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Reduced brain serotonin (5-HT) activity has been linked to impulsive and violent forms of aggression for decades.
Despite a vast accumulation of data pertinent to the above observation, information about the possible mechanisms
underlying such a decreased 5-HT functioning is virtually absent. Amongst many, reduced 5-HT biosynthetic
capacity is a likely possibility in violent individuals and/or in high-aggressive animals. In order to examine this
; hypothesis, the current study principally aimed at the determination and comparison of the 5-HT biosynthetic
Keywords: L. . . . . . . o . . .
5_HT capacity in three different strains of high- and low-aggressive mice obtained by artificial genetic selection. While
TPH low Tryptophan Hydroxylase (TPH) activity can be expected to lead to low 5-HT levels and pathological aggression,

Aggression high TPH activity can be expected to increase 5-HT levels and normal territorial aggression. The above hypothesis
5-HTP was assessed by estimating the in-vivo synthesis rate and synthesis rate constant of 5-HT biochemically by
Violence measuring the accumulation of 5-hydroxytryptophan (5-HTP) following treatment with the central aromatic

Genetic selection amino-acid decarboxylase inhibitor 3-hydroxybenzylhydrazine (NSD-1015). Surprisingly, we found no differences
in the 5-HT biosynthetic capacity between the high- and low-aggressive selection lines in their prefrontal cortices
and raphe nuclei, two main brain regions closely involved in aggression control. Thus, the underlying inherent
genetic differences in aggressiveness observed in these artificially selected mouse strains are not due to constitutive

functional differences in their TPH activity in these brain regions.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The brain 5-HT system has been by far the major focus of neuro-
biological inquiries into the plausible neurochemical mechanisms
mediating aggressive behavior. In animals and humans alike, the most
frequently reported finding has been the association of impulsive and
excessively aggressive behavioral traits with low central 5-HT neuro-
transmission activity, generally known as the 5-HT deficiency hy-
pothesis of aggression [4,15]. Very few studies have been performed
hitherto to unravel the possible mechanisms underlying such a 5-HT
hypofunction. Among the many mechanisms and factors that regulate
5-HT activity in the brain, the 5-HT biosynthetic machinery is likely
to play a pivotal role. The key rate-limiting enzyme is Tryptophan
hydroxylase (TPH; the TPH, particularly is the major neural isoform in
the brain) which catalyzes the conversion of the amino-acid tryptophan
to 5-hydroxytryptophan (5-HTP). The latter is rapidly decarboxylated
further to 5-HT by aromatic-L-aminoacid decarboxylase (AADC) [13].

Evidence for the ability of the brain to utilize TPH enzyme as a
regulatory component in the 5-HT control of aggression comes from
several lines of research. In particular, genetic and pharmacological
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approaches have provided clues supportive of a TPH-aggression inverse
relationship. Genetic-linkage studies in humans have demonstrated
an association of aggression and anger-related traits with functional
polymorphisms in the TPH gene that reduce the enzyme's activity or
stability [23,27,32]. Genetic-association and -manipulation studies in
animals have shown that wild Norway rats and silver foxes selectively
bred for low aggressiveness (i.e., docility) towards humans have higher
brain TPH activity and hence higher 5-HT levels than their aggressive
counterparts [31]. The moderate to high aggressive BALB/c] mouse
strain was found to possess a low functioning TPH, allele (1473G
homozygote) when compared to the low aggressive C57BL/6], 129X1/
Sv] and A/J strains which possess a high functioning 1473C homozygous
TPH, allele [12,21]. The TPH2 1473G allele has been reported to result in
a50% reduction of 5-HT biosynthesis rates and brain tissue 5-HT content
[33,43]. The Neuropeptide Y Y1~/~ mice has been shown to increase
their territorial behavior with a decline in the TPH mRNA expression in
the CNS [18]. Physical attacks against a non-aggressive male were
shown to be enhanced in the homozygous (HO) R439H TPH2 knock-in
mice, the latter characterized by vastly reduced (almost 80%) synthesis
rate of 5-HTP and reduced tissue content of both 5-HT and its metabolite
5-HIAA [2]. Pharmacological manipulation studies employing the
irreversible TPH enzyme inhibitor para-chlorophenylalanine methyl
ester hydrochloride (PCPA) that markedly (50-90%) decrease brain
5-HT levels, have been reported to enhance aggressiveness in several
studies across various animal species [1,5,10,20,42].
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We recently demonstrated that while the artificially-selected
high-aggressive North-Carolina (NC900) and Turku-aggressive (TA)
mouse lines display functional hyper-aggression, the short-attack
latency (SAL) mice exhibit violent and pathological forms of aggressive
behavior [25]. Furthermore, we have found decreased brain tissue levels
of 5-HT in these genetically-selected high-aggressive mice [7], particu-
larly in the violent SAL males [28] and even more prominently after
several agonistic encounters with a docile opponent [41]. These findings
are in line with the 5-HT deficiency hypothesis related to excessive and
pathological aggression [7]. Therefore, we expect that the violent- and/or
high-aggressive mice exhibit a constitutionally lower 5-HT biosynthetic
capacity than the docile, non- or low-aggressive individuals. In other
words, a genetically driven reduction of TPH functionality is expected to
be a 5-HT related biochemical trait, characteristic of high-aggressive
phenotypes, in particular of the SAL mice.

