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Abstract 

Obesity is a world-wide crisis with profound healthcare and socio-economic implications and it is 

now clear that the central nervous system (CNS) is a target for the complications of metabolic 

disorders like obesity.  In addition to decreases in physical activity and sedentary lifestyles, diet 

is proposed to be an important contributor to the etiology and progression of obesity.  

Unfortunately, there are gaps in our knowledge base related to how dietary choices impact the 

structural and functional integrity of the CNS.  For example, while chronic consumption of 

hypercaloric diets (increased sugars and fat) contribute to increases in body weight and 

adiposity characteristic of metabolic disorders, the mechanistic basis for neurocognitive deficits 

in obesity remains to be determined.  In addition, studies indicate that acute consumption of 

hypercaloric diets impairs performance in a wide variety of cognitive domains, even in normal 

non-obese  control subjects.  These results from the clinical and basic science literature indicate 

that diet can have rapid, as well as long lasting effects on cognitive function.  This review 

summarizes our symposium at the 2017 Society for the Study of Ingestive Behavior (SSIB) 

meeting that discussed these effects of diet on cognition.  Collectively, this review highlights the 

need for integrated and comprehensive approaches to more fully determine how diet impacts 

behavior and cognition under physiological conditions and in metabolic disorders like type 2 

diabetes mellitus (T2DM) and obesity. 
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1. Introduction 

 There is emerging evidence for a direct effect of diet on neurocognition and mood and 

emotional function independent of effects due to obesity and cardiometabolic dysfunction. In 

non-obese individuals, short-term high fat diet exposure elicits decreases in cognitive function in 

the absence of changes in endocrine measures (plasma insulin or glucose levels) or increases 

in body weight [1,2].  Acute access to a high saturated fat and sugar breakfast also impairs 

hippocampal-dependent learning and memory in non-obese young adults and these cognitive 

deficits were correlated with changes in blood glucose levels [3].  These results from this study 

raise two important issues.  First, it may well be that fasting glucose and insulin levels are not 

sensitive enough to capture subtle, but key changes in metabolism. Indeed, using the 

hyperinsulinemic/euglycemic clamp Hernandez and colleagues reported that even a single 

exposure to an oral saturated fat load can decrease whole-body insulin sensitivity by 25%  [4]. 

This suggests that diet can have a rapid impact on metabolic function, which could in turn 

influence cognition.  Collectively, these studies indicate that acute access to hypercaloric diets 

impairs cognitive function in otherwise non-obese  participants.  In addition, studies have also 

examined the relationship between chronic consumption of hypercaloric diets, metabolic 

disorders and cognitive function.  In view of these observations, the goal of this review is to 

discuss how clinical and preclinical studies have begun to identify the underlying mechanisms 

through which diet impacts cognitive function.  In addition, we discuss how diet contributes to 

the development of neurocognitive deficits observed in metabolic disorders like type 2 diabetes 

mellitus (T2DM) and obesity.   

 While the sections below describe how our ongoing studies contribute to the growing 

literature that is examining the effects of diet on different neurocognitive domains, we recognize 

that hypercaloric diets, high fat diets and highly palatable diets are not interchangeable as it 

relates to their compositions/formulations.  For example, ‘high fat diet’ is a rather ambiguous 
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term since it is used classify a wide variety of diets that can differ significantly in their fat content 

(percentage fat), as well as the types of fats used.  In addition, some investigators may 

supplement their HFD with sugars to further promote and/or accelerate metabolic and endocrine 

changes in rodents.  This review highlights that perhaps it is more important to recognize that in 

spite of the differences in these dietary approaches (i.e. hypercaloric, sucrose/fructose, HFD, 

highly palatable diets), consumption of these diets consistently leads to impairments in cognitive 

function in both rodents and humans.  Such observations suggest that common mechanistic 

mediators are likely responsible for the diet-induced cognitive deficits and that identification of 

these neural substrates represent an important advance in our ultimate goal of effectively 

managing the neurological consequences of metabolic disorders like T2DM and obesity.   

2. Impact of high sucrose diets on memory encoding and retrieval 

 Excessive consumption of high sugar (sucrose) foods and drinks, which are cheap and 

readily available, plays a central role in the development of obesity and metabolic disturbances 

[5].  This increase in dietary sugar has been attributed to the widespread availability of relatively 

cheap sugar-sweetened beverages (SSBs); the largest single source of added sugar 

consumption worldwide [6].  Diet composition is known to have a profound impact on brain 

function [7,8]. Emerging research indicates that high sugar diets (HSDs) impair cognitive 

functioning even in the absence of  extreme weight gain or  excessive energy intake.   [9,10].  

