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ARTICLE INFO ABSTRACT

Keywords: Cardiovascular fitness has repeatedly been associated to enhanced cognitive and brain functioning, generally in

EEG the form of differences in reaction time and response accuracy, as well as in event-related potentials (ERPs) and

Time frequency blood-oxygen-level-dependent imaging while participants performed executive demanding tasks. However, the

Inter-trial coherence evidence regarding potential differences in oscillatory neural activity, an inherent characteristic of brain func-

Exerc_l se d . tioning, is scarce. To fill this gap, here, we extracted and analysed (using a data-driven exploratory approach)

P;ll;t:ilc: ﬁ?;te:non brain oscillatory activity, both tonic (overall electroencephalographic — EEG - oscillatory activity) and transient
(event related spectral perturbation [ERSP] and inter-trial coherence [ITC]), from a previous published dataset
(Luque-Casado et al. 2016), where we showed different behavioural and ERP patterns during a vigilance/sus-
tained attention task as a function of cardiovascular fitness in young adults. The ERSP results of the current study
revealed increased theta (4-8 Hz) and upper beta (20-40 Hz) power and reduced lower beta (14-20 Hz) sup-
pression after the target stimulus presentation in the higher-fit group compared to their lower-fit peers, but these
differences disappeared in the second part of the task. ITC results mimicked the ERSP pattern within theta (4-8
Hz), while no differences were observed for the remaining frequency bands. Interestingly, the overall time-
dependent effect in transient oscillatory activity followed the reaction time pattern of results. The analysis of the
overall EEG oscillatory (tonic) dynamics did not show significant differences between groups. In sum, cardi-
orespiratory fitness was related to a brain oscillatory differential response pattern over a wide range of the
frequency spectrum and spatio-temporal distribution, which seems to underlie the positive relationship between
aerobic fitness and behavioural performance in a sustained attention task. Future studies are warranted to study
the causal nature (beyond mere association) of these findings.

1. Introduction

Cardiovascular fitness has been associated to improved cognitive
and brain performance at all ages, indexed by individual differences in
reaction time (RT) and response accuracy in tasks tapping (mainly)
executive function [1], and in event-related brain potentials (ERPs) [2]
or blood-oxygen-level-dependent imaging [3]. Much less is known,
however, about potential differences as a function of fitness in oscilla-
tory neural activity, an inherent characteristic of brain functioning. The
current study aims at filling this gap in the literature by extracting and
analyzing both the resting state and the task-dependent (transient)
event-related spectral perturbations (ERSPs) and global (tonic) elec-
troencephalographic (EEG) oscillatory activity from a dataset of one of

our recent studies [4].

In Luque-Casado et al. (2016) [4], we showed that higher-fit young
adults maintained larger P3 amplitude throughout a 60’ version of the
Psychomotor Vigilance Task (PVT) compared to lower-fit, who showed
a reduction in the P3 magnitude over time. Additionally, a larger am-
plitude in the contingent negative variation (CNV) potential during the
first half of the task was also shown by the higher-fit group. This ERP
pattern mimicked that of the RT, which yielded shorter response time in
the higher-fit group only in the first half of the experimental procedure.
We concluded that higher fitness levels were related to electro-
physiological activity suggestive of better ability to allocate attentional
resources over time and a greater attentive preparatory state.

ERPs involve high temporal resolution and separated stimulus-
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locked potentials during task performance that offer relevant informa-
tion about the mechanisms underlying cognitive functioning above and
beyond that provided by behavioural measures. However, brain elec-
trocortical activity is believed to be composed by diversified dynamic
waveforms [5], and there is evidence pointing out that some ERP fea-
tures may arise from changes in the dynamics of ongoing neural os-
cillations [6,7]. This evidence presumes a strong dependency between
neural oscillations and ERPs, arguing that ERPs are generated, at least
in part, by a reset of ongoing oscillations [7]. Thus, brain oscillations
play an important functional role and interact with the ERPs and,
consequently, evidence from ongoing brain rhythms analysis could be
transferred to findings of ERP research and vice versa [6]. Additionally,
the timing and direction of a change in brain oscillatory activity in-
duced by an event or stimulus at a specific frequency band functionally
reflect rhythmic changes in excitation of a population of neurons that
reflect ongoing sensory, motor and/or cognitive processes [5,8]. ERSP
analysis represent an excellent index of neural communication through
which the dynamics of the power of frequency-specific oscillations are
quantified and these spatiotemporal dynamics are examined providing
links to associative and integrative brain functions [9].