The present study principally aimed to test this hypothesis by
estimating the in-vivo 5-HT synthesis rate biochemically via measur-
ing the accumulation of 5-hydroxytryptophan (5-HTP) following
treatment with the central aromatic amino-acid decarboxylase inhi-
bitor 3-hydroxybenzylhydrazine (NSD-1015) in the artificially-
selected high-and low-aggressive mouse lines.

2. Materials and methods
2.1. Animals

Naive male mice aged 3-4 months from three genetic selection
lines (Groningen: SAL, LAL; Turku: TA, TNA; NC: NC900, NC100) were
used as experimental subjects. Short Attack Latency (SAL) and Long
Attack Latency (LAL) are outbred strains selected artificially from a
wild population in Groningen, The Netherlands [40]. Turku aggressive
(TA) and non-aggressive (TNA) are outbred strains obtained through
artificial selection from laboratory Swiss albino mice in Turku, Finland
[34]. NC900 (aggressive) and NC100 (non-aggressive) are outbred
strains selected from laboratory ICR mice in North Carolina [14].

These subjects were kept in groups until weaning (3 weeks after
birth), and then the males were housed together with a female of the
same line in Makrolon Type II cages (375 cm?).The litters were culled
periodically. The mice were fed ad-libitum on standard pellets (AMII,
ABDiets, Woerden, The Netherlands) and acidified water. They were
exposed to a reversed light-dark cycle of 12 h shifting to darkness at
10:00 h. Each cage was provided with sawdust bedding, shredded
paper (Envirodry, The Netherlands), nesting and cardboard tubing
enrichment materials. Room temperatures were maintained at 22 +
2 °C. The animal care complied with the Law on Animal Experimenta-
tion and was approved by Institutional Animal Care and Use Com-
mittee (IACUC), University of Groningen [D4328A].

2.2. Materials

All chemicals including NSD-1015, 5-HT and 5-HTP used for the
standard curve were purchased from Sigma Aldrich, The Netherlands.
Perchloric acid, Di-sodium hydrogen phosphate (Na,HPO,), Citric
acid, EDTA, L-Heptane Sulphonic acid (HAS) and Methanol (MeOH)
were purchased from Roche, The Netherlands.

2.3. Measurement of whole-tissue 5-HT and 5-HTP

Mice (n=6 per group) were either treated with double-distilled
water or with the aromatic amino-acid decarboxylase inhibitor NSD-
1015 (150 mg/kg) subcutaneously 30 min before they were sacrificed
after the onset of the dark phase. Totally, 72 male mice were used for
the study. Brains were immediately removed and regions containing
pre-frontal cortical areas (2 mm of the frontal pole, just anterior to the
beginning of the corpus callosum) and midbrain dorsal and median
raphe complex areas were rapidly dissected and snap-frozen in liquid

nitrogen and stored at —80 °C. The samples were homogenized in
1 ml 0.1 M perchloric acid for 60 s and centrifuged at 14,000 rpm for
10 min at 4 °C. The supernatant was removed and stored for 1-2 days
at —80 °C in order to avoid 5-HT degradation before analysis using
HPLC with electrochemical detection.