Such observations suggest that the effects of HSDs on cognition may be insidious in nature, 

only becoming apparent when cognitive systems are taxed.  The hippocampus, which is 

critically involved in spatial, contextual and episodic memory encoding, is particularly vulnerable 

to the deleterious effects of HSDs [10-14].  

 Neuropathological changes have been observed within the hippocampus following HSD 

consumption. In animal studies, markers of neuroinflammation, such as microglia activation 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

measured by IBA-1 immunoreactivity and increased hippocampal levels of pro-inflammatory 

cytokines such as interleukin(IL)-1β, IL6 and tumor necrosis factor- (TNF-), were observed in 

rats and mice exposed to HSDs [9,12,15].  Brain-derived neurotrophic factor (BDNF) is a 

signaling molecule that is intimately related to both energy metabolism [16] and synaptic 

plasticity [17], and promotes the survival, maintenance, and growth of neurons [18]. As it relates 

to the current discussions, consumption of hypercaloric diets high in both fat and sugar have 

been shown to reduce BDNF mRNA expression in the hippocampus [19,20].  These studies 

suggest that  the mechanisms through which consumption of HSDs impair hippocampal 

neuroplasticity may include increases in pro-inflammatory cytokines, as well as decreases in 

neurotrophic factor expression, which may ultimately contribute to diet-induced cognitive deficits 

[21].  

 The hippocampus is important for place recognition memory [22,23], and as such many 

studies have utilized spatial memory protocols to examine the functional impact of hypercaloric 

(high fat and high sugar) diets on hippocampal function in rodents [11-13,19,24].  The benefit of 

these exploratory tasks is that they exploit the natural tendency of rodents to explore novel 

objects, and do not require animals to be motivated for foods, which may have altered incentive 

values following extended exposure to palatable diets.  As such laboratories have utilized place 

recognition and object recognition as a non-spatial control test, regulated by the perirhinal 

cortex, and have found spatial-specific deficits in rats fed hypercaloric diets in as little as 5 days 

[19,24].  However, the diet induced spatial memory deficits are not present when discrete spatial 

cues are placed in the arena [24].  Such results suggest that hypercaloric diets may impact 

different aspects of learning and memory and that diet-induced behavioral deficits may become 

more apparent when task difficulty and cognitive demand are increased.   

 Studies have also examined cellular/molecular mechanisms of the cognitive deficits elicited 

by hypercaloric diets.  For example, within the hippocampus the dentate gyrus (DG) plays a 
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critical role in memory encoding [25].  The DG is a site where proliferation of neuronal 

progenitor cells and their subsequent differentiation, migration and functional integration into the 

pre-existing circuitry occurs throughout the lifespan - a process called adult neurogenesis [26-

29].  Animal studies indicate that diet, environmental enrichment and physical activity can 

modulate levels of hippocampal neurogenesis [30-35].  Conversely, HSD consumption in rats 

resulted in decreased markers of hippocampal neurogenesis in the DG measured by BrdU [15] 

and the neuroproliferation markers doublecortin and proliferating cell nuclear antigen (PCNA) 

immunoreactivity [36].  Adult neurogenesis in the DG is proposed to be a neural substrate for 

specific aspects of memory formation [37], in particular “pattern separation” - the process 

distinguishing and coding similar patterns of neural activity as distinct representations during 

memory encoding and storage.  This is thought to decrease the probability of interference 

during memory recall [38].  In contrast, pattern completion refers to the process of recovering 

stored patterns from degraded retrieval cues during recall and retrieval of memory [38].  

 The Trial Unique Non-Match to Location (TUNL) task is a DG-dependent touchscreen 

automated test that measures pattern separation performance in rats [39] and mice [40].  The 

TUNL task uses two locations, a sample location which must be responded to by nose-poking 

the screen, followed by presentation of the sample and target location, and a correct response 

to the novel target location is reinforced with a food reward.  As this task employs multiple 

locations across trials, a range of locations on the touchscreen are presented, allowing the 

systematic manipulation of the distance, and therefore the pattern separation load, between 

response locations (Figure 1, Panel A).  Accordingly, the TUNL has the flexibility to place 

variable demand on pattern separation capacity [39-41].  The Reichelt lab has recently 

examined the effects of HSD on behavioral performance in the TUNL test.  In this regard, 

preliminary data (Figure 1, Panel B) indicated that rats that were exposed to a HSD for 4 weeks 

prior to training and testing on the TUNL task showed impairments when there was a small 
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separation between the sample and target location, but not when there was a large separation.  

This indicates that HSD impaired performance when the pattern separation load was increased, 

again illustrating that test difficulty/increased cognitive demand are adversely affected by HSD.  

