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Abstract

The influence of sliding filters on the phase jitter of soliton pulses propagating in single-channel constant-dispersion

systems is studied using the perturbation theory. Although sliding filters allow the reduction of the amplified radiative

background, they introduce coupling between the soliton amplitude and frequency, and between its timing and phase,

which result in a growth of the phase jitter as the cube of the propagation distance. Comparisons of the analytical

results with Monte Carlo simulations validate the perturbation theory.
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The use of differential phase shift keying

(DPSK) has recently allowed the demonstration of

impressive transmission capacities in the context of

long-haul fiber-optic communication systems [1–
5]. In these systems, the error-free distance is

mainly limited by random fluctuations of the

phase caused by the amplified spontaneous emis-

sion (ASE) that occurs in optical amplifiers.

Without control, amplitude-to-phase noise con-

version occurs through the self-phase modulation

(SPM) [6] and cross-phase modulation (XPM) [7]
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effects, producing a phase variance that grows as

the cube of the propagation distance. In-line fil-

tering was shown to reduce phase jitter efficiently

[8,6] through the damping of amplitude noise,
which result in a linear increase of the phase jitter

with distance. The main drawback of this tech-

nique is that the ASE noise that has exactly the

soliton center frequency is less attenuated than the

soliton itself and grows exponentially with dis-

tance, creating a strong continuum wave that de-

teriorates the transmission.

To overcome this limitation, the idea of sliding-
frequency guiding filters was proposed [9] and

demonstrated [10–12] in the context of timing jit-

ter. It allows the creation of an optical line that is

opaque to noise but transparent for solitons. In
ed.
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this Letter, we present for the first time to our

knowledge an analysis of the effect of sliding filters

on the optical phase jitter of soliton pulses in sin-

gle-channel constant-dispersion links. An analyti-

cal expression for the phase standard deviation is

derived by use of the soliton perturbation theory.
This result is validated by comparison with Monte

Carlo simulations. We show that, as in the case of

timing jitter, sliding filtering allows an efficient

reduction of the phase jitter created by the inter-

action with the continuum, thus allowing the use

of narrower optical filters. However, the coupling

between amplitude and frequency created by the

sliding makes the phase jitter increase as the
propagation distance cube. This evolution is dif-

ferent from the timing jitter behavior, which only

increases linearly in the presence of sliding filters.

The choice of the optimal sliding rate involves a

trade-off between the reduction of the continuum

and the increase of the phase jitter.

The propagation of optical pulses in a sliding-

filtered constant-dispersion amplified link is de-
scribed by the perturbed nonlinear Schr€odinger
equation

iozuþ
1

2
o2ttuþ juj2u ¼ �P ðuÞ; ð1Þ

where P represents the perturbation and includes

both the sliding filters and ASE noise, � is a small

parameter, and a standard normalization of the

NLSE has been used. Properly chosen transfor-

mation and uniformly accelerated frame [13] allow

us to write the perturbation due to sliding-fre-

quency filters as �P ¼ i½duþ ð3=4Þkfo2ttu� � x0
f tu,

where d is the excess gain required to overcome the

loss imposed on the solitons by the filters, kf is the
filter strength, and x0

f is the sliding rate. Unless

otherwise indicated, notations of [13] are used

throughout the derivation. The soliton solution of

the non-perturbed NLSE is given by

usðtÞ ¼ Asech½Aðt � aÞ� expði/� ixtÞ; ð2Þ
where A is the amplitude, a the temporal position,

x the angular frequency, and / the phase of the

soliton. Each amplifier imparts a zero-mean ran-

dom shift to the soliton parameters, with variances
given by [13]

hdA2i ¼ A�nnspF ðGÞ; ð3Þ
hdx2i ¼ A
3
�nnspF ðGÞ; ð4Þ

hda2i ¼ p2

12A
�nnspF ðGÞ; ð5Þ

hd/2i ¼ 1

3A
p2

12

�
þ 1

�
�nnspF ðGÞ; ð6Þ

where �n is the ratio of the photon energy to the unit

energy (in soliton units), nsp is the spontaneous

emission factor, G is the gain of the amplifier and

F ðGÞ ¼ ðG� 1Þ2=½G lnðGÞ� is the ratio of the soliton
peak power at the amplifier output to the peak
power of the average soliton. The perturbation

theory can be used to calculate the evolution of the

soliton parameters as a function of distance [13].