In the search for brain function biomarkers of the fitness-related
improvements in cognition, the ERSP approach is therefore an attrac-
tive proposition as it may provide complementary information to that
of the ERPs. Crucially, as the ERSP contains contributions from both
phase-locked and non-phase-locked oscillations, the contributions of
non-phase-locked induced oscillations offer additional discriminatory
information as an alternative interpretation for cortical activity while
performing a cognitive task [10].

Even though the analysis of brain oscillations could further eluci-
date the underlying processes of the fitness-related improvements in
cognition, no study so far has explored the relationship between sus-
tained attention performance and aerobic fitness by using this ap-
proach. This is particularly noteworthy since brain oscillatory activity
has been shown to be a key mechanism supporting sustained attention
performance [11]. In fact, time-related variations and deterioration in
attention are strongly associated with specific changes in oscillatory
EEG features [12]. Therefore, investigating cortical oscillations can be
of both great practical significance and substantial theoretical interest
in this area of research by leading to a deeper understanding of the
exercise and cognition relationship in general, and sustained attention
in particular.

Here, we stand to provide novel evidence of the relationship be-
tween aerobic fitness and neural oscillatory patterns of young adults in
a prolonged sustained attention task. To this aim, we extracted and
analysed the resting state, global EEG task-related and transient oscil-
latory activity (ERSPs) from the dataset of our previous ERP study [4].
Additionally, following on the sound suggestions of an anonymous re-
viewer, we computed inter-trial coherence (ITC). Based on the spectral
range and spatiotemporal heterogeneity of the oscillatory mechanisms
underlying the performance in sustained attention [11], and given that
we did not have clear a priori hypotheses regarding fitness as a prone
factor to modulate neural oscillations in vigilance contexts, we took an
exploratory approach (cf. Wagenmakers et al. [13]), with a bottom-up
methodology by employing a stepwise cluster-based analysis.

2. Material and methods

Details on materials and methods are reported in the original study
[4], but we include them here again for the sake of clarity and com-
pleteness.
2.1. Participants

We recruited fifty young male adults from a larger pool of eighty-

nine undergraduate students and members of local triathlon clubs,
which were assigned to a higher-fit (N=25) and lower-fit group
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Table 1
Mean and 95% Confidence Interval (CI) of descriptive, fitness and behavioural
data for the higher-fit and lower-fit groups.

Higher-fit Lower-fit
Anthropometrical characteristics
Sample size 24 25
Age (years) 23 [21, 24] 23 [22, 24]
Height (m) 1.77 [1.75, 1.79] 1.78 [1.76, 1.81]

Weight (kg)

Body Mass Index (kg*(m?)~1)
Incr 1 test par S
Time to VAT (s)*

69.3 [66.9, 71.6]
22.2 [21.5, 22.9]

76.7 [69.4, 84.0]
24.0 [22.2, 25.7]

1270 [1163.3,
1377.2]

43.3 [40.0, 46.6]
3.41 [3.10, 3.72]

493 [433.3,
551.9]

19.5 [17.5, 21.5]
1.40 [1.23,1.56]

VO, (mLemin~'-kg 1) at VAT*
Relative power output at VAT (W+kg ~1)*
Psychomotor Vigilance Task (PVT)

Mean RTs (ms) Block 1 269.4 [259.4, 279.3 [264.4,
279.3] 294.2]

Block 2 295.3 [282.2, 294.9 [277.2,
308.4] 312.6]

* Indicates statistically significant differences between groups (p<0.001);
VAT (ventilatory anaerobic threshold).

(N=25) based on the inclusion criteria of reporting at least 8 hours of
training per week or less than 2 hours, respectively. Their fitness level
was confirmed by a submaximal cardiorespiratory fitness test. The
reader will note a difference in the number of participants included in
the behavioural and EEG data analysis regarding our previous report
[4]. Here, based on the EEG data processing, only one participant from
the higher-fit group was excluded from the analyses (see EEG recordings
and data reduction section). Data from the remaining 49 participants are
reported (see Table 1).

All participants met the inclusion criteria of reporting normal or
corrected to normal vision, reported no neurological, cardiovascular or
musculoskeletal disorders and were taking no medication. Participants
were required to maintain regular sleep-wake cycle for at least one day
before the experimental session and to abstain from stimulating bev-
erages or any intense physical activity 24 hours before the laboratory
visit. Table 1 presents the anthropometrical characteristics and de-
scriptive data of the sample. The experiment was conducted according
to the ethical requirements of the University of Granada ethical com-
mittee and in compliance with the Helsinki Declaration. All participants
were informed about their right to leave the experiment at any time and
gave written informed consent prior to their inclusion in the study.

