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HIGHLIGHTS

« This review examines the effects of high-fat diet exposure on learning and memory.

» Techniques most often used to assess cognition in rodent models are also summarized.

« There is a strong association between HF diet exposure and cognitive impairment.

* Mechanisms may involve insulin, leptin, BDNF, inflammatory pathways & BBB dysfunction.
= Maternal HF diet consumption may affect the cognition of offspring.
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1. Introduction

Consumption of a high-fat (HF) diet has long been known to in-
crease one's risk for a number of medical conditions including obesity,
diabetes, and the metabolic syndrome. Further evidence in humans
and rodents suggests that these same conditions are associated with
an increased risk of Alzheimer's disease and other forms of cognitive im-
pairment [1-3]. Given the expanding global burden of high fat diet con-
sumption and obesity, and an emerging crisis of dementia due to a
rapidly aging population, understanding the effects of high-fat diet
consumption on cognition, gaining insights into potential underlying
mechanisms, and developing effective treatment strategies are of criti-
cal importance. Here, we will review the methods that are most com-
monly used to assess learning and memory in rodent models, and we
will then summarize findings from behavioral studies of the effects of
HF diet before discussing potential underlying mechanisms. Finally,
we will briefly examine emerging data suggesting that maternal high
fat diet consumption may have effects on the offspring's metabolism,
neurodevelopment, and cognition.

2. Behavioral phenotypes

First, it should be noted that in rodent studies of the effects of HF diet
on learning and memory, there is tremendous diversity in the choice of
animal strain, age, diet, length of exposure, and method of assessing be-
havioral outcomes with very few studies using multiple tests of cogni-
tion. In order to avoid over-generalization of findings from various
studies, we have organized this review by behavioral test. The tests in-
cluded here are not intended to be exhaustive, but they include those
that are among the most common in studies of cognition. For each test
of ‘learning’ and/or ‘memory’, we begin by summarizing the most com-
mon methods employed and the brain regions that are thought to be
involved before discussing the effects of HF diet on performance. Re-
garding the various diets, we have described each as it appears in the
methods section of the original manuscript (i.e. 60% HF diet, Western
diet, HF/high sucrose diet, etc.). While there may be some discrepancies
in the ways that different authors describe various diets, we hope that
this approach will avoid misinterpreting or misrepresenting views of
the authors of the original work.

2.1. Morris Water Maze

The Morris Water Maze is perhaps the most well-known and com-
monly used test of spatial learning and memory in rodents. The standard
protocol requires rodents to swim from a start location to a pre-viously
unknown escape platform that is submerged below the surface of opaque
water, and therefore hidden from sight. The test requires rodents to orient
themselves and navigate to the hidden escape platform using cues located
on the perimeter or outside of the arena. Spatial learning can be assessed
by measuring latency to finding the escape platform across multiple trials,
and memory is most often assessed by removing the platform and mea-
suring a preference for the quadrant in which the platform had previously
been located [4-6]. Performance in the Morris Water Maze is correlated
with hippocampal function, and has been specifically associated with hip-
pocampal NMDA receptor function by two studies using NMDA receptor
antagonists [7,8]. Similarly, performance in the Morris Water Maze has
been correlated with hippocampal long-term potentiation (LTP) [7-9].
Reversal learning, which is a common addition to the standard protocol,

requires rodents to learn a new location of the platform and, based on
lesion studies, is thought to be more heavily dependent on the prefrontal
cortex and striatum ([10], reviewed in [11]). Additional lesion studies
suggest that other brain areas including the prefrontal cortex, basal fore-
brain, striatum, and cerebellum are involved in various aspects of the
Morris Water Maze (reviewed in [6,11]).

In studies that have assessed the effects of HF diet exposure on cog-
nition, the Morris Water Maze is by far the most frequently used. Of the
more than 40 studies in rodents that have been published to date, the
overwhelming majority has found that HF diet consumption impairs
hippocampal dependent performance in the Morris Water Maze. This
robust association, which has been previously reviewed [12], has been
described in various wild type mouse and rat models that have been ex-
posed to a HF diet for between 1 month [13] and 8 months [14]. Among
the various diets used in these experiments are 21% HF [15], 32% HF
[16], 42% HF [17], 58% HF [18], 59.3% HF [19-21], 60% HF [22-25], and
‘HF, refined sugar’ [13,14,26,27]. Of these reports, only one found that
HF diet exposure resulted in deficits in the Morris Water Maze without
affecting body weight [27]. This is in contrast to several studies (sum-
marized below) that found HF diet-related impairment in other behav-
ioral tests without an associated increased in body weight.