2.4. HPLC analysis

Tissue supernatants were assayed for 5-HT and 5-HTP using high
performance liquid chromatography (HPLC). One hundred microlitres
of supernatant were subsequently injected into Gemini C18 110A
column (150 mmx4.60 mm, 5 u, Bester) connected to a detector
(analytical cell: ESA model 5011, 0.34 V). The mobile phase consisted
of 62.7 mM Na,HPOQy,4, 40.0 mM citric acid, 0.27 mM EDTA, 4.94 mM
HSA and 10% MeOH (pH 4.1). Known amounts of 5-HT and 5-HTP
were run in parallel for standardization. Monoamine/precursor levels
were calculated as nmol g~ ! of wet tissue.

2.5. Data analysis

Synthesis rate and synthesis rate constant of 5-HT were used for the
statistical analysis. Data were analyzed separately for each individual
brain region using a two-way ANOVA with ‘strain’ (3 levels: Groningen,
Turku and North Carolina) and ‘type’ (2 levels: High and Low
aggressive) as between-subject factors. Post-hoc analysis was carried
out for the significant effects using Tukey's test.

3. Results
3.1. Synthesis rate

The in-vivo 5-HT biosynthesis rates were determined from the initial
rate of accumulation of its precursor 5-HTP after inhibition of the central
amino-acid decarboxylase. The rates were found to be similar in both
the high- and low-aggressive naive subjects regardless of the brain

regions considered (Fig. 1). Univariate ANOVA failed to reveal a ‘type’
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Fig. 1. Shows the synthesis rates of 5-HT in the pre-frontal cortex (top-half) and the
raphe nucleus (bottom half) of high- and low-aggressive mouse strains. The synthesis
rate is represented as mean + SEM. Significant p-values are represented as * (p<0.05)
and ** (p<0.01).
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main effect, but a significant ‘strain’ effect was observed in both the pre-
frontal cortex [F229)=>5.28; p<0.05] and the raphe regions [F29)=
7.95; p<0.005]. Post-hoc analysis revealed that the Groningen SAL/LAL
strain has a higher 5-HT synthesis rate than the Turku TA/TNA strain
(p<0.01) in the prefrontal cortex. A similar effect was seen in the raphe
brain region, in that the Groningen strains produce more 5-HTP than the
Turku strains (p<0.01) or the NC 900/100 strains (p<0.005). Although
no significant ‘Selection’ x ‘type’ interaction effects was found, a clear
trend did appear in the raphe brain region [F(;29)=3.32; p=0.058].
Post-hoc analysis with Tukey's test revealed significant differences
within the low-aggressive mouse lines, in that the LAL mice showed the
highest [5-HTP] levels than the NC100 (p<0.005) or the TNA mice
(p<0.05). Thus, Groningen strains tend to produce more 5-HTP in both
the pre-frontal cortex as well as raphe nucleus.

3.2, [5-HT]

The 5-HT levels were measured from untreated naive subjects and
subjected to analysis. The relevance of assessing untreated 5-HT levels
is described under synthesis rate constant section below. Univariate
ANOVA failed to reveal ‘type’-specific main effect as well as
‘strain’ x ‘type’ interaction effects regardless of the brain region
investigated. A significant ‘strain’ effect however was observed at
the pre-frontal cortex [F(;27)=3.88; p<0.05]. Post-hoc analysis with
Tukey's test revealed significantly higher 5-HT levels in the NC strains
than with the Groningen strains (p<0.05). Thus, 5-HT levels failed to
correlate negatively with violent/high aggressive phenotypes in naive
mice selected for high aggression (see Table 1).