Furthermore, it is of note that these cognitive changes are observed in absence of weight 

differences between HSD and control animals, demonstrating that diet, rather than obesity, 

underpins the cognitive deficits.  

 An adapted version of the Spontaneous Location Recognition (SLR) task has been utilized 

to examine behavioral pattern separation in rodents [36,42-44].  In the SLR task (See Figure 2, 

Panel A), a rat is exposed to a spatial arrangement where identical objects are further apart (d-

SLR; low pattern separation) or closer together (s-SLR; high pattern separation).  After a 24 

hour retention interval, the rat is then exposed to the arena again, which contains one object in 

a familiar location, and another, identical object is located mid-way between the other two 

objects (novel location).  The s-SLR condition, which is cognitively taxing for rodents, requires 

greater demand on behavioral pattern separation processes than the d-SLR condition as the 

novel location is closer in spatial separation to the sample object arrangement.  There is also 

evidence to suggest that performance on the s-SLR component is enhanced through 

intrahippocampal infusion of BDNF [42,43] and systemic administration of the gut-derived 

hormone ghrelin, indicating that hunger peptides may have an important role in pattern 

separation [44].  In these experiments, only performance on the small separation condition was 

affected, indicating separation-dependent effects.  The SLR task has also been utilized to 

explore the effects of HSD-induced impairments in hippocampal learning and memory [36].  In 

this study, daily intake of 10% sucrose over 28 days induced deficits in spatial memory when 

objects were closer together (s-SLR) and spared performance when locations were spatially 

distinct (d-SLR), suggesting that HSD adversely effects hippocampal-dependent forms of 

learning involved in spatial pattern separation (Figure 2, Panel B). 
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 Overall, these studies present evidence to suggest that hippocampal-mediated learning and 

memory can be assessed with pattern-separation tasks to determine subtle diet induced 

cognitive deficits that only become apparent when memory systems are taxed.  Importantly, 

understanding that alterations in neuroplasticity and neuroproliferation underpin these deficits 

provides rationale for interventions that enhance these processes, such as aerobic exercise. 

3. Neuroendocrine and behavioral responses to sugar  

 The results described above clearly indicate that exposure to hypercaloric diets impact 

behavioral performance in rodents.  One important question is how these animal studies 

translate to the human condition.  Such questions are clinically relevant and important since 

American diets (for example) are loaded with sugar.  Recent estimates show that adults in the 

United States consume an average of 13% of their daily calories from added sugar, and children 

and adolescents consume about 16% of their daily calories from added sugars  [45,46].  

Excessive sugar consumption has been linked to increased risk for obesity, T2DM and 

cardiovascular disease [6,47-49].  In response to these findings, the World Health Organization 

issued recommendations that adults and children limit their intake of added sugars to less than 

10% of daily calories and preferably less than 5% of daily calories (WHO, 2015).  Similarly, the 

American Heart Association recommended that men consume no more than 9 teaspoons of 

added sugar and women and children no more than 6 teaspoons in a day [45,50].  

 The most common consumed sugar sweeteners are sucrose, a disaccharide containing 

50% fructose and 50% glucose, and high fructose corn syrup, which is a mixture of free fructose 

and glucose in various ratios, but most commonly containing 55% fructose and 45% glucose 

[51].  While glucose and fructose are typically consumed together, evidence suggests that 

fructose and glucose have different effects on neuroendocrine systems involved in the 

regulation of appetite and food intake.  Glucose and fructose are both monosaccharides with the 

chemical formula C6H1206, but they have different structures. Glucose contains an aldehyde 
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group at position 1 of the carbon chain, and it forms a six member pyranose ring structure in 

solution.  In contrast, fructose contains a keto group in position 2 of its carbon chain and is  

present in solution as either a five member furanose ring structure or a pyranose ring structure 

[51].  

 In addition to having different molecular structures, fructose and glucose are handled 

differently by the body and the brain.  Glucose is the main circulating sugar the bloodstream and 

the main fuel source for all of the cells in our body including the brain, which relies on a constant 

supply of glucose to meet its high energy requirements [52].  In contrast, very little fructose 

circulates in the bloodstream because the majority of fructose is extracted into the liver where it 

is metabolized [53].  In the glycolytic pathway, glucose metabolism is tightly regulated whereas 

fructose enters the glycolytic pathway at the triose phosphate level and bypasses the major 

control point catalyzed by phosphofructokinase.  Thus, excessive fructose consumption can 

serve as an unregulated source of glycerol-3 phosphate and acetyl-coA, leading to increased 

lipogenesis [53,54].  Fructose and glucose also have different effects on the release of 

hormones involved in the regulation of appetite and food intake. When compared to the 

consumption of glucose, fructose results in a smaller rise in circulating levels of insulin, 

glucagon-like polypeptide-1 (GLP-1), and leptin, which are hormones that increase satiety and 

reduce hedonic related feeding [55-57].  Fructose consumption also fails to suppress the hunger 

hormone, ghrelin, to the same degree as glucose [56].  Thus, fructose may be less effective at 

suppressing hunger when compared to glucose.  Furthermore, fructose was shown to reach a 

higher peak sweetness intensity compared to glucose [58] and may have different effects on 

taste pathways.   

