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Abstract

We discuss the applicability of the perturbation theory in electrodynamic problems where the local impedance

boundary conditions are used to calculate the ohmic losses at the metallic surface. As an example, we examine a pe-

riodic grating formed from semi-infinite rectangular plates exposed to the s-polarized electromagnetic wave. Two

different ways of calculation are presented: (i) the calculation of the reflection coefficient obtained with the aid of the

perturbation theory (the impedance is the small parameter) and (ii) the direct calculation of the energy flux through the

metallic surface. In the case (ii) to get the answer only the tangential magnetic field at the surface of a perfect conductor

of the same geometry has to be known. The results (i) and (ii) differ noticeably. The same difficulty is inherent in all the

problems where the metallic surface has rectangular grooves. We show that in this problem the standard first-order

perturbation theory is not applicable. The point is that beginning from a number n the first corrections to the modal

functions /n used to calculate the fields, are of the same order as the zero-order modal functions (the impedance is equal

to zero). Basing on the energy conservation law we show that the accurate value for the ohmic losses is obtained with

the aid of the approach (ii). � 2002 Elsevier Science B.V. All rights reserved.

PACS: 78.90.+t
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1. Introduction

In the present publication we would like to fix
the readers attention on an unexpected situation
arising when the perturbation theory is used for

calculation of the ohmic losses at the highly con-
ducting metallic surfaces with sharp edges. All the
calculations are performed in the framework of the
local impedance boundary conditions applicability
[1]. In other words, we assume that the penetration
depth of an electromagnetic wave into the metal d
is much less than the characteristic size of the
surface contour, and the last is much less than the
vacuum wavelength k ¼ 2pc=x, x is the frequency
of the incident wave.
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As an example we examine the one-dimensional
metallic periodic grating (2b is the period) formed
from semi-infinite rectangular plates (Fig. 1). The
grating is illuminated by s-polarized light. In our
example

d � 2b � k; ð1Þ
This allows us to restrict ourselves to solution of
the Maxwell equations in the region external with
respect to a metal. At the metallic surface the
boundary conditions for the fields are

Et ¼ f̂f½n;Ht�; ð2Þ
Et and Ht are tangential components of electric
and magnetic vectors at the metallic surface, n is
the unit external normal vector to the surface. The
two-dimensional tensor f̂f is the surface impedance
tensor. The real and imaginary parts of the im-
pedance define the dissipated energy and the phase
shift of the reflected electromagnetic wave, re-
spectively (see, for example, [1]). In what follows
we suppose that in Eq. (2) the impedance f̂f is an
ordinary multiplying operator, and it is the same
as the impedance of a perfectly flat surface of the
same metal. This form of the boundary conditions
is due originally to Leontovich [2]. Often these
boundary conditions are called the Leontovich
boundary conditions (LBC).

Of course, LBC are not rigorous ones. In gen-
eral the relation between Et and Ht is nonlocal.
Moreover, when the metallic surface is not flat,
even the local terms in the expression for the
components of the surface impedance tensor have
corrections depending on the shape of the metallic

surface (see, for example, [3,4].) However, when
the inequalities (1) are fulfilled, the leading term
in the expression for f̂f is equal to the impedance of
the perfectly flat metallic surface. Having in mind
to calculate the leading term in the expression for
the ohmic losses we restrict ourselves to this
approximation only.

In what follows we assume that the metal is an
isotropic one. Then the surface impedance tensor
is fab ¼ fdab. Under the conditions of normal skin
effect [1] f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x=8pr

p
ð1� iÞ, where r is the con-

ductivity of the metal. Under the conditions of
anomalous skin effect the expression for the sur-
face impedance is more complex (see, for example,
[5]). We do not specify the character of skin effect.
We only take into account that in the order of
magnitude jfj 	 d=k. For good metals this ratio is
extremely small.

Note, LBC are valid up to the terms of the
order of jfj only. Consequently, when calculating
the fields the terms of the higher order (for ex-
ample, of the order bjfj=k, jfj2 and so on) must be
omitted as far as they exceed the accuracy allowed
by the boundary conditions.