3.3. Synthesis rate constant

The TPH activity is measured by the synthesis rate constant of 5-HT.
Itis obtained by dividing the synthesis rate of 5-HTP (nmol g~ ' h~!) by
the untreated [5-HT] (nmol g~ ). The synthesis rate constants for the
pre-frontal cortex were log transformed to ensure the homogeneity of
the variances. Similar to the 5-HT biosynthesis rate, the synthesis rate
constant failed to reveal any significant ‘type’ main effect or ‘strain’x ‘-
type’ interaction effects (Table 1). Univariate ANOVA however, showed
significant main ‘strain’ effects at both the pre-frontal cortex [Fi229)=
7.47; p<0.001] and at the raphe nucleus [F,29)=5.42; p=0.01]. Upon
post-hoc analysis, the Groningen SAL/LAL strains were shown to have a
higher synthesis rate constant in the pre-frontal cortex when compared
to both the Turku (p<0.001) and NC strains (p<0.05). Post-hoc analysis
for the ‘strain’ effect in the raphe nucleus revealed NC strains show the
lowest synthesis rate constant when compared to Groningen strains
(p<0.01). The Groningen strains were comparable to Turku strains and
both showed highest synthesis rate constants than the NC strains at the

Table 1
Shows both the 5-HT (untreated) and synthesis rate constants of 5-HT for all six mouse
lines genetically selected for high/ low aggression.

Strain/PFC [5-HT] (nmol g~ ') Synthesis rate constant (h—1)
NC900 3.9+0.33 0.5140.03
NC100 2.894+0.24 0.3940.08
TA 1.514+0.60 0.1940.07
TNA 2.2740.68 0.3240.12
SAL 2.074+0.31 1.52+043
LAL 3.144+0.30 1.93+0.74
Strain/RN [5-HT] (nmol g~ 1) Synthesis rate constant (h~')
NC900 526 £0.55 1.79+£0.33
NC100 4.25+0.54 0.754+0.12
TA 2.774+0.22 1.794+0.36
TNA 2.7540.27 1.50+£0.33
SAL 3.88+0.18 2.124+0.21
LAL 4.89+0.40 2314034

(PFC — pre-frontal cortex, RN — raphe nucleus). A summary of the 5-HT biosynthetic
activity related parameters in the PFC/RN.

raphe nucleus. Thus, the Groningen strains showed enhanced in-vivo
TPH activity at the pre-frontal cortex than the other strains.

4. Discussion

The present study aimed to reveal a possible negative correlation
between TPH activity and aggression by assessing the in-vivo
synthesis rates of 5-HTP and consequently the synthesis rate constant
of 5-HT, in three mouse strains genetically selected for high/low
aggression. The in-vivo TPH activity has been routinely characterized
by estimating the accumulation rates of 5-HTP after inhibition of
aromatic L-amino acid decarboxylase by NSD-1015 [8]. Our present
findings failed to reveal differences in the synthesis rates or the rate
constants of 5-HT between the high/low aggressive mouse strains.
Given the above findings, it is evident that the artificially selected
high- and low-aggressive mouse lines failed to show any inherent
genetic differences with respect to their brain TPH activity.

The pre-frontal cortex and the dorsal/median raphe nuclei in particular
were specifically considered for the present study for reasons as described
below. The prefrontal cortex has been heavily associated in the inhibitory
neural circuitry of aggressive behavior as well as in higher-order social,
cognitive and emotional processes [26]. Hypo-function, due to damage,
lesions and/or low 5-HT levels, of the prefrontal cortex was found to
correlate positively with impulsivity and violence in humans [3,11,17,36].
Furthermore, the low 5-HT levels in the high aggression mouse strains
were reported in the pre-frontal cortex in the previous studies [7].
Additionally, the dorsal and median raphe nuclei were considered since
they provide the 5-HT neuronal projections to the pre-frontal cortex
[35,37-39]. The raphe region is also known to be the seat of synthesis of 5-
HT by possessing the highest neural density of TPH [30]. Apart from the
functional significance, the ubiquity of a likely negative correlation
between TPH activity and violence/aggression was assessed across these
aggression-specific brain regions, which are also strongly associated with
serotonergic neurotransmission. Other brain regions were not considered
for this study owing to their relatively less significance when compared to
these brain regions with respect to aggression.

A careful inspection of synthesis rate constants reveals a lack of
differential 5-HT levels in these artificially selected genetic strains
lacking resident-intruder agonistic experience. In the first instance,
this observation seems to contradict our previous findings that
showed a consistently low brain 5-HT levels/turnover in the high-
aggressive mice [7]. Upon closer scrutiny, it was evident that the low
5-HT levels were observed only in those high-aggressive mice that
have been tested repeatedly in the resident-intruder paradigm. This
strongly indicates that the 5-HT deficiency is a consequence of
acquired victorious resident-intruder agonistic experiences rather
than a cause of aggression as a behavior per se. Recently, Caramaschi
and co-workers [6] found this to be the case with these mice strains in
their repeated resident-intruder experiments.