 Over the last decade, emerging evidence has shown differential effects of fructose and 

glucose on brain pathways involved in appetite and hedonic feeding have been examined in 

both rodent models and in humans.  Fructose and glucose were shown to have opposing effects 
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on brain pathways involved in appetite regulation in mice [59].  In this regard, the direct delivery 

of glucose into the brain of mice led to decreased food intake, whereas fructose stimulated food 

intake through differential effects on energy signaling pathways in the hypothalamus [59].  

Evidence from studies in rat models also suggests that fructose and glucose have different 

effects on brain circuits involved in reward processing.  For example, two weeks of fructose, but 

not glucose, consumption resulted in upregulation in the expression of hypothalamic 

endocannabinoid 1 receptor (CB1), a receptor involved in the rewarding aspects of feeding [60].  

Behavioral studies in animals have also found differences in glucose and fructose on the 

hedonic aspects of feeding behavior.  A recent study showed that intermittent access to 8% 

solutions of sucrose, glucose, or fructose resulted in different effects on sugar bingeing behavior 

in rats [61].  Fructose was shown to produce greater sugar bingeing than glucose after 4 to 6 

days of intermittent access to the sugar solutions whereas sucrose had an intermediate effect 

relative to its monosaccharide components.  Rorabaugh et al., suggest two potential 

interpretations of these findings: (1) the results could suggest that fructose produced greater 

sugar bingeing than glucose because it has a higher hedonic value; (2) glucose bingeing is 

more rewarding and produces less tolerance than fructose bingeing, and thus less glucose is 

needed to achieve a reward [61].  The work of Scalfini and colleagues have shown that 

intragastric infusions of glucose are more effective than isocaloric fructose infusions in 

conditioning flavor preferences and increasing intake in mice, which suggests that the post-oral 

actions of fructose may be less effective at engaging brain reward circuits than glucose in mice 

[62-64].  Species differences as well as variations in experimental procedures could contribute 

to differing findings on neurobehavioral components of reward-related responses to fructose 

and glucose, which highlights the need for future work in this area.  

 Collectively, studies in animal models have suggested that fructose and glucose engage 

brain energy signaling and reward pathways differently.  Studies in the Page laboratory have 
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been aimed at understanding the brain, endocrine, and behavioral responses to acute ingestion 

of fructose relative to glucose in humans.  In our first study, we used a magnetic resonance 

imaging (MRI) method called pulsed arterial spin labeling (PASL) to examine the hypothalamic 

cerebral blood flow (CBF) response to an acute ingestion of drinks containing fructose or 

glucose (75 grams in 296 mL) using a blinded, random order crossover design [57].  Twenty  

normal weight participants were studied in the morning after an overnight fast. Blood samples 

were collected at baseline and at 10-minute intervals after drink ingestion throughout the 60 

minute MRI session, and appetite ratings were obtained before and 60-minutes after drink 

ingestion.  We observed significantly greater increases in circulating glucose, insulin, and GLP-1 

levels after glucose compared to fructose ingestion.  Glucose and fructose also had significantly 

different effects on hypothalamic CBF (95% CI of mean difference, 1.87-14.70; P=0.014).  

Specifically, glucose but not fructose resulted in a significant reduction in hypothalamic CBF 

within 15 minutes of consumption. These findings support animal studies showing differential 

effects of fructose and glucose on hypothalamic satiety signaling pathways [59].  From an 

endocrine perspective, the disparate hypothalamic responses to acute fructose relative to 

glucose ingestion were associated with smaller increases in circulating levels of glucose, insulin 

and GLP-1, which may play a role in promoting feeding behavior. 