2.2. Procedure

Upon arrival to the laboratory, participants were seated in front of a
computer in a dimly illuminated, sound-attenuated room with a
Faraday cage. All participants received verbal and written information
about the experiment and they were prepared for electrophysiological
measurement. Eyes-open resting state EEG signal was recorded for
5 min in which participants were asked to stay as relaxed as possible
and to view a blank wall in front of them. After a brief training session,
participants were instructed to complete a 60’ version of the PVT. We
used a PC with a 19” monitor and E-Prime software (Psychology
Software Tools, Pittsburgh, PA, USA) to control the stimulus presenta-
tion, response collection, and to generate and send triggers indicating
the condition of each trial for offline sorting, reduction, and analysis of
EEG and behavioural data. The centre of the PC screen was situated at
eye level approximately 60 cm from the head of the participants. A PC
keyboard was used to record behavioural responses.

After PVT completion, all participants performed a submaximal
cycle ergometer cardiorespiratory fitness test to evaluate their fitness
level (see Table 1). This test was performed after the PVT in order to
avoid the influence of physical effort on cognitive performance [14].
The entire experimental session lasted 2 h approximately.
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2.3. Submaximal cardiorespiratory fitness test

Prior to the start of the fitness test, descriptive anthropometric
parameters of weight, height and body mass index (BMI) were obtained
for each participant (see Table 1). Then, all participants were fitted
with a Polar RS800 CX monitor (Polar Electro Oy, Kempele, Finland) to
record their heart rate (HR) during the incremental exercise test. We
used a ViaSprint 150 P cycle ergometer (Ergoline GmbH, Germany) to
induce physical effort and to obtain power values and a JAEGER Master
Screen gas analyser (CareFusion GmbH, Germany) to provide a measure
of gas exchange during the test.

The incremental effort test started with a 3 minutes warm-up at 30
Watts (W), with the power output increasing 10 W every minute.
During this warm-up period, each participant set his preferred cadence
(between 60-90 rev * min~ ') and was asked to maintain this cadence
throughout the protocol. The test began at 60 W and was followed by an
incremental protocol with the power load increasing 30 W every 3
minutes. Workload increased progressively during the third minute of
each step (5 W every 10 seconds [s]); therefore, each step of the in-
cremental protocol consisted of 2 minutes of stabilized load and 1
minute of progressive load increase. The oxygen uptake (VO2 ml -«
min~! « kg™ '), respiratory exchange ratio (RER; i.e., CO, production
O, consumption ~ 1, relative load (W - Kg~ 1), heart rate (bpm) and time
of the test (s) were continuously recorded during the entire incremental
test.

We used the ventilatory anaerobic threshold (VAT) as a reference to
determine the fitness level of the participants (see Table 1). VAT is
considered to be a sensitive measure for evaluating aerobic fitness and
cardiorespiratory endurance performance [17,18] and was defined as
the VO, at the power load in which RER exceeded the cut-off value of
1.0 [19,20]. The researcher knew that the participant had reached his
VAT when the RER was equal to 1.00 and did not drop below that level
during the 2 minutes constant load period or during the next load step,
never reaching the 1.1 RER. The submaximal cardiorespiratory fitness
test ended once the VAT was reached.

2.4. The psychomotor vigilance task (PVT)

The procedure of the PVT was based on the original version [15].
This task was designed to measure vigilance by recording participants'
reaction times (RTs) to visual stimuli that occur at random inter-sti-
mulus intervals [15,16]. Each trial began with the presentation of a
blank screen in a black background for 2000 ms and subsequently, an
empty red circumference (i.e., cue stimulus, 6.68° X 7.82° of visual
angle at a viewing distance of 60 cm) appeared in a black background.
Later, in a random time interval (between 2000 and 10000 ms), the
circumference was filled all at once in a red colour (i.e., target sti-
mulus). Participants were instructed to respond as fast as they could
once they had detected the presentation of the filled circle. The filled
circle was presented for 500 ms and the participants had a maximum of
1500 ms to respond. They had to respond with the index finger of their
dominant hand by pressing the space bar on the keyboard. A RT visual
feedback message was displayed for 300 ms after response, except in
case of an anticipated response (“wait for the target”) or if no response
was made within 1000 ms after target offset (“you did not answer”).
Following the feedback message, the next trial began. The task lasted 60
minutes and the mean number of trials per participant was 422 * 6.5.