Strictly speaking, inequalities (1) provide the
possibility to use LBC if the surface of the metal is
rather smooth. The presence of sharp edges makes
this possibility questionable. Of course, in real life
all the sharp edges are rounded ones. Undoubtedly,
the boundary conditions (2) can be used only if the
smoothing characteristic size is greater than d too.
However, it is rather difficult to take the smoothing
regions into account accurately. Therefore rather
often when making use of Eq. (2), one assumes that
a smoothing changes the results only slightly.

It must be noted also that the grating depicted
in Fig. 1 is infinitely long in the x3 direction. At
first it seems that the boundary conditions (2) are
not valid in this case. To justify ourselves we take
into account that in the s-polarization state the
fields decay exponentially inside the grooves when
the distance from the throat of the groove in-
creases. As a result the fields in the vicinity of in-
finitely deep grooves and the grooves of finite, but
rather large depth h (h > 2a) are practically the
same. For such grooves the smoothing of the
contour allowing us to use the boundary condi-
tions (2) can be done rather easily.

Fig. 1. The grating configuration; 2b is the period, 2a is the

width of the grooves throats.
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After all these preliminary remarks we are faced
with a rigorously set mathematical problem: sup-
pose that a plane s-polarized wave Ei ¼ E0e

�iðkx3þxtÞ

(k ¼ x=c) is normally incident upon the surface
depicted in Fig. 1. At the metallic surface we have
the boundary conditions (2) that are valid up to
the terms of the order jfj. We impose an outgoing
wave or exponentially decaying boundary condi-
tions on the reflected fields. Our problem is to
define the ohmic losses. In other words, we need to
calculate the energy flux through the surface of the
metal.

In the region outside the metal let us introduce
the time-averaged Pointing vector that is the den-
sity of the time-averaged energy flux

S ¼ ðc=8pÞRe½EH�� ð3Þ
(the star means the complex conjugate). According
to the energy conservation law [1]

divS ¼ 0: ð4Þ
The consequence of the last equation is the
equality of the integralsZ

S1

Sdf ¼
Z
Sm

ðSnÞdf; ð5Þ

where the integral in the left-hand side is taken
over the surface infinitely distant from the metal.
The integral in the right-hand side is taken over the
surface of the metal. This integral defines the en-
ergy flux penetrating through the metallic surface.

Infinitely far from the metallic surface (x3 
 k)
the only nonzero component of the Pointing vec-
tor is expressed in terms of the reflection coefficient
R: S3 ¼ �ðc=8pÞjE0j2ð1� RÞ. Consequently, when
the reflection coefficient is known, we can calculate
the ohmic losses with the aid of the left-hand side
of Eq. (5).

On the other hand we can calculate the energy
flux through the surface of the metal directly. With
regard to the boundary conditions (2) at the me-
tallic surface the normal component of the time-
averaged Pointing vector is Sn ¼ ðc=8pÞRefjHtj2.
The last expression can be simplified.

Since jfj � 1, the magnetic vector Ht at the
surface of a good metal is approximately the same
as the magnetic vector H

ð0Þ
t at the surface of the

perfect conductor (the conductivity is infinitely

large and, consequently, the impedance f ¼ 0) of
the same geometry [1]. Then within the allowed
accuracy we must rewrite Sn as Sn ¼ ðc=8pÞ
RefjHð0Þ

t j2.
Let us introduce the energy Qd dissipating in the

metal per unit length in the x2 direction and per
one period. According to the previous argumen-
tation and making use of Eq. (5) we can write two
equivalent expressions for Qd:

Qd ¼
c
8p

Ref
Z

L
jHð0Þ

t j2 dl; ð6aÞ

the integral is taken over the contour of the surface
relating to one period, and

Qd ¼ 2bjE0j2
c
8p

½1� R�: ð6bÞ

Note, to calculate Qd with the aid of Eq. (6a) we
need to know the magnetic vector H

ð0Þ
t at the

surface of the perfect conductor only. On the other
hand, when we make use of Eq. (6b) we need to
know the reflection coefficient R. Since for a per-
fect conductor R ¼ 1, to calculate R we need the
solution of the complete electrodynamic problem
in the region over the real metal.