Only a few studies have reported no change in Morris Water Maze
performance after HF diet consumption. In one, mice were exposed to
45% HF diet for 5 or 10 months [28]. In another, 24% HF exposure impaired
performance of juvenile but not adult rats [29], and in two additional
studies, rats were fed diets enriched with polyunsaturated fatty acids
(PUFAs), which had been expected to improve cognitive function [30,31].

Finally, while extensive discussion is outside of the scope of this re-
view, the Morris Water Maze has additionally been used to demonstrate
that various HF diets can exacerbate cognitive deficits found in the HF
diet + streptozotocin (STZ) model of diabetes [32-35] as well as models
of stroke [36,37], traumatic brain injury [38,39], and Alzheimer's disease
[40].

2.2. Barnes Maze

The Barnes Maze is closely related to the Morris Water Maze in that
the test requires rodents to find a hidden escape using external spatial
cues. The primary variation from the Morris Water Maze is that, rather
than relying on swimming, the Barnes Maze uses a dry, elevated circular
platform with multiple potential escape holes located at the periphery.
A hidden escape box is placed under only one hole at any given time.
Also like the Morris Water Maze, learning, memory, and cognitive flex-
ibility can be assessed by measuring latency to completion of the task
across multiple trials, time spent in the area that had previously
contained the escape box, and reversal learning, respectively. Based on
early electrophysiological recordings from live animals, performance
in the Barnes Maze is also thought to be largely hippocampal dependent
[41] though lesion studies of Morris Water Maze performance suggest
that other brain regions such as the prefrontal cortex and striatum are
likely more involved in reversal learning tasks ([10], reviewed in [11]).
While used less frequently than the Morris Water Maze, the Barnes
Maze may have an advantage in cases where swimming speed, motiva-
tion, or motor coordination is impaired as may be the case with obesity
and other metabolic conditions resulting from HF diet consumption.
Also, use of the Barnes Maze may avoid confounding factors associated
with stress responses that are known to be activated by the Morris
Water Maze. This is supported by at least one study which found that,
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while stress hormone levels are increased in both the Barnes Maze and
Morris Water Maze, the stress response is significantly greater in the
Morris Water Maze and test performance is correlated with stress hor-
mone level only in the Morris Water Maze [42].

Only a few studies thus far have assessed the effects of HF diet con-
sumption on Barnes Maze performance and the data are mixed. In one,
adult female C57BL/6 and Swiss Webster mice were fed a diet contain-
ing either 10% or 60% fat. No deficits were seen in either strain after
8 weeks, but after 6 months, the Swiss Webster mice fed a HF diet
were found to have impaired acquisition and memory retention. De-
spite the learning and memory deficits found in HF fed Swiss Webster
mice, the authors found increased body weight, hyperglycemia, and hy-
perlipidemia only in HF fed C57BL/6 mice. Interestingly, they also found
increased food intake only in HF fed Swiss Webster mice suggesting that
differences in Barnes Maze performances may be related to either the
amount of HF diet consumed independent of body weight, or genetic
differences between the strains [43]. Another small study using
pathogen-free mice found that 3 weeks of access to a high fat/high car-
bohydrate ‘Western diet” had no effect on short-term retention memory
despite causing significant weight gain [44]. A third study using CD-1
mice also supports the possibility that HF diet exposure might have in-
dependent effects on body weight and cognition. When male CD-1 mice
were given ad libitum access to standard chow or 45% HF diet, the au-
thors found that HF fed mice showed no differences in Barnes Maze per-
formance despite being nearly 50% heavier than controls [45].