Additionally, from the present findings we can also conclude that a
low basal TPH activity is not the direct cause behind the genetic selection
of the high-aggressive mice with respect to these brain regions ana-
lyzed. Repeated aggressive experiences can nevertheless still indirectly
regulate a differential TPH activity in the high and low aggressive mouse
lines. If this is the case, a low TPH activity is a consequence of aggression
experience rather than a cause, like the 5-HT deficiency as described
above in the high aggressive mice. This possibility needs further ex-
ploration. However, the effect of experiences on TPH activity is not
within the scope of this study.

In addition, several other molecular candidates that are known to
regulate 5-HT neurotransmission may be the direct underlying causes
behind the behavioral differences in aggression of these naive high/
low aggressive mouse strains (e.g., serotonin transporter (SERT),
monoamine oxidase (MAO), 5-HT;4/1p autoreceptors). A low 5-HT
condition may/(not) be necessarily a mandatory condition but this
possibility requires further exploration. Although large bodies of
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evidence link low levels of serotonin to enhanced aggressive behavior,
several gene knock-out studies have reported a lack of the ‘low 5-HT
requirement’ as well [9,10,16,19,29], thus suggestive of investigating
beyond 5-HT levels into the 5-HT regulating candidate genes
expression and function.

The synthesis rate constants were however observed to be high in
the Groningen strains and this can be attributed to their high
synthesis rates of 5-HTP compared to the other selection strains
especially at the raphe nucleus. The raphe 5-HT levels were found to
be lower in the Turku strains, which in turn lead to the comparable
synthesis rate constants across both Turku and Groningen strains
(Table 1). Interestingly, the SAL mice produced less 5-HTP than the
LAL mice at both the pre-frontal cortex and at the raphe nucleus
although non-significantly. Any likely difference in TPH functionality
upon agonistic interactions is merely hypothetical at this point of time
across these genetically selected strains.

It is not clear at this time as to how one can link a high synthesis rate
of 5-HT with simultaneously low intracellular 5-HT levels in the
Groningen mice. Additionally, it is also not evident as to why there is
a high TPH activity selectively in the Groningen strains. One possibility is
that these strains have a high basal 5-HT release with/(out) poor basal 5-
HT reuptake rates, which might in turn account for the reduced
intracellular 5-HT levels. The latter can also be envisaged to be mod-
ulated by other regulatory components including the degradative (MAO)
enzyme system as far as direct serotonergic factors are concerned.

Additionally, within the high aggression strains, no significant
intra-high aggressive type/intra-selection effects were observed
either with respects to SAL, TA and NC900 lines. This was assessed
to observe if reduced TPH activity is also typical of the SAL mice if not
the other high aggressive mouse strains. This is because the SAL mice
were shown to be predisposed to violence while the others were
functionally hyperaggressive [25].

This study was carried out during the dark phase when the lights
were out. Although the 5-HT levels were known to be highest in the
middle of the light phase [24], the Tph2 protein expression for in-
stance, was found to peak around 6 h after the onset of the dark phase
[22]. Additionally, aggression is known to peak during the dark phase
and thus the biochemical characterization of TPH activity was
assessed during this phase of the day.

To conclude, we thus found no differences in 5-HT biosynthetic
capacity between the high- and low-aggressive selection lines in both
their prefrontal cortical and raphe brain regions. Thus, the underlying
inherent genetic differences in aggressiveness observed in these
artificially selected mouse strains are not due to constitutional func-
tional differences in their TPH activity. Given the recent classification
of the Groningen SAL mice strain as an animal model of violence [25],
the lack of differential TPH functionality undermines its importance as
a potential candidate gene behind the genetic selection or predis-
position for violence/high aggression. Identification of other potential
serotonergic correlates using a similar functional approach may reveal
their inherent role underlying the different aggressive behavioral
phenotypes in general.
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