2.5. Electroencephalogram (EEG) recordings and data reduction

EEG data were recorded at 1024 Hz using a 64-channel BioSemi
Active Two system (Biosemi, Amsterdam, Netherlands) with active
scalp Ag/AgCl electrodes arranged according to the international
standard 10-20 system. The common mode sense (CMS) and driven
right leg (DRL) electrodes served as the ground, and all scalp electrodes
were referenced to the CMS during recording. Electrode impedances
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were kept below 10 kQ. Participants were instructed to avoid eye
movements, blinking, and body movements as much as possible, and to
keep their gaze on the centre of the screen during task performance.

We used a combination of custom Matlab scripts (Matlab 2013a,
Mathworks Inc.), the EEGLAB toolbox [21] (version 13.6.5b) and
Fieldtrip toolbox [22] for processing and analysing EEG data. Con-
tinuous data were down-sampled to 256 Hz, re-referenced to the
average of all electrodes (average common reference) and bandpass
filtered offline from 1 to 40 Hz using a zero-phase Hamming-windowed
sinc Finite Impulse Response (FIR) filter (-6dB cut-off frequency and
default mode filter order/transition bandwidth implementation; EE-
GLAB toolbox). Electrodes presenting abnormal power spectrum were
identified via visual inspection and replaced by spherical interpolation.
Independent Component Analysis (ICA) [21] was used to identify and
remove EEG components reflecting eye blinks. The ocular ICA compo-
nents were removed in a systematic way for all participants to avoid
any bias across the groups. One participant in the higher-fit group
presented abnormal spectra epochs in 50% of the trials and was ex-
cluded from the analyses in order to ensure optimal signal-to-noise
ratio.

Spectral power analysis. Processed EEG data segments from each
experimental condition (i.e., resting state and task-related spectral
power during cognitive performance) were subsequently segmented to
1-s epochs. Spectral decomposition for each epoch was computed by
using Fast Fourier Transform (FFT) applying a symmetric Hamming
window and the obtained power values were averaged across experi-
mental conditions. In addition to the absolute power (AP) across ex-
perimental condition, the relative power was also examined. To this
end, the percentage change in absolute spectral power from resting
state to task-related EEG during cognitive performance (A) was calcu-
lated for each individual frequency from 1 to 40 Hz as follow: Relative
power (A) = ((AP during task — AP resting state) * AP resting state 1)
+100.

Time-frequency analysis. Task-evoked spectral EEG activity was as-
sessed by computing event-related spectral perturbations in epochs
extending from —1000 ms to 2000 ms time-locked to stimulus onset for
frequencies between 4 and 40 Hz. Separate epochs were constructed for
cues and targets stimuli. Spectral decomposition was performed using
sinusoidal wavelets with 3 cycles at the lowest frequency and increasing
by a factor of 0.8 with increasing frequency. Power values were nor-
malised with respect to a —300 ms to 0 ms pre-stimulus baseline and
transformed into the decibel scale (10-1og10 of the signal).

The phase spectral properties were also explored by calculating the
ITC as a secondary control analysis in order to provide insight into the
interplay of the induced stimulus-related power increase (or decrease)
and phase synchronization of ongoing activity [23-25]. ITC measures
the consistency across trials of EEG spectral phase at each frequency
and latency window. The ITC measurement takes values from 0 (no
coupling) to 1 (complete phase locking) across trials [21].

Behavioural analysis. The behavioural data analyses were performed
on the overall participants' mean RTs. Anticipations (i.e., responses
prior to the target presentation) and omissions (if no response was
given within 1000 ms after target offset) can be taken as response er-
rors, but the ratio of this type of responses was extremely low and did
not allow obtaining a reliable index to be properly evaluated. Thus,
anticipations (1.33%), trials with RTs <100 ms (0.03%) and omissions
(0.27%) were finally discarded from both behavioural and EEG ana-
lyses [16].

2.6. Design and statistical analysis

Behavioural and participants’ fitness and anthropometrical data. The
behavioural data were analysed through repeated measures analysis of
variance (ANOVA) with the between-participants factor of Group
(higher-fit, lower-fit) and the within-participants factor of Block (B1,
B2). The effect sizes were reported by partial eta-squared (Tparriai’)- A t-
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test for independent samples was applied to analyse the participants’
fitness and anthropometrical data.