2.3. Radial Arm Maze

The Radial Arm Maze consists of an elevated platform with several
equally spaced arms (most often 8) radiating from a small, open central
area and visual cues positioned around the maze. The test usually in-
volves ‘baiting’ all or a subset of the arms with a food pellet and measur-
ing latency to retrieval of pellets and errors over multiple trials. Latency
to completion of the task across trials is thought to assess spatial learn-
ing while entry to a non-baited arm is usually considered an error of ref-
erence memory and re-entry to a previously baited arm is considered an
error of working memory [46,47]. In another commonly used set-up
known as the Radial Arm Water Maze, 6 arms radiate from a central
area and only one arm contains an escape platform that is hidden
under the surface of opaque water. Performance in the Radial Arm
Water Maze is assessed in much the same way as the Morris Water
Maze [48]. Also like the Morris Water Maze and Barnes Maze, the Radial
Arm Maze is usually thought of as a test of hippocampal function based
on lesion studies [48]. A study using NMDA receptor antagonists linked
Radial Arm Maze performance to hippocampal LTP and NMDA receptor
function [49]. However, several studies using reversible, region specific
sodium channel blockade have reported that Radial Arm Maze perfor-
mance may be dependent on more widely distributed neural network
involving the hippocampus, prefrontal cortex, nucleus accumbens, stri-
atum, and thalamus [50,51].

Regarding the effects of HF diet on Radial Arm Maze performance, in
series of studies one group found that exposing adult male Wistar rats to
either a 25% HF diet [52,53] or a ‘Western Diet’ [54] impaired both short-
and long-term memory. Interestingly, in one of these studies, the au-
thors found that Vitamin E treatment prevented HF diet-related per-
formance deficits in the Radial Arm Maze without normalizing body
weight [53], and in another, the authors found a similar phenomenon
with caffeine treatment [54] again suggesting possible mechanisms of
HF diet-induced cognitive impairment that may be independent of obe-
sity. Further support is provided by studies of the effects of a ‘HF, high
cholesterol’ diet among C57BI/6 mice [55], and a ‘high saturated fat,
high cholesterol’ diet among male Fischer 344 rats [56], both of which
found working memory deficits in the Radial Arm Maze but no changes
in body weight among HF fed rodents. In another study, male Sprague-
Dawley rats were exposed to a ‘high saturated fat, high glucose’ diet and
tested for spatial and non-spatial memory in the Radial Arm Maze at

multiple time points between 72 h and 90 days on the diet. Interesting-
ly, the authors found impairment in spatial memory after only 72 h,
which was well before any difference in body weight emerged. Impair-
ment in nonspatial memory developed after 30 days on the diet, when
the HF fed rats were significantly heavier than controls [57].

Further suggesting that specific components of a HF diet might con-
tribute, at least in part, to deficits in learning and memory are findings
from one of the first studies to assess the cognitive impact of HF diets
in which the authors compared standard chow to 20% HF diets enriched
with either saturated fat or PUFAs and found that, in male Long-Evans
rats, neither HF diet affected body weight but a diet high in saturated
fat impaired working memory in a baited Radial Arm Maze [58].

Finally, one interesting study in male C57BL/6] mice found impaired
acquisition and working memory in the baited Radial Arm Maze after
8 weeks of exposure to 45% HF diet [59]. In this study, consumption of
the HF diet was associated with increased weight gain in the absence
of increased glucose, insulin, or triglycerides. While this study is not
able to separate the effects of diet composition from the effects of obe-
sity, it does suggest that a HF diet may have an impact on cognition
that is independent of the effects of metabolic disorders often associated
with HF consumption.

24. Y-Maze

The Y-Maze consists of a Y-shaped platform with three equally
spaced, enclosed arms. Many variations of the test have been published
but most rely on the tendency for rodents to explore novel environ-
ments and thus prefer entering a new arm rather than returning to an
arm that has just been explored. Most commonly, the primary outcomes
are the total number of arm entries and number of ‘spontaneous alter-
nations’ or ‘triads’ which are defined as entering into each of the three
arms without returning to a previously explored arm [60]. Alternatively,
a single arm can be initially blocked, then unblocked in subsequent tri-
als. In this case, the outcome can simply be whether or not the rodent
first enters the previously blocked arm [60,61]. The precise brain regions
associated with Y-Maze performance likely vary depending on the ex-
perimental set-up. Lesion studies (reviewed in [62,63]), morphological
studies [64], computational modeling [65], selective induction of oxida-
tive stress [66], and transgenic mice (reviewed in [62]) have suggested
that networks including the hippocampus, septum, prefrontal cortex,
basal forebrain, striatum, and cerebellum are involved.