The filters guide the amplitude and frequency to a

fixed point given by A ¼ 1 and x ¼ �x0
f=kf ¼ D.

The evolution of small variations around this fixed

point A ¼ 1þ a and x ¼ Dþ d are given by

aðzÞ
dðzÞ

� �
¼ t1 þ t2

ffiffiffiffiffiffiffiffi
3=2

p
ðt1 � t2Þffiffiffiffiffiffiffiffi

2=3
p

ðt1 � t2Þ t1 þ t2

� �
a0
d0

� �
;

ð7Þ
where ci ¼ kfð1� jDj

ffiffiffi
6

p
Þ, tiðzÞ ¼ expð�cizÞ, and a0

and d0 are initial values of the amplitude and fre-

quency. The magnitude of the parameter D must

be less than 1=
ffiffiffi
6

p
to ensure stable propagation of

the pulses. For a given filter strength, this condi-

tion fixes an upper limit for the sliding rate.
To calculate the phase jitter, we change the

referential and shift the fixed point frequency to

zero. The evolution of the temporal position and

phase are given by

a0z ¼ �d; ð8Þ

/0
z ¼ aþ x0

f a: ð9Þ
All parameters have an influence on the evolu-

tion of the phase. Since the amplitude and fre-

quency are coupled by the sliding filters, they both

intervene in the first term on the right-hand side of

Eq. (9). The temporal position modifies the phase
jitter through the second term of this equation. At

a given distance z, we can calculate the contribu-

tion of each amplifier to the phase by using the
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Fig. 1. Standard deviation of the phase as a function of dis-

tance for filter bandwidths of 100 and 140 GHz, and no sliding.

Solid line: numerical simulation, dashed line: perturbation

theory.
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initial values given by Eqs. (3)–(6) and the pa-

rameter evolution Eqs. (7)–(9). Adding up all these

contributions, taking the variance, approximating

the discrete sum over the amplifiers by a continu-

ous integral, and for distances such that c2z � 1,

we obtain the following expression for the phase
variance:

hd/2ðzÞi ¼ �nnspF ðGÞ
3zA

A1z
�

þ A2z2 þ A3z3
�
; ð10Þ

with

A1 ¼ 3a21 þ 3a22 þ 6a1a2 þ b21 þ b22 þ 2b1b2 þ 1þ p2

12
;

A2 ¼ 3a1a3 þ 3a2a3 þ b1b3 þ b2b3;

A3 ¼ a23 þ
b23
3
þ p2x02

f

12
;

ð11Þ
and

a1 ¼
1

c1

1

2

 
þ
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The coupling between the frequency and the
amplitude of the pulse due to the sliding filters

reintroduces a z3 dependance of the phase vari-

ance. When x0
f ¼ 0, the terms A2 and A3 are re-

duced to zero, and A1 ¼ 3=k2f þ 1þ p2=12, so that

we recover the result derived in [8] for fixed-fre-

quency filters. Eqs. (10)–(12) are the main result of

this letter. As for timing jitter, sliding the central

frequency of the in-line filters induces a penalty on
the phase fluctuations. Therefore, for a given filter

strength kf , there is a tradeoff between the reduc-

tion of the continuum and the growth of the phase

jitter, which both occur when the sliding rate is

increased. It should be noted that Eq. (10) does

not apply when the continuum is strong, because

the perturbation theory does not take into account

interactions between the soliton and the radiative
background. To investigate the suppression of
continuum, we now confront the analytical result

with simulations.