 To better understand the effects of fructose and glucose on brain and behavioral responses 

mediating the motivation for food, the Page laboratory embarked on another study that paired 

the ingestion of fructose or glucose with visual food cues, behavioral ratings of desire for food, 

and a decision making task that pitted immediately available food rewards against monetary 

bonuses delayed by one month [65].  Twenty-four non-obese  volunteers participated in a 

blinded, random order, crossover study with ingestion of either fructose or glucose (75 grams in 

296 ml).  Study sessions were performed in the morning after an overnight fast. Blood samples 

were obtained at baseline and at 30 and 60 min following drink ingestion for analysis of 
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hormones involved in appetite regulation.  The food cue task examined the effects of fructose 

and glucose ingestion on both neural and behavioral food-cue reactivity and included twelve 

blocks of food cues and nonfood cues presented in a randomized block design.  At the end of 

each block, participants rated their hunger and desire for food. Blood oxygen level dependent 

(BOLD)-functional magnetic resonance imaging (fMRI) was used to study the effects of acute 

ingestion of fructose compared to glucose on brain food cue reactivity.  

 Following the food-cue task, participants underwent a decision-making task in which they 

made choices between a visually presented high-calorie food reward available immediately after 

the session and a visually presented monetary reward delayed by 1 month.  The delay was 

used to model real-life situations in which the benefits of turning down high-calorie foods come 

later in time.  Each session included six presentations of each of 10 food items that were rated 

as very attractive by the participant during pretesting.  On a food item’s first presentation within 

a session, the monetary alternative was set to the market price for the item, “discounted” for the 

1 month delay using a participant specific estimated discounting based on a monetary 

intertemporal choice procedure completed during pretesting [65].  On subsequent presentations 

of the food item, the amount of money offered as its alternative was titrated up or down in order 

to find a switch point, or a point at which the alternative item was selected.  At the end of each 

fMRI session, bonus earnings (i.e., immediate food reward or delayed monetary reward) were 

determined by randomly drawing a trial from the food-decision task.  The results from this study 

revealed that the ingestion of fructose compared with glucose resulted in smaller increases in 

plasma insulin levels and greater brain responses to food cues in the visual cortex (in whole 

brain analyses, corrected for multiple comparisons) and left orbital frontal cortex (in region of 

interest analysis).  Parallel to the neuroimaging findings, fructose compared to glucose 

provoked greater ratings of hunger and desire for food and a greater willingness to give up long-

term monetary rewards to obtain immediate high-calorie food rewards [65].  These findings 
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suggest that the acute ingestion of fructose relative to glucose results in greater activation of 

brain regions involved in attention and reward processing and may promote feeding behavior.  

 Collectively, both animal and human studies have shown differential effects of fructose and 

glucose on brain and endocrine systems involved in the regulation of appetite and food intake.  

These studies provide new insights into how the individual components of added sugar 

sweeteners may influence feeding behavior.  It is important to note that our proof of concept 

studies in humans used relatively high doses of fructose and glucose to maximize the chances 

of detecting differences.  In addition, fructose and glucose are rarely consumed in isolation 

because, as mentioned earlier, common sugar sweeteners include both fructose and glucose in 

almost equal amounts.  Moreover, these studies were aimed at understanding the acute effects 

of fructose and glucose on neuroendocrine pathways, and the effects of chronic consumption of 

these monosaccharides were not studied.  Therefore, there are a number of important questions 

that will require further investigation.  Future work should examine neurobehavioral and 

hormone responses to lower doses of fructose and glucose and to “real-world” added sugar 

sweeteners (i.e., high fructose corn syrup or sucrose).  Determining the effects of habitual 

consumption of high amounts of sugar (total sugar as well as the monosaccharides, fructose 

and glucose) on neuroendocrine circuits is also an important future direction.  Moreover, while 

the studies discussed in this section were focused on the effects of fructose compared to 

glucose on neural processes related to appetite, reward, and motivation, the differential effects 

of fructose vs. glucose on cognitive processes such as executive function, memory, and 

impulsivity remains an important area of investigation. 

4. Macronutrient intake and impulse control 

 As the studies described above were performed in otherwise non-obese humans and 

animals, an important question is whether these responses to hypercaloric diets and sugars are 

modulated in individuals with obesity or insulin resistance. Indeed, no country in the world has 
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successfully decreased the proportion of its populations now classified as obese or overweight, 

despite numerous public health campaigns and fitness initiatives [66].  It would appear that 

something is missing in our understanding of how the food we eat affects our weight, and that 

factors are at work beyond a simple “calories in-calories out” equation.  The ingestion of highly 

palatable foods, particularly those containing substantial amounts of fat or sugar, has been 

unequivocally linked to weight gain and obesity.  Our widely-acknowledged tendency to lose 

control over consumption of these appetitive foods has led to debate over whether obesity 

should be considered as part of the addiction spectrum rather than purely a metabolic disorder 

[67-70].   