At least two studies using the Y-Maze appear to support an associa-
tion between cognitive impairment and HF diet exposure in the absence
of obesity or other metabolic diseases. In one study of short-term
exposure to 60% HF diet, juvenile C57BL/6 mice were found to have de-
creased spontaneous alternations after only 1 week on the HF diet, de-
spite no differences in body weight [67]. In another long-term study,
adult Long-Evans rats were found to have impairment in preference
for the novel arm of a Y-Maze after 12 weeks of exposure to either a
‘Western diet’ or 60% HF diet despite the fact that only those rats con-
suming the ‘Western diet’ were heavier than controls [68]. A second
study using a 21.2% HF diet in adult male mice did find increased body
weight and impaired preference for the novel arm of a Y-Maze after
10 weeks on the diet [69].

In two negative studies in male rats, no difference in Y-Maze perfor-
mance was found after 12 weeks on a combined ‘HF/high fructose’ diet
[70] or after exposure to 60% HF diet for 10-12 weeks [71].

A single study focused mostly on the cognitive effects of diabetes
found impairment in the Y-Maze and impaired insulin secretion despite
normal body weight in the often used 60% HF diet + STZ mouse model
of diabetes [32].

2.5. T-Maze

The T-Maze consists of an elevated, T-shaped platform with three
enclosed arms. Like the Y-Maze, many variations of the T-Maze are in
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common use. Also like the Y-Maze, the most common set-ups involve
measuring tendency to enter a previously unexplored arm (i.e. ‘sponta-
neous alternation’), tendency to enter a previously blocked arm, or la-
tency to retrieval of a reward in a baited arm. In contrast to the Y-
Maze, which measures ‘spontaneous alternations’ within a single trial,
‘spontaneous alternations’ in the T-Maze are usually measured in sepa-
rate trials. That is, a cognitively intact rodent that choses to explore the
left arm of a T-Maze in one trial is expected to explore the right arm on
the next trial and doing so would be counted as a spontaneous alterna-
tion [72]. A much more complex 14-unit T-Maze has also been used in
which a rodent is required to learn a series of right and left turns to
reach a goal box. In the 14-unit T-Maze, rodents are motivated to find
the escape by foot shocks that are administered upon failure to com-
plete sections within a certain amount of time. Successful navigation
of the 14-unit T-Maze is thought to rely more on procedural memory
than spatial memory and thus may depend on striatal function with
the hippocampus playing a subtler role [73,74]. Again like the Y-Maze,
brain regions involved in T-Maze performance likely depend on the pre-
cise experimental set-up. Insights from many studies of brain lesions
and transgenic mice indicate that the hippocampus, septum, prefrontal
cortex, basal forebrain, thalamus, striatum, and cerebellum may all be
involved (reviewed in [62,72]).

Among studies of HF diet effects on cognition, at least four have
assessed performance in variations of the T-Maze. In the first, C57BI/6
mice were given access to a 60% HF diet, a 41% fat ‘Western diet’, or stan-
dard chow beginning at 12 months of age. The authors found that mice
on the HF, but not the ‘Western’ diet exhibited increased errors in the
14-unit T-Maze [75]. In another study using 60% and 45% HF diets, the
authors found decreased spontaneous alternations in a T-Maze after
only 17 days on the 60% HF diet and after 8 weeks on the 45% HF diet
[76]. Interestingly, another study investigated the effects of a 45% HF
diet or 10% fat standard diet on female APP/PS1 mice, a commonly
used model of Alzheimer's disease. After 6 months of diet exposure,
the authors found that while transgenic mice were impaired compared
to WT, there was no additional effect of HF diet on T-Maze performance
[77]. Finally, one study gave 12-month-old male CD-1 mice access to a
diet containing either 10% or 5% fat and found impaired T-Maze perfor-
mance among mice consuming the 10% fat diet [78]. While this study
may suggest that fat exposure can have detrimental cognitive effects
even at low concentration, the interpretation is complicated by the
fact that the mice consuming the 10% fat diet were not included unless
they were at least 30% heavier than the average of mice consuming the
5% fat diet.