Resting state and task-related spectral power during cognitive
performance.We used a stepwise cluster-based non-parametric permu-
tation analysis [26] (Fieldtrip toolbox) without prior assumptions on
any frequency range or region of interest. The algorithm performed a
two-tailed t-test for independent samples on all individual electrodes
(64) X frequencies (1Hz bins from 1 to 40Hz) pairs and clustered samples
with positive and negative t-values that exceeded a threshold (i.e., p
<0.025) based on spatial and spectral adjacency. Cluster-level statistics
were then calculated by taking the sum of the t-values within each
cluster. The data points from the two datasets were randomly shuffled
and the maximum cluster-level statistic for these new shuffled datasets
was calculated. The above procedure was repeated 4000 times to esti-
mate the distribution of maximal cluster-level statistics obtained by
chance. The proportion of random partitions that resulted in a larger
test statistic than the original one determined the two-tailed Monte-
Carlo p-value. A p-value of the original cluster statistic smaller than the
critical Monte-Carlo p-value indicated significant differences between
the two datasets.

Spectral power main effect of Group (higher-fit vs. lower-fit) was
tested for significance at resting state period. For task-related spectral
power during cognitive performance, we split the analysis into two
temporal blocks (30 min each) to explore a possible time-on-task effect
on the spectral power. Note that the number of blocks of the PVT in the
analysis was reduced to two in order to simplify the design and increase
the signal-to-noise ratio of the cluster-based EEG analysis. We therefore
ended up with a 2 (Group: higher-fit, lower-fit) x 2 (Block: B1, B2)
design. Firstly, we tested the interaction Group X Block by applying the
permutation test to the spectral power (SP) difference SPg,-SPg;. The
main effect of Group was tested by applying the test to the averaged
data set SPgipo = %2 (SPp; + SPg»). Since the aim of this study was to
identify differences as a function of aerobic fitness of the participants,
only significant main effects and interactions for the factor Group are
reported. These comparisons were performed both for absolute and
relative power datasets for each electrode and frequency bin of 1Hz
without a priori assumptions on the region of interest or frequency
range.

Time-frequency analysis. ERSP and ITC during task performance were
also obtained for cue and target stimulus, respectively. Again, we fol-
lowed the above-mentioned 2 (Group: higher-fit, lower-fit) x 2 (Block:
B1, B2) factorial design and statistical approach. Significant main ef-
fects and interactions for the factor Group were also analysed by ap-
plying the cluster-based non-parametric permutation test. In order to
reduce the possibility that the type II error rate was inflated by multiple
comparisons correction, we set an a priori criteria of averaging power
and phase values across four previously defined frequency bands: theta
(4-8 Hz), alpha (8-14 Hz), lower beta (14-20 Hz) and upper beta (20-40
Hz). Additionally, to avoid an overlap with behavioural responses, we
also limited the time windows of interest to the first 300 ms after the
target onset (based on average behavioural response times). Note that
due to a methodological limitation with the spectral decomposition
algorithm, the time window of interest for the cue stimulus was limited
to the first 1500ms. In this case, the algorithm performed a two-tailed t-
test for independent samples on all individual electrodes (64) X time
point (cue: 0-1500ms; target 0-300ms) pairs and clustered samples with
positive and negative t-values that exceeded a threshold (i.e., p
<0.025) based on spatial and temporal adjacency. These comparisons
were performed both for cue and target datasets for each electrode and
time point without a priori assumptions on the spatial or temporal re-
gion of interest.

3. Results

Descriptive and fitness data. The t-tests for independent samples re-
vealed significant differences between groups in the VO,
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(mLemin~'kg™1) at VAT, t(47)=11.93, p<0.001, relative power
output (W-kg’l) at VAT, t(47)=11.29, p<0.001, and time to reach
VAT (s), t(47)=12.34, p<0.001. All data showed evidence of the dif-
ference in fitness level between groups (see Table 1). There were no
statistically significant differences between groups in any of the re-
maining descriptive or anthropometrical data, i.e., age (p=0.61),
height (p=0.38), weight (p =0.08) or body mass index (p=0.09).

Behavioural results. A repeated-measures ANOVA with the between-
participants factor of Group (higher-fit, lower-fit) and the within-par-
ticipants factor of Block (B1, B2) was conducted on participants’ mean
RTs. The main effect of Group was not significant (F<1). By contrast,
both the main effect of Block, F(1,47)=68.22, p<0.001, 7112,:.59, and
the interaction between Group and Block reached statistical sig-
nificance, F(1,47)=4.27, p=0.04, ’712)= .08. This significant interaction
was depicted by shorter RTs in the first 30 min of the task in the higher-
fit compared to the lower-fit group, while both groups matched poor
performance in the second half of the task. In any case, the post-hoc
comparisons did not reach statistical significance (both ps= 0.25). Mean
RTs and 95% confidence intervals (CI) are reported in Table 1. The
statistical results presented here do not fully correspond with those
reported in our previous article [4]. It is important to note that here we
maintained 49 out of 50 participants after the EEG data processing and
we substantially reduced the number of temporal blocks in order to find
the proper balance by increasing the signal-to-noise ratio for the EEG
spectral analysis. In any case, the general pattern of behavioural out-
comes is the same that was in turn supported by the EEG analysis.