A lot of authors calculated the fields above
perfectly conducting gratings (see, for example,
[6]). It can be done with the aid of different
methods [7]. For example, one can present the
fields inside the grooves as series of modal func-
tions that are the solutions of the Maxwell equa-
tions. Above the grooves the usual Rayleigh plane-
wave representation is adopted. Then applying the
boundary conditions for perfect conductors on the
surface and the continuity conditions across
the central slit results in a matrix equation for the
modal amplitudes. This method makes use of the
standard Fourier analysis. There are no doubts
with respect to the results obtained with the aid of
this method. The other way is based on the solu-
tion of the Wiener–Hopf equation. Both methods
give the same result.

In the framework of LBC we can use the same
methods when calculating the fields above highly
conducting metallic gratings. However, to be sure
that we do not fall outside the limits allowed by the
boundary conditions (2), we have to exploit the
perturbation theory based on the inequalities (1).
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In what follows we show that in this problem the
standard perturbation theory is not applicable.
More accurately, we show that the dissipated en-
ergy Qd calculated with the aid of Eq. (6a) differs
from the result obtained with the aid of Eq. (6b)
after calculation of the reflection coefficient R in
the framework of the perturbation theory. This
discrepancy leads to violation of the energy con-
servation low.

We would like to stress once more, the field H
ð0Þ
t

entering Eq. (6a) can be calculated with high ac-
curacy. Then, in the framework of our approxi-
mation Eq. (6a) provides the correct result for the
ohmic losses. Next, as it is shown below, the
method of calculation of the fields above the real
metal (the impedance f 6¼ 0) is much alike the one
used when calculating the fields above the perfect
grating. However, to calculate the difference 1� R
up to the terms of the order of f, we have to use the
perturbation theory with respect to the small pa-
rameters of the problem. Consequently, the source
of the obtained discrepancy can be the perturba-
tion theory only.

We faced this problem when calculating the
ohmic losses on the lamellar grating with finite
depth of the grooves exposed to the s-polarized
light [8]. In [8] we used Eq. (6a). We found out that
for rather deep grooves our result was approxi-
mately 20% less than the result obtained by
Vainshtein et al. [9]. In the same frequency region
defined by Eq. (1) these authors used LBC to ex-
amine the one-dimensional grating with infinitely
deep grooves and very thin plates (ðb � aÞ=b � 1).
They based their solution on the application of the
Wiener–Hopf equation and calculated the reflec-
tion coefficient. Then taking into account that
according to Eq. (1) the parameter jfj=kb � 1,
they used the perturbation theory and calculated
the difference 1� R entering Eq. (6b) up to the
terms of the order of f.

In the s-polarization state there are no physical
reasons of different results for very deep and infi-
nitely deep grooves. Therefore, trying out to verify
our approach, we examined the grating with infi-
nitely deep grooves. We reproduced the perturba-
tion theory calculation of Vainshtein et al. [9] with
the aid of the modal function method adopted in
[8]. The results obtained with the aid of the per-

turbation theory were the same as in the work of
Vainshtein and his co-authors. Then we repeated
the calculation with the aid of Eq. (6a). Comparing
the results we found the same twenty percents
difference (see Fig. 2).

The result of this analysis is presented in this
publication. From our point of view our calcula-
tions show that in this problem the application of
the standard perturbation theory provide a regular
error when calculating the fields above the grating.
In what follows we show the place where the
standard perturbation theory failed.