2.6. Novel Object Recognition

Several variations of the Novel Object Recognition test are in com-
mon use. Generally, the test involves a memory acquisition phase and
arecall phase. In the acquisition phase, a rodent is allowed to explore
a chamber containing two identical objects. The recall phase then
takes place after an interval (usually ranging from several hours to a
few days), during which one object is either moved to a new location
or replaced with a novel object and the rodent is again allowed to ex-
plore. The ratio of time spent exploring the novel versus familiar object
is measured. Alternatively, rodents can be presented with a series of ob-
jects at different times during the acquisition phase, then, during the re-
call phase, the ‘familiar’ object is considered the one that was most
recently seen. Cognitively intact animals are expected to discriminate
between novel and familiar objects and preferentially interact with
novel objects. Performance in the Novel Object Recognition test and
similar tests of recognition memory are thought to involve function of
the hippocampus as well as cortical areas. Taken together, the results
of several different lesion studies indicate that the hippocampus ap-
pears to be involved when tests involve recall of an object's place or ob-
ject recency, but the prefrontal and perirhinal cortex are more involved
in novel object preference [79-82].

Overall, the effects of HF diets on Novel Object Recognition appear to
be mixed. In rats, impairment has been found in male Sprague-Dawley
rats fed a ‘HF, high sucrose’ diet for 8 weeks [27], or treated with 60% HF
diet + streptozotocin in a model of diabetes [83]. Alternatively, no
Novel Object Recognition deficits were found in male Long-Evans rats
after consuming either a ‘Western diet’ or a 60% HF diet [68].

In mouse studies, all of which used the C57BL/6 strain, results are
similarly mixed. No diet effects on Novel Object Recognition were
found after exposure to 60% HF diet for 10-12 weeks [71] or 32% HF
diet for 6 months [84]. In three reports that did find evidence of HF
diet-related impairment, deficits were seen after 1 and 3 weeks on a
60% HF diet [67] as well as after 2, 3, and 4 months on a different 60%
HF diet [24]. The most recent report found impairment after 21 weeks
on 40% HF diet [85]. Another study using a 60% HF diet in male C57BL/6
mice did not find a diet effect on Novel Object Recognition, but did find
impairment in the more hippocampal dependent object-in place varia-
tion of the test [86]. Finally, one study found deficits in the object-in
place task among adolescent but not adult mice after 8 weeks on a 45%
HF diet suggesting a potential critical period for hippocampal sensitivity
to HF diet [87].

Interestingly, as with other tests of learning and memory, there does
not appear to be a robust association between Novel Object Recognition
and body weight. Among the studies finding an association between HF
diet exposure and novel object performance, there are reports of no
changes [27] and increased body weight [24,83,86,87] after HF diet con-
sumption. Among the negative studies, there are reports of body weight
increases [68,71,84,87], and decreases [68] upon exposure to various HF
diets.

2.7. Conditioned inhibition

Several tests of learning and memory measure behavioral inhibition
which may be particularly relevant in the maintenance of energy bal-
ance and body weight as it relates to an individual's ability to appropri-
ately inhibit or suppress responses to food cues (reviewed in [88]). The
tests of behavioral inhibition, including discrimination reversal, feature
negative discrimination (FN), and the Variable Interval Delayed Alterna-
tion (VIDA) task, seem to be largely dependent on the ventral hippo-
campus with potential roles for the cortex and hypothalamic reward
circuits (reviewed in [88]).

Both discrimination reversal and FN involve variations of classical
conditioning. In discrimination reversal, rodents are first trained in a
simple discrimination task such that one conditioned stimulus (CS1) is
paired with an unconditioned stimulus (US), often a food or sucrose pel-
let, while another conditioned stimulus (CS2) is not. After asymptotic
performance is reached, the pattern is reversed such that CS2 is paired
with the US. Learning the pattern after reversal is related to hippocam-
pal and prefrontal cortex function [89]. During FN, a CS1 is paired with
an US, but no US is delivered when CS1 is preceded by CS2. Learning
to preferentially respond to CS1 alone is thought to be hippocampal-
dependent [90].