Statistical simulations based on the split-step

Fourier method were performed to calculate the

phase jitter as a function of distance in a soliton

channel. Optical pulses with a 10 ps width were
propagated in a link composed of spans of dis-

persion-shifted fiber with D ¼ 0:25 ps/(nm km)

and optical amplifiers with nsp ¼ 1:5 placed every

45 km along the link. Gaussian filters were placed

after each amplifier. The phase was numerically

evaluated using the formula given in [14]

/ ¼ tan�1

R
juj2ImðuÞdtR
juj2ReðuÞdt

 !
: ð13Þ

Fig. 1 is a plot of the theoretical and numer-

ically obtained phase standard deviation as a

function of distance in two systems with no sliding

and filter bandwidths of 140 GHz (kf ¼ 0:16) and
100 GHz (kf ¼ 0:33). We observe that the growth

of the continuum causes a large deviation of the

numerical curve around 7 Mm for the 140 GHz
system and 4.5 Mm for the 100 GHz, and the

phase jitter grows very rapidly beyond this point.

As expected, the continuum grows more rapidly

when the filter bandwidth is smaller because the

excess gain is higher.

The standard deviation of the phase is plotted

in Fig. 2 for the 140 GHz system with sliding rates



0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

S
ta

nd
ar

d 
de

vi
at

io
n 

of
 th

e 
ph

as
e 

(r
ad

)

Distance (Mm)

Fig. 3. Standard deviation of the phase as a function of dis-

tance for a filter bandwidth of 100 GHz and a sliding rate of 9

GHz/Mm. Solid line: numerical simulation, dashed line: per-

turbation theory.
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Fig. 2. Standard deviation of the phase as a function of dis-

tance for a filter bandwidth of 140 GHz and sliding rates of 6

and 12 GHz/Mm. Solid line: numerical simulation, dashed line:

perturbation theory.
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of 6 GHz/Mm (x0
f ¼ 0:022, D ¼ �0:13) and 12

GHz/Mm (x0
f ¼ 0:043, D ¼ �0:26). In both sys-

tems, the sliding filters efficiently suppress the

continuum, and the perturbation theory succeeds

in predicting the phase jitter. For the 6 GHz/Mm
sliding rate, the term in z2 in Eq. (10) is predomi-

nant for distances in the Mm range, so that the

phase standard deviation appears to grow linearly.

When the sliding rate is further increased to 12

GHz/Mm, the term in z3 becomes predominant for

the same range of distances, so that the phase jitter

is considerably increased by the sliding filters. The

100 GHz system requires a higher sliding rate to
suppress the radiative background exponential

growth. Fig. 3 is a plot of the phase jitter as a

function of distance in this system, with a sliding

rate of 9 GHz/Mm (x0
f ¼ 0:032, D ¼ �0:10). This

sliding rate allows sufficient suppression of the

radiative background noise over 10 Mm. This

confirms the fact that narrower filters can be used

to further suppress phase jitter.
Other methods are known to mitigate the

growth of nonlinear phase jitter. In-line phase

conjugation [15] was shown to reduce the phase

jitter. Post-transmission nonlinear phase-shift

compensation [16–18] takes advantage of the cor-

relation between amplitude and phase jitter to

decrease the latter. These two methods can be used

in conjunction efficiently if a symmetric phase
conjugation scheme is used. Fixed or sliding in-line
filtering has the advantage of being a purely pas-

sive process, while the other two aforementionned

methods require sophisticated active nonlinear
optics, such as parametric amplifiers, periodically-

poled lithium niobate integrated waveguides, or

high-speed detection and phase modulation.

However, nothing prevents the optical link de-

signer from using these three methods together to

obtain an optimal phase jitter reduction.

In conclusion, we have examined the effect of

sliding filters on the phase jitter of solitons prop-
agating in amplified constant-dispersion commu-

nications systems. We have shown that sliding

filters reintroduce a phase jitter that grows as z3,
making them less efficient in PSK systems than

they are to suppress timing jitter in OOK systems.
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