 From a neurobiological perspective, both addictive drugs and highly palatable foods 

increase dopamine release in the reward centers of the brain, and maladaptive changes in 

dopamine signaling have long been implicated in the etiology of addiction.  In particular, a 

reduction in striatal D2/3 receptor density has been observed repeatedly in diverse populations of 

drug users [71], and has also been documented in obese subjects [72].  Impulsivity—the 

tendency to act without sufficient forethought or concern for the outcome—has likewise been 

strongly associated with both drug addiction and weight gain (e.g. [73-76].  Furthermore, 

significant comorbidity has been reported for obesity, as defined as a body mass index greater 

than 30, and psychiatric disorders associated with high impulsivity, such as attention-deficit 

hyperactivity disorder [77-79], bipolar disorder [80-82], and pathological gambling [83,84]. 

 One explanation for this relationship is that high impulsivity, and low striatal D2/3 receptor 

expression, may act as pre-existing vulnerability factors for obesity and other addictive 

behaviors, and simply facilitate consumption of appetitive food and drug rewards [85,86].  

However, newer findings are challenging the directionality of this relationship. For example, 

recent data suggests that obesity may drive the symptom manifestation and severity of bipolar 

disorder [87].  It has also been shown that chronic consumption of high-fat diets, even in the 
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absence of excessive weight gain, can alter the behavioral response to dopaminergic drugs in 

rats [88-90], and that such effects may be particularly pronounced using diets rich in saturated 

fats [91].  Similarly, other rodent studies have suggest that individual differences in the degree 

to which ingestion of high-fat diets modulate striatal dopaminergic signaling can dissociate 

obesity-prone vs obesity-resistant animals [92,93].  As such, data from animal models suggest 

that both pre-existing and hypercaloric diet-induced changes in the sensitivity of the dopamine 

system may contribute to vulnerability to obesity [94,95].   

Rodent models of impulsivity, based on neuropsychological tests used to measure this behavior 

clinically, have been extensively validated, and can be useful in parsing the causal nature of 

relationships that is otherwise difficult to deduce from clinical data alone [96-98].  Importantly, it 

has been found that rats which make high levels of impulsive actions are more likely to take 

cocaine and eat highly palatable food in a compulsive manner, and also show reduced striatal 

D2/3 receptor expression [99-101].  Recent data from the Winstanley lab using one such 

behavioral assay of impulsivity, the five-choice serial reaction time task (5CSRT), suggest that 

macronutrients themselves may be able to alter this form of cognition.  In this regard, long-term 

(twelve weeks) consumption of a high fat diet decreased impulse control and D2 receptor 

expression in the rat striatum [102].  Furthermore, these changes happened in animals that 

were food-restricted; their daily calorie intake was designed to maintain their weight at 85% of a 

free-feeding animal.  These animals were therefore not obese, but the diet they were fed 

caused behavioral and neurobiological changes that would theoretically put them at risk for 

compulsive overeating that could increase risk for obesity or lead to more severe obesity.  

Animals eating the same number of calories, but from a high-sugar diet, did not exhibit any such 

increase in impulsivity, and their behavior and dopamine receptor levels matched those of 

animals eating the calorie-equivalent amount of a control diet.   
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 The potential significance of these findings may be considerable.  Firstly, they imply that 

eating a disproportionately high number of calories from fat, even if total caloric intake is within 

recommended levels, could put individuals at risk of developing obesity due to the changes 

such a diet has on the brain and behavior.  These observations could explain why some 

attempts at dieting still result in excessive weight gain over time, and caution against 

unbalanced diets.   Such data also re-emphasize the necessity of considering the brain to be an 

organ of the body as much as an organ of the mind.  The idea that nutritional variables will 

affect heart rate and blood pressure is well-accepted by most.  However, the realization that 

dietary changes can also affect the biological functioning of the brain and seriously impact 

cognitive function has yet to fully penetrate our social consciousness, with possibly disastrous 

consequences as the obesity pandemic threatens to overwhelm healthcare services.  These 

data also support the hypothesis that targeting impulse control with therapeutic interventions 

may be useful in improving health outcomes [103,104].  

 However, oversimplifying the relationship between cognitive processes and weight gain 

risks severely limiting the benefits of their discovery.  With this in mind, it is important to note 

that obesity and excessive weight gain isn’t necessarily associated with elevated impulsivity.  As 

a further example of such dissociations, leptin knockout rats, which exhibit an obese phenotype 

characterized by numerous markers of metabolic dysfunction, are not more impulsive at 

baseline (Adams, Winstanley and co-workers, submitted to this special issue).  Although these 

animals took longer to learn the 5CSRT, their performance was largely indistinguishable from 

their wild-type (WT) litter mates once a stable, asymptotic behavioral baseline has been 

reached.  Switching animals onto a high fat diet for four weeks also did not differentially affect 

WT vs leptin knockout rats, with all animals showing signs of enhanced motivation on task.  