In one study that assessed discrimination reversal, male Sprague-
Dawley rats were fed chow, or a high-saturated fat/high-glucose diet,
or a high-saturated fat/high-sucrose diet. Additionally, half of the rats
in each group were restricted to 85% baseline body weight. The authors
found that only unrestricted access to the high-saturated fat/high-
glucose diet impaired discrimination reversal learning suggesting that
hippocampal function may be sensitive to interactions between diet
composition and amount of access or body weight [89]. In three sepa-
rate studies, adult male Sprague-Dawley rats were used to assess the ef-
fects of a ‘high energy’ diet that is high in both saturated fat and glucose
on FN performance [90-92]. The first found that 90 days of access to the
high-energy diet impaired performance in the FN task but, importantly,
not in a separate discrimination based task that does not depend on hip-
pocampal function [90]. The second found that the cognitive effects of
high-energy diet were restricted to diet induced obesity (DIO) rats
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while high-energy diet-resistant (DR) rats were indistinguishable from
controls suggesting that weight gain or adiposity may mediate the die-
tary impact on hippocampal function [91]. The third study again found
FN impairment among high-energy DIO rats, but differences in FN per-
formance preceded differences in body weight. The authors also
assessed the effects of a ketogenic diet that is high in saturated fat but
low in carbohydrates. Interestingly, the authors found that the ketogen-
ic DIO group performed better on the FN task than the ketogenic DR
group despite increased body weight, adiposity, and glucose levels
among DIO rats. Curiously, FN performance among rats fed the ketogen-
ic diet but not the other diets was positively correlated with circulating
ketone levels [92]. Together, these studies seem to support a clear, but
complicated link between HF diet exposure and hippocampal-
dependent cognitive impairment that is not simply related to obesity,
blood glucose, or a specific diet composition.

Finally, a few of the first studies to assess cognition in response to HF
diet consumption used the VIDA test, which is a modified go/no-go task.
In the standard protocol, rodents are first trained to lever press for a
food pellet using a continuous reinforcement schedule before introduc-
ing a simple alternating pattern between go and no-go trials. At first, the
go and no-go trials are not separated by an intertrial interval and ro-
dents quickly learn to lever press preferentially during go trials. After
the rodents have successfully learned the alternating go/no-go pattern,
a variable intertrial interval is introduced with longer intervals requir-
ing more sustained memory of the previous trial. Memory can then be
measured by comparing latency to lever press during go versus no-go
trials with various intertrial intervals [3,93]. Learning the simple alter-
nation rule is thought to principally involve the frontal cortex while per-
formance in trials with longer intertrial intervals is thought to be more
hippocampal dependent [94,95].

While many of the most recent papers have used other behavioral
measures such as the Morris Water Maze or Novel Object Recognition,
the VIDA test bears mentioning as it was used in several of the earliest
studies to suggest an association between HF diet consumption and cog-
nitive impairment. A series of several papers using young adult rats
found that dietary saturated fat content is strongly negatively correlated
with performance in the VIDA [58,93,96,97], though diets high in poly-
unsaturated fats can still result in deficits [58,96].

Together, the behavioral studies summarized here suggest that con-
sumption of essentially any HF diet, even for a short period of time, can
negatively affect performance on a number of different tests of cogni-
tion. Interestingly, while individual studies may suggest that cognitive
deficits are attributable to either adiposity or specific dietary compo-
nents (i.e. glucose, saturated fat, or cholesterol), the current body of lit-
erature as a whole remains unclear and additional studies are certainly
warranted.

In the next section we will discuss potential mechanisms underlying
the link between HF diet exposure and cognitive impairment. Surpris-
ingly, though behavioral data imply that several brain regions involved
in learning and memory are likely impacted by HF exposure, the study
of potential mechanisms has been largely limited to the hippocampus.