Resting state and task-related spectral power during cognitive perfor-
mance. Resting state absolute spectral power analyses did not detect any
significant cluster for the main effect of Group (p =0.22). Similarly, the
main effect of Group and the interaction between Group and Block were
not significant for task-related spectral power during cognitive perfor-
mance (both ps=.23). Regarding the relative power analysis, there was
a greater rest-to-task increase of high frequencies EEG power (from 23
to 39 Hz) in higher-fit (8.06 %) compared to lower-fit participants (3.09
%; see Fig. 1 for descriptive spectra), although it did not reach statis-
tical significance (6 electrodes occipital cluster; p=0.08). There were
no significant clusters for the interaction between Group and Block (all
ps=0.28).

Time-frequency analysis. Cue-related spectral perturbation analysis
across the different frequency bands did not reveal any significant
cluster for either the main effect of Group or the Group and Block in-
teraction (all ps=0.15; see Fig. 2).

Target-related analysis for the main effects of Group did not reveal
significant clusters for any of the frequency bands (all ps=0.38). By
contrast, the analysis of the interaction between Group and Block
showed statistically significant differences within the theta, lower and
upper beta frequency bands, although it did not reach significance for
the alpha band (p=.18). The theta band analysis exhibited a 19-elec-
trodes significant cluster from O to 156 ms after the target onset
(p=0.02). The higher-fit group showed a greater spectral power in
block 1 compared to lower-fit group, although there were no group
differences in block 2 (see Fig. 3). The lower beta band analysis re-
vealed a 32-electrodes cluster distributed from 145 to 300 ms
(p<0.01). The higher-fit group showed no lower beta suppression until
300ms after the target appearance, unlike the early suppression showed
by the lower-fit group in the first part of the task. However, both groups
showed a similar early suppression pattern in block 2 (see Fig. 3). Fi-
nally, the upper beta band analysis also yielded a 39-electrodes sig-
nificant cluster ranging from 156 to 300 ms after the target onset
(p<0.01). This interaction was depicted by a greater spectral power in
block 1 in higher-fit compared to lower-fit participants, while the dif-
ference disappeared in the second part of the task (see Fig. 3).

ITC analysis only depicted statistically significant differences for the
target-related interaction between Group and Block within the theta
frequency band. Specifically, the theta band analysis exhibited two
significant clusters (15-electrodes and 18-electrodes) within an
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25 I I I I I I I

Frequency (Hz)

Fig. 1. Resting state and task-related spectral power during cognitive perfor-
mance as a function of Group. Solid lines represent the resting state absolute
spectral power and dashed lines represent the task-related spectral power
during cognitive performance for higher-fit (red) and lower-fit (blue) partici-
pants. The x-axis represents the frequencies across the spectrum and the y-axis
the power values for each individual frequency. The electrode sites within the
occipital cluster in high frequencies power (23-39 Hz) rest-to-task increase in
higher-fit (8.06 %) and lower-fit participants (3.09 %) are represented. T-test
values distribution from contrasting the between-groups power differences in
rest-to-task increase across all individual electrodes and frequencies are re-
presented in the topographic colorbar plot (bottom-left). Note that this cluster
did not reach statistical significance (p=0.08) and is represented only for a
descriptive purpose. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.).

identical time range (from O to 133 ms) after the target onset (both
ps<0.02). In both clusters, the higher-fit group showed a greater ITC
values in block 1 compared to lower-fit group, although there were no
group differences in block 2 (see Fig. 4). There were no significant
clusters for either the main effect of Group or the Group and Block
interaction across the remaining frequency bands for both cue- and
target-related analyses (all ps=.10).
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4. Discussion

In the present study, we took an exploratory bottom-up approach to
describe, for the first time, the relationship between cardiovascular
fitness and neural oscillatory patterns in young adults in a prolonged
sustained attention task. To this end, we extracted and analysed the
ERSPs and overall EEG oscillatory dynamics of a set of data from our
laboratory [4] comparing performance of two groups of participants
(i.e., higher-fit and lower-fit) in a 60’ version of the PVT.