It was not the goal of this work to develop a
regular perturbation theory allowing us to calcu-
late the fields above lamellar conducting gratings
correctly. The main results of our investigation can
be formulated as follows:

(i) For highly conducting lamellar gratings the
correct result for ohmic losses Qd is given by
Eq. (6a).
(ii) The coincidence of the result for Qd obtained
with the aid of Eqs. (6a) and (6b) can be used as
a proof of correct calculation of the fields above
the metallic surface.
The organization of this paper is as follows. In

Section 2 we present the modal function approach
allowing us to calculate the fields above the metallic
grating. In Section 3 we describe the results
obtained in the framework of the standard

Fig. 2. The dimensionless values qs ¼ ðpQðsurÞ
d =cbÞjE0j2 (solid

line) and qi ¼ ðpQð1Þ
d =cbÞjE0j2 (dashed line) as functions of the

ratio a=b. The crosses show the values of qV ¼ ðpQðV Þ
d =cbjE0j2Þ

calculated with the aid of Eq. (26).
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perturbation theory. In Section 4 we calculate the
ohmic losses and discuss the reasons why the stan-
dard perturbation theory fails. Concluding remarks
are given in Section 5. In Appendix A we show that
for an arbitrary value of kb < 1, the formulae used
when calculating the fields above the infinitely
conducting grating provide the total reflection of
the incident wave (the reflection coefficient R ¼ 1).

2. Calculation of the fields

Let the one-dimensional periodic metallic grat-
ing depicted in Fig. 1 be exposed to the s-polarized
normally incident electromagnetic wave
Ei ¼ ð0;E0; 0Þ exp½�ikx3�. We assume that the first
period corresponds to �b < x1 < b. For simplicity
we assume that on the flat parts x3 ¼ 0 of the
surface (for the first period they are �b < x1 < �a
and a < x1 < b) the local impedance is equal to
zero. This simplification, being not very signifi-
cant, only allows us to shorten the calculations
that are rather lengthy and tedious. On the inner
surfaces of the semi-infinite grooves the boundary
conditions (2) are fulfilled.

The inequalities (1) provide us with three small
parameters. Namely,

jfj 	 d
k
� 1; kb � 1 and

d
b
	 jfj

kb
� 1: ð7Þ

At first, we will not pay attention to inequalities
(7). In what follows we obtain the solution of the
problem without using the perturbation theory.
We assume only that kb < 1.

Let the superscripts þ and � denote the fields in
the half-space x3 > 0 and in the central groove
(�a < x1 < a), respectively. With regard to the
surface periodicity we adopt the representation

Eþðx1; x3Þ ¼ E0 e�ikx3

(
þ
X1

q¼�1
eþq e

iðpqx1=bþaqx3Þ

)
;

ð8Þ
for the electric field above the metal. In Eq. (8)

a0 ¼ k and aq ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpq=bÞ2 � k2

q
, if q 6¼ 0. Since on

the plain parts x3 ¼ 0 of the surface the local im-
pedance is equal to zero, Eþ

2 ðx1; 0Þ ¼ 0, when
a < jx1j < b.

Inside the central groove (jx1j6 a, x3 < 0) we
present E�ðx1; x3Þ as a series of modal functions
/nðx1; x3Þ that are the solutions of the Maxwell
equations incorporating the boundary conditions
(2) on the vertical sides of the groove. 1 Let Bn be
the coefficients of this series.

Separating the variables we write the modal
functions /nðx1; x3Þ as
/nðx1; x3Þ ¼ wnðx3Þunðx1Þ; wnðx3Þ

¼ exp
x3
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2n � ðkaÞ2

q� 	
: ð9aÞ

It is easy to see that the functionsunðx1Þ are given by
different expressions for even and odd numbers n:

u2nðx1Þ ¼
sinðc2nx1=aÞ

cos c2n
;

u2n�1ðx1Þ ¼ � cosðc2n�1x1=aÞ
sin c2n�1

; ð9bÞ

with c2n and c2n�1 being the solutions of dispersion
equations

tan c2n
c2n

¼ � if
ka

;
cot c2n�1

c2n�1

¼ if
ka

: ð9cÞ

The set of modal functions /nðx1; x3Þ has a lot of
interesting properties. We do not discuss them
here, but refer the reader to the review work of
Lyubarskii [10]. Here let us note only that the
functions unðx1Þ are not orthogonal ones: their
scalar product ðum;unÞ ¼ ð1=2aÞ