3. Potential mechanisms
3.1. Insulin, leptin & glucose regulation

As HF diet intake has been found to result in impaired performance
across a number of tests of cognition, several potential mechanisms
have been proposed. Directly connecting the effects of a HF diet on en-
ergy metabolism to its effects on cognition is a large body of evidence
suggesting that the insulin receptor is highly expressed in the hippo-
campus and cortex, that synaptic insulin signaling is critical for learning
and memory, and that peripheral insulin insensitivity can have dramatic
effects in the CNS [98-104]. Consistent with insulin's potential role in
learning and memory, a number of the studies reviewed here have
found that HF diet-related cognitive impairment is also associated

with impaired peripheral and central insulin signaling [16,19,20,22,23,
76]. Interestingly, insulin sensitivity is thought to be largely related to
adiposity and, as discussed previously, obesity is an inconsistent finding
among studies of dietary effects on cognition. While it is possible that in
some cases HF consumption is changing adiposity without affecting
body weight, body composition analyses have not been routinely done.

It is also now well established that the leptin receptor is highly
expressed in several brain regions including the hippocampus [105,
106] and recent evidence suggests that leptin signaling, like insulin,
may have a critical role in hippocampal dependent learning through
regulation of synaptic plasticity and trafficking of neurotransmitter re-
ceptors [104,107-109]. While several studies have found that leptin re-
sistance is associated with cognitive deficits [3,110,111], and that
administration of leptin into the hippocampus enhances LTP [112]
while also modulating food-related learning [113], leptin levels do not
appear to have been routinely measured in most studies of HF diet-
related cognitive impairment.

3.2. Oxidative stress & inflammation

Fatty acids are also known to increase the burden of oxidative stress
and increase inflammation [114], which may negatively affect cogni-
tion. In fact, chronic inflammation in adipose tissue is thought to heavily
contribute to the effects of HF diet and obesity on insulin sensitivity
[115,116] which, as discussed above, may additionally impact learning
and memory. Among the studies that have been reviewed here, several
have found a HF diet-related increase in oxidative stress in the hippo-
campus [15-17,22,26,53,69,83] and cortex [17] as well as increased in-
flammatory cytokines in the hippocampus [17,55,85] and cortex [17,75,
85]. However, at least two reports have found no change in cytokines
despite finding HF diet-induced cognitive impairment [67,86].

3.3. Blood-brain barrier (BBB) dysfunction

A number of studies have also found that consumption of a HF diet
can result in BBB dysfunction by increasing permeability [90,91,92,
117] while also decreasing the active transport of leptin [118] and ghrel-
in [119] across the BBB. In fact, several reports have also proposed that
BBB impairment may serve as a critical link between HF diet consump-
tion and Alzheimer's disease pathology [120,121]. A few papers have
used rodent models to directly link HF diet consumption to BBB integri-
ty and cognition [90,91,92]. In two of these studies, BBB dysfunction was
found in high-energy diet fed DIO but not DR rats [91,92] suggesting a
possible interaction between diet composition, body weight, and BBB
permeability. While measures of BBB function were not often included
in the studies reviewed here, as mentioned above, a large number of
studies have found that HF consumption is associated with increased in-
flammation, which may modulate BBB permeability [122-124].

3.4. Brain-derived neurotrophic factor (BDNF)

Finally, multiple studies have found that HF diet intake is associated
with decreased expression of BDNF in both the hippocampus [13,14,16,
26,85,89] and cortex [15,67,75,85,89] suggesting that the negative ef-
fects of HF diet consumption on learning and memory may also be me-
diated in part by alteration of BDNF-related synaptic plasticity. This is
further supported by at least three studies that have found HF diet-
related loss of dendritic spines [14,56,76], though one study did find in-
creased spine density in the hippocampus which the authors suggested
may have been a compensatory mechanism [87].

