demon-
strate that ERa immunoreactivity in the MPOA is significantly lower
in isolated females than males, whereas a sexual dimorphism (with
females having a greater number of ERa cells in the MPOA) in ERa
would typically exist in adult animals. Development of this sex differ-
ence is a key component of sex specific reproductive behaviors in this
species [36]. Isolate females also had fewer ERa-ir cells in the BST. The
BST has reciprocal connections to MeA and MPOA with neuropepti-
dergic fibers projecting to the lateral septum and is another key node
in limbic circuitry associated with social behavior [35]. These results
demonstrate that multiple nodes in limbic circuitry are sensitive to
social isolation.

The MPOA and BST of 21 day isolated females showed significantly
less ERae compared to stranger housed females, but not sibling housed
females. This is in part due to higher variance within the female sibl-
ing group compared with the stranger group. The difference in ERa
expression in the MPOA and BST within some pairs of 21 day sibling
housed females was fairly large. This pattern was not seen in all sibling
housed pairs, however it was not apparent in any stranger housed
pairs. Reproductive suppression of younger conspecifics by older re-
productively active females occurs in prairie voles [1,3,43]. One pos-
sible explanation for the pattern of results we see in the current study
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is that mechanisms of reproductive suppression may operate slightly
differently in siblings versus stranger housed females. Future studies
will investigate if the current patterns of ERa-ir associated with social
housing condition correlate with the degree of affiliative and procep-
tive behaviors (including latency to pair bonding) that females display
with exposure to an unfamiliar male and the induction of estrus in this
species.

Non-significant differences were found in the MeA and VMH of
females isolated for 21 days. One possible explanation for the lack of
differences is that the MPOA and BST may be more reactive to social
environment, whereas the MeA and VMH are more responsive to actual
sexual stimuli and consummatory aspects of sexual behavior. The MeA
and VMH show specific increases in activity in ERa containing cells
during sexual behavior [17]. Although we did not test these females
with any type of male stimuli, we could anticipate that isolation may
dampen neural responses in these areas, perhaps related to lower ERa
levels. However, we cannot discount the fact that the non-significant
differences in these areas may still be functionally significant. Even
small reductions in ERx expression may have an impact on female
behavior.

Increasing evidence continues to support the concept that the
peri-pubertal and pubertal periods are critical periods for the
development of social behaviors and the neuroendocrine systems
that modulate them, particularly in females [31]. The social environ-
ment which an animal is exposed to during this time period can
have lifelong effects on future behavioral trajectories [22,25]. Fe-
male prairie voles isolated for 21 days following weaning also show
significant neuroendocrine changes including increased levels of
CRH in the PVN, elevated corticosterone and decreased vasopressin in
the PVN [44]. These data, along with the present results, suggest that
ERa, vasopressin and the hypothalamic-pituitary adrenal axis may
work together to modulate the social stress of isolation in females. The
permanence of such neuroendocrine changes and their effects on
behavior remains to be determined. Female prairie voles isolated for a
similar duration as adults show behaviors that can be interpreted as an
index of anxiety or depression [18,19]. Females isolated during the
post-weaning period may show similar or exacerbated behavioral
deficits.

Although previous research demonstrates an inverse relation-
ship between ERa and the degree of sociality in male rodents, the same
relationship has not been demonstrated in females [10,11]. This is likely
the result of a variety of factors, the most prominent of which include
estrogen's more direct relationship with the reproductive physiology
of females, sexual maturation and adult sexual behavior. The current
data certainly do not discount the role of ERa in the modulation of
social behavior of females, but they suggest that the relationship
between ERa and sociality is quite different than it is in males. The
established inverse relationship between ERa and male rodent social
behavior is based upon comparisons of adult males, rather than
measures of reactivity of juveniles to a particular social environment.
This relationship between ERa and male social behavior has been
shown in the MeA and BST, but not the VMH [10,11]. However, in the
present study, the only difference found in males was in the VMH with
21 day isolate males showing less ERa than siblings. The VMH's role
in female sexual behavior is well established, but it appears to play a
less central role in male sexual or social behavior. Understanding the
functional significance of this pattern in males will be facilitated through
behavioral studies which measure their affiliative behaviors following
isolation.

The relationship between the stress of isolation and its effects on
ERa in females may have broader implications for the understanding
of the neurobiology of stress. Isolation is frequently used as a model of
chronic stress [19,21]. Variability in ERa gene polymorphisms is
associated with major depressive disorders in humans [47]. ERoe may
be a mechanism that underlies social impairments brought on by
chronic stress and possibly depression.
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