Although leptin knockout rats were more sensitive to the ability of the psychostimulant 

amphetamine to subsequently promote impulsive responses, potentially indicative of alterations 
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in the mesolimbic dopamine system, no difference in levels of accumbal D2 receptors were 

observed ex vivo.  As such, leptin deficiency is not associated with marked impairment in 

cognitive processes in a manner that may facilitate weight gain, even though this genetic 

manipulation engenders obesity.  The ability of certain hypercaloric macronutrients to increase 

impulsivity, and thereby potentiate pathological overeating, is just one route to weight gain, and 

such neurocognitive changes may not be a hallmark of overconsumption.  These findings fit with 

current thinking and suggest that obesity can arise through a variety of biological and 

environmental factors, including hormonal imbalance and the breakdown of homeostatic control 

over food intake [105].  Successful treatment may depend on the targeting of different 

mechanisms across individuals, requiring a “personalized medicine” approach rather than “one 

treatment fits all”.   

5. Diet and Obesity: linking obesity and dementia 

 Along with a sedentary lifestyle, diet is also considered to be a causative factor in the 

development of obesity and T2DM [106].  In addition to the well described consequences in the 

periphery, metabolic disorders also have structural and functional consequences in the CNS.  

For example, epidemiological studies revealed that both T2DM patients [107] and obese 

subjects [108] have increased risk of developing dementia.  Moreover, consumption of diets 

high in saturated fats and refined carbohydrates are associated with neurocognitive dysfunction, 

including increased risk for mild cognitive impairment and dementia [109].  Moreover, obesity is 

associated with impairments in decision-making, planning and problem solving (all of which are 

features of executive function) with less evidence for associations with other cognitive domains, 

such as verbal fluency and learning and memory [110].  Beyond executive function, obesity is 

associated with alterations in appetitive functions, such as, reinforcement learning and effort, 

food cue reactivity and incentive motivation, all of which are regulated by neural systems that 

support executive functions [111,112].  Obese individuals are also more impulsive [113], show 
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increased delay discounting or greater preference for immediate vs. future rewards [114], and 

have impairments in negative outcome learning [115].  Indeed, many studies suggest that 

incentive motivation, reward learning and executive function are most affected in adults with 

obesity [116].  However, it should be noted that these behavioral changes could be due to 

increased incentive salience and reactivity to appetitive cues, decreased control of behavior by 

goal directed circuits, or decreased self-control due to impairment in learning to avoid negative 

outcomes [112].  

 From a mechanistic perspective, these cognitive deficits in obesity may result from 

decreases in neurotrophic factor expression, increases in oxidative stress and 

neuroinflammation, as well as structural and functional deficits in brain regions like the 

hippocampus and prefrontal cortex [109].  For example, impairments in executive function may 

be related to obesity-associated structural brain changes and reduced brain connectivity in the 

parietal and prefrontal cortex (among other brain regions/networks) that link to reward and 

associated brain networks of relevance to obesity [117-121].  Altered reward-related neural 

responses to food cues appears to be more pronounced in obese individuals with prediabetes 

and more components of the so-called metabolic syndrome [122].  In addition to cortical 

connectivity, metabolic disorders also impact the structural and functional integrity of the 

hippocampus.  In this regard, deficits in hippocampal-dependent (associative), but not 

hippocampal-independent (item), memory is associated with central, but not whole body 

adiposity [123].  Moreover, hippocampal atrophy is observed in humans with obesity [124], as is 

altered hippocampal white matter connectivity [125] and functional connectivity [126] 2017).  An 

important caveat associated with these structural analyses in humans is that metabolic function 

was not assessed.  This may be particularly relevant to how deficits in brain insulin signaling 

contribute to these cognitive impairments.   
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 Brain insulin resistance is the failure of brain cells to respond to insulin and may result from 

decreased BBB transport of insulin, decreased insulin receptor binding activity or faulty 

activation of insulin signaling cascades [127].  Brain insulin resistance reduces neuroplasticity, 

which may manifest itself through impaired receptor regulation or neurotransmitter release in 

neurons, impaired neuronal glucose uptake in neurons expressing insulin responsive GLUT4, or 

impaired inflammatory responses in glial cells in response to insulin.  Additionally, the existing 

literature strongly support the concept that brain insulin resistance is a causative factor in 

cognitive decline [128].  For example, studies by Arnold and coworkers determined that AD 

patients exhibit hippocampal insulin resistance and that the degree of cognitive decline 

observed in these patients was associated with the magnitude of hippocampal insulin resistance 

[129].  Such studies provide an example of the important relationship between hippocampal 

insulin resistance, AD and metabolic disorders [130,131].  In support of these observations in 

humans, the Reagan lab has demonstrated that insulin resistance restricted to the hippocampus 

induces deficits in hippocampal neuroplasticity that include impairments in hippocampal-

dependent learning and memory in rats [132].  These results support the concept that brain 

insulin resistance may occur somewhat independently of changes in glucose homeostats and 

insulin sensitivity in the periphery [116,128].  Since intranasal insulin (INI) administration 

enhances cognitive function in normal non-obese  controls [133] and in patients with AD [134], 

INI combined with neuroimaging and neuropsychological testing may be a useful paradigm for 

the in vivo assessment of “brain insulin resistance” [135]. 