4. Developmental programming by maternal diet
A growing body of evidence is suggesting that maternal diet during

gestation and the postnatal period can have a profound and long lasting
effect on the brain, behavior, and metabolism of the offspring [125]. For
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example, maternal HF diet consumption has been found to result in
increased body weight [126,127] and adiposity [127,128] of offspring
during the early perinatal period. Additionally, maternal HF diet con-
sumption has been shown to increase food intake and body weight
[127] and preference for a HF diet [129] among adult offspring. Prior
work in our lab using a rat model has found that maternal exposure to
a 60% HF diet increases the offspring's risk of developing diet-induced
obesity [130], while also altering leptin sensitivity [131], and ingestive
behavior [132,133]. Further, several behavioral studies in mice and
rats have found that maternal consumption of various HF diets can
result in impairment in the Morris Water Maze [126,134] and Barnes
Maze [135]. Two other studies in rats found Morris Water Maze impair-
ment among offspring born to HF fed dams that were then continued on
a HF diet after weaning [136,137]. Finally, while the specific contribu-
tions of prenatal versus early postnatal exposure to HF diet has not
been well established, results from our own cross-fostering experi-
ments suggest that exposure at either time is sufficient to induce im-
pairment in both Novel Object Recognition and the Barnes Maze
among adult offspring [ 138], which, in rats, is consistent with the trajec-
tory of hippocampal development that spans both the prenatal and
early postnatal periods [ 139-141]. Regarding potential mechanisms un-
derlying these changes, maternal HF diet consumption has been found
to increase hippocampal inflammation [126], increase plasma leptin
[127], and decrease hippocampal BDNF [134,135], while alterations in
placental transport of nutrients and hormones may also be involved
[125]. In our own lab, we have found that maternal HF diet exposure re-
sults in offspring with decreased hippocampal gene expression of insu-
lin receptor (Insr), leptin receptor (Lepr), and glucose transporter 1
(Slc2a1) at weaning. Interestingly, the decreased expression of Insr
and Lepr persisted into adulthood suggesting potential underlying epi-
genetic mechanisms [138]. While a great deal of work remains to be
done related to these and other potential mechanisms as well as critical
periods of exposure that present the greatest risk to the developing off-
spring, and respective contributions from maternal versus paternal
diets, all of the evidence to date suggests that exposure to HF diet
early in life can have lasting impacts on cognition and metabolism.

5. Conclusions, implications & future directions

While use of varying diets, ages, and behavioral tests make compar-
ison between individual experiments difficult, the overwhelming ma-
jority of studies support the conclusion that HF diet exposure can have
a dramatic and long lasting impact on hippocampal dependent learning
and memory. While there are clear suggestions that other brain regions
(especially the prefrontal cortex) are likely to be affected, results from
behavioral tests that assess more distributed neural networks or non-
hippocampal learning are more mixed and warrant additional study.

Further, the rodent studies reviewed here provide evidence suggest-
ing that consumption of any number of HF diets for even a brief period
of time at any point across the lifespan can potentially result in impaired
performance on a number of behavioral tests of learning and memory
including the Morris Water Maze, Barnes Maze, Radial Arm Maze, T-
Maze, Y-Maze, Novel Object Recognition test, and conditioned inhibi-
tion. However, comparison across studies is complicated by the various
designs and much work remains to be done in order to determine if
there are sensitive developmental periods of exposure, doses of HF, spe-
cific fatty acids, or sex differences that increase an individual's suscepti-
bility to the adverse effects of a HF diet on cognition. Similarly, the
specific interactions between HF diet consumption and normal cogni-
tive aging or forms of dementia such as Alzheimer's disease remain
largely unknown.

A great deal of work has also been done to understand what poten-
tial mechanism(s) might be driving the cognitive effects of HF diet.
Among the most consistently reported are changes in peripheral and
central insulin signaling, leptin signaling, and glucose tolerance, an in-
creased burden of oxidative stress as well as inflammation, BBB

dysfunction, and decreased expression of BDNF. Though studies of
mech-anisms underlying the cognitive effects of HF diet have focused
almost entirely on the hippocampus and cortex, it is likely that other
brain regions are involved and few studies have attempted to determine
the actual contributions of each proposed mechanism to impairment in
learning and memory or how the various mechanisms may interact.

Finally, emerging evidence indicates that maternal consumption of a
HF diet may have effects on the learning and memory of offspring.
While critical periods and doses of exposure as well as respective con-
tributions from maternal versus paternal diets remain largely unstud-
ied, all of the findings to date imply that the cognitive impact of a HF
diet may extend to future generations. Given the growing rates of dia-
betes, obesity, and the metabolic syndrome as well as expanding con-
cerns for the burden of dementia in a rapidly aging population, it
seems that the studies reviewed here suggest an increasingly urgent
need to understand the effects of HF diet on cognition, further explore
underlying mechanisms in the brain, and ultimately develop effective
interventions.
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