R a
�a dx1 u

�
mðx1Þ

unðx1Þ (the star means the complex conjugate) does
not equal to zero when m 6¼ n. However, the
functions unðx1Þ with different subscripts are or-
thogonal:

1

2b

Z a

�a
dx1 umðx1Þunðx1Þ ¼ Immdmn; ð10aÞ

where

I2m;2m ¼ a
2b

1

cos2 c2m

�
þ if

ka

�
;

I2m�1;2m�1 ¼
a
2b

1

sin2 c2m�1

(
þ if

ka

)
: ð10bÞ

1 An analogous method was repeatedly used when calculating

the fields above infinitely conducting rectangular gratings (see,

for example, [6]).
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We use Eqs. (10a) and (10b) when deriving the
matrix equation for the modal coefficients (see
below Eq. (13)).

Now with regard to Eqs. (9a)–(9c) we write the
field E�ðx1; x3Þ (jx1j < a, x3 < 0) as

E�
2 ðx1; x3Þ ¼ E0

X1
n¼0

B2nw2nðx3Þu2nðx1Þ
(

þ
X1
n¼1

B2n�1w2n�1ðx3Þu2n�1ðx1Þ
)
: ð11Þ

Applying the boundary conditions on the pla-
teaus x3 ¼ 0 and the continuity conditions across
the central slit, we obtain two linked matrix
equations allowing us to determine both the am-
plitudes eþq and the modal amplitudes Bn. It is easy
to see that all the amplitudes B2n are equal to zero.
In place of the amplitudes B2n�1 it is convenient to
introduce the coefficients X2n�1,

iðkbÞX2n�1 ¼
2c2n�1

p
B2n�1: ð12Þ

Now we eliminate the amplitudes eðþÞ
q from the

set of matrix equations to obtain the matrix
equation for the coefficients X2n�1. Our calcula-
tions results in

X1
m¼1

X2m�1D2m�1;2l�1 þ
pb
2a


 �2 p
2c2l�1


 �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðka=c2l�1Þ

2

q
I2l�1;2l�1X2l�1¼2W2l�1: ð13Þ

If we set l ¼ 2a=b, thematrixD2m�1;2l�1 in Eq. (13) is

D2m�1;2l�1 ¼
X1
q¼1

ql
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðkb=pqÞ2

q

� D2m�1;2l�1ðqÞ � i
l
p
ðkbÞW2l�1W2m�1; ð14aÞ

D2m�1;2l�1ðqÞ ¼ 2
p
l


 �2

C2l�1;qC2m�1;q;

W2l�1 ¼
p

2c2l�1


 �2

; ð14bÞ

C2l�1;q stands for the integral

2c2l�1

p


 �
C2l�1;q ¼

1

2b

Z a

�a
dx1 e�ipqx1=bu2l�1ðx1Þ:

ð14cÞ

The explicit form of C2l�1;q is

C2l�1;q ¼
lp
4

� � cosxq � xq sin½xq cot c2l�1=c2l�1�
x2

q � c22l�1

;

xq ¼
pql
2

; ð14dÞ

and I2l�1;2l�1 is defined by Eq. (10b).
We can calculate the coefficients X2n�1 solving

numerically the infinite set of Eq. (13). To calcu-
late the reflection coefficient R we take into ac-
count that since kb < 1, there is only one reflected
wave. In accordance with Eq. (8) its dimensionless
amplitude is eþ0 and eþq with q 6¼ 0 represent eva-
nescent waves. Omitting intermediate calculations,
we present the expression for eþ0 in terms of the
coefficients X2l�1:

eþ0 ¼ �1� iðkbÞ l
p

X1
l¼1

X2l�1W2l�1: ð15Þ

Then R ¼ jeþ0 j
2
.

It seems that in such a way we solve the problem
and can calculate the ohmic losses substituting the
found reflection coefficient into Eq. (6b). However,