6. Summary and Perspectives 

 While the studies described above highlight the provocative advances related to how diet 

modulates behavior and cognition, many questions remain.  To begin, these studies highlight 

the need for integrated and comprehensive approaches that include cellular/molecular, 

endocrine/metabolic, structural and functional neuroimaging, and detailed neuropsychological 
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and behavior measures to represent the complexity of how diet impacts cognition.  Just as 

importantly, such analyses will need to be performed in both non-obese  subjects and in 

subjects with metabolic disorders (T2DM, obesity, insulin resistance).  Indeed, while 

epidemiological studies provide essential information related to the world-wide obesity crisis, 

these studies cannot identify the mechanistic basis for the increasing rate of obesity and 

perhaps more importantly how obesity reduces synaptic plasticity in the CNS.  This includes the 

increased risk of neuropsychiatric co-morbidities like depression, bipolar disorder, anxiety, and 

addiction among individuals with metabolic disorders.  Such analyses will not only be critical to 

determine the neuronal circuits through which diet modulates higher cognitive function, but are 

also a requisite first step towards identifying and developing practical interventions in the 

treatment of the neurological consequences of obesity.  Indeed, epidemiological studies suggest 

that introduction of a more healthy diet positively impacts cognitive domains.  In this regard, 

review of the clinical literature indicates that Mediterranean-style diets combined with DASH 

(Dietary Approaches to Stop Hypertension), referred to as MIND (Mediterranean-DASH for 

Neurodegenerative Delay) slow the progression of age-related cognitive decline and the 

development of Alzheimer’s disease [136,137].  Moreover, weight loss induced by dietary 

changes [138-140] reverses neuroplasticity deficits in obese rodents, thereby supporting data 

indicating that lifestyle interventions effectively improve cognitive function in obese patients.  

This includes studies indicating that weight loss achieved through bariatric surgical procedures 

is associated with elevations in cognition and mood [141-146].  Such results suggest that the 

deleterious effects of diet on cognitive measures may be amenable to intervention.  

Nonetheless, these studies have not yet unequivocally identified the factors that are necessary 

for the beneficial effects of weight loss in the CNS, or have they identify which metabolic 

parameters are not responsive to intervention.  Moreover, it is unlikely that a single factor is 

responsible for the neuroplasticity deficits observed in obesity, insulin resistance and T2DM.  

Only through appreciation and understanding of these limitations can we identify opportunities 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

to effectively address the long-term consequences of metabolic disorders on the structural and 

functional integrity of the CNS.  
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Figure legends 

Figure 1. A) Schematic of the TUNL task showing the location of a sample stimulus, followed by 

the sample and target on an array with either a large or small separation. B) Preliminary data 

showing TUNL performance (% correct) in control and high sucrose diet rats [N=8 / group, One 

way ANOVA with between subjects factor of diet (control, sucrose). Large separation (F(1,14) = 

0.043, P = 0.84; small separation (F(1,14) = 7.34, P = 0.02). * = P<0.05].  

Figure 2.  Figure 2. A) Schematic representation of the SLR task and spatial arrangement of the 

objects in the d-SLR and s-SLR component. B) Performance of control and high sucrose diet 

rats during the d-SLR and s-SLR tasks. Discrimination ratio = (Time novel – Time familiar) / 

(novel + familiar) (Time novel + Time familiar). N’s = 6 per group. *** = P<0.001.  Adapted (with 

permission) from Reichelt, A.C., Morris, M.J., Westbrook, R.F., 2016. Daily access to sucrose 

impairs aspects of spatial memory tasks reliant on pattern separation and neural proliferation in 

rats. Learning & memory 23, 386-390. 
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Highlights 

 Acute intake of hypercaloric diets impairs cognition, even in healthy subjects  

 Diet is proposed to be an important contributor to the development of obesity  

 High sucrose consumption elicits neuropathological changes in the hippocampus 

 Fructose ingestion activates brain regions involved in attention and reward  

 High fat diet decreases impulse control and striatal D2 receptor expression 

 Brain insulin resistance is a mechanistic link between obesity and dementia 
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