The results of the resting state and task-related (overall) spectral
power during cognitive performance did not show any significant re-
sult. This result contradicts the scarce previous evidence pointing to a
selective association between aerobic fitness and tonic EEG overall
dynamics [27,28]. The ERSP analysis did show significant differences
as a function of cardiovascular fitness, such that higher-fit group
showed an increased theta and upper beta power, as well as reduced
lower beta suppression after the target presentation with respect to
their lower-fit counterparts in the first part of the task, but these dif-
ferences disappeared in the second block. The reader will note that the
modulation of the ERSP by the time-on-task paralleled the reaction time
pattern reported here and in Luque-Casado et al. [4], with higher-fit
participants outperforming lower-fit participants in terms of reaction
time to the target stimulus in the first half of the PVT.

The joint analysis of ERSP and ITC depicted a coincident response
within the theta frequency band, in which higher-fit showed greater
power and inter-trial coherence with respect to lower-fit, although
limited to the first block of the task. In light of the evidence showing
that ERPs could arise from partial phase synchronization of ongoing
activity combined with a stimulus-related change in EEG power
[24,25,29], it is reasonable to argue that activity within the theta band
could be contributing, at least in part, to the genesis of the P3 com-
ponent described in our previous report [4]. Nevertheless, the P3 and
frontal midline theta power and inter-trial coherence have proven to be
key neural signatures that, while underlying vigilance performance
synergistically, seem to reflect activity of different anatomical sub-
strates distinctively involved in attentional stability and flexibility
procedures [30]. Fronto-medial theta power has been linked to cogni-
tive monitoring and control processes [31-33], thought to be crucial for
sustained attention [11,32]. In a similar vein, trial-by-trial phase con-
sistency of the theta oscillation has proven to be critical for the ability
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Fig. 2. Representation of the event-related spectral perturbation (ERSP) after the cue stimulus appearance as a function of Group and Block. Time-frequency graphs
averaging all electrodes as a function of Group (top: higher-fit; bottom: lower-fit) and Block (left: block 1; right: block 2); Colorbar represents power values in decibels
(dB), y-axis represents frequency in hertz (Hz) and x-axis represents time point in milliseconds (ms). Time zero represents the cue stimulus appearance. Note that no
significant clusters were found for either the main effect of Group or the Group and Block interaction across the different frequency bands.
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Fig. 3. Representation of the event-related spectral perturbation
(ERSP) after the target stimulus appearance and the significant

clusters in theta (4-8 Hz), lower beta (14-20 Hz) and upper beta
4 band (20-40 Hz) as a function of Group and Block. A) Time-fre-

quency graphs at electrode sites included within the significant
cluster in each frequency band as a function of Group (top: higher-
fit; bottom: lower-fit) and Block (left: block 1; right: block 2);

Colorbar represents power values in decibels (dB), y-axis represents
frequency in hertz (Hz) and x-axis represents time point in milli-

seconds (ms). Time zero represents the target stimulus appearance;
B) Descriptive representation of t-test values distribution (colorbar)
of the Group and Block interaction evaluated by the between-groups

contrast (i.e., higher-fit vs. lower-fit) of the Block differences (i.e.,
4 block 2 - block 1) across all individual electrodes (y-axis) and time

point (x-axis) pairs. Note that samples of t-values that exceeded the

fixed threshold (p<0.025) were clustered based on spatial and

0 temporal adjacency. The significant clusters are represented in

graph C; C) Grand average of target-related spectral perturbation as
a function of Group (red lines: higher-fit; blue lines: lower-fit) and

Block (solid lines: block 1; dashed lines: block 2) after the target
onset. The shaded area represents the latency range where sig-
nificant interactions between Group and Block were found. The
electrode sites included in the significant cluster are highlighted in
black in the topographic t-values plot. Y-axis represents the power
values (dB), x-axis represents the time point (ms) and the topo-

graphy colorbar represents t-values. No significant cluster was found
1 within the alpha band and the topographic t-values plot was not
represented in this case. Alternatively, an average of all electrodes is

plotted in graph C for a descriptive purpose. (For interpretation of
the references to color in this figure legend, the reader is referred to
the web version of this article.).
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to maintain attentional focus from moment to moment [30], which
could be leading to a more stable and efficient response [34]. In any
case, although this combined ERSP and ITC analysis gives a deeper
insight to understanding of neural responses, compelling neurophysio-
logical evidence for a clear dissociation between biological processes
underlying phase-locked versus non-phase-locked activity is still

needed [23,35,36] and caution should therefore be exercised around
any interpretation.

ERSP in higher-fit participants also showed no suppression in lower
beta and exhibited an increased power in upper beta band with respect
to their lower-fit peers during the execution of the first part of the task.
Again, in the second part of the task, the fitness-related differences
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Fig. 4. Representation of the inter-trial co-
herence (ITC) value after the target stimulus
appearance and the significant clusters in theta
band (4-8 Hz) as a function of Group and
Block. A) Time-frequency graphs at electrode
sites included within the significant clusters as
a function of Group (top: higher-fit; bottom:
lower-fit) and Block (left: block 1; right: block
2); Colorbar represents ITC values ranging
from a minimum of 0 (no coupling) to a max-
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of representation since a common pattern of time distribution and ITC values
reader is referred to the web version of this article.).

disappeared and higher-fit showed the same suppression in lower beta
compared to lower-fit group, while no remarkable spectral perturbation
was observed in the upper beta band in any of the groups.

Previous evidence has shown that event-related desynchronization
or power suppression within the alpha and beta band is associated with
cortical activation to meet tasks demands rather than reflect the actual
performance of the system during the task, while event-related syn-
chronization is associated with deactivated or inhibited cortical net-
works [10,37]. This is of special relevance given the similar stimulus-
related response in EEG power within lower-beta and alpha band in our
data, although no statistical differences were reached in the latter. In
addition, a positive relationship between reductions in beta suppression
and decreased cognitive effort to meet task goals have been proposed by
previous studies [10,38]. Thus, interpreted within this framework, one
could argue that the reduced lower beta suppression shown by higher-
fit to the target stimulus during the first half of the task, represent a
fitness-related efficient oscillatory mode of the brain to meet sensor-
imotor task demands.

The results of upper beta band showed a power increase during the
first half of the task in higher-fit participants, although no clear power
increase or suppression was shown in the second part of the task in this
group or for any temporal block in the case of lower-fit individuals. It is
important to note the possibility that the frequency range between 20-
40 Hz could comprise mixed activity related to the beta suppression
reported above (14-30 Hz) as well as localized gamma oscillations (>
30 Hz). Following this argument and according to previous evidence
[39,401, the power increase observed in this frequency band during the
first half of the task in higher-fit, may be reflecting a gamma power
modulation by the phase of low-frequency oscillations (<14 Hz). In-
deed, gamma band is strongly modulated by the phase of low-frequency

was evident. (For interpretation of the references to color in this figure legend, the

oscillations and a cross-frequency coupling between low-frequency
modulation (mainly theta) and gamma band has been shown to pro-
mote sustained attentional control [11].

Overall, taking the evidence described above, our results could
therefore represent a better attentional regulation during stimulus
processing in higher-fit compared to their lower-fit peers during the
first half of the task. Specifically, the neural oscillation pattern of
higher-fit points to more efficient neural networks involved in alloca-
tion of attention from the target onset, which could be facilitating the
integration of visual information with required motor response, finally
leading to a greater visuomotor gain related to alertness during the first
half of the task. This would support the only previous evidence to date
using measures of brain function to determine the mechanisms under-
lying fitness-related improvements in sustained attention, which in-
dicated that higher-fit participants were better at activating and
adapting neural processes involved in cognitive control to meet and
maintain task goals [4,41]. In addition, since sustained attention can be
understood as an executive function [42], our results are compatible
with a model in which theta long-range coupling indicates integration
of sensory information into executive control components of motor
behaviour [33].

The differential oscillatory pattern as a function of fitness reported
here was limited to the first half of the task. Maintaining a high at-
tentional state is effortful and it is taxed by time-on-task [43], which
has been evidenced in our study by the vigilance decrement over time
in both groups. Therefore, the disappearance of the differential oscil-
latory pattern as a function of fitness in the second half of the task
might be assigned to a drain of executive control capacities in higher-fit
individuals.

The cluster-based approach allowed us to describe the spatio-
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temporal distribution of the neural oscillation patterns as a function of
aerobic fitness without biased previous assumptions. So far, there is
limited research on the individual differences in brain function and
cognition as a function of fitness by using a neural oscillatory approach.
To the best of our knowledge, an approach based on strong a priori
spatial and/or spectral limitations is usually employed [44,45] which
could be leading to the omission of important information. Therefore,
this research field would benefit from this data-driven approach to
better describe the general pattern of brain oscillations in different
cognitive processes as a function of fitness.

While the current study revealed group differences on stimulus-re-
lated spectral perturbations that fit well and could potentially explain
the fitness-related improvements in sustained attention, these results
should be interpreted with special caution. Given the descriptive nature
of the present study and the absence of previous hypotheses regarding
fitness in this specific context, it would be bold to make strong state-
ments beyond mere speculation. Indeed, various factors have been
described as potential mediators between the regular practice of ex-
ercise and the observed brain and cognitive changes [46]. Whatever the
final explanation, our study represents therefore a first step towards a
better understanding of the brain dynamics underlying the relationship
between fitness and cognition in general, and sustained attention in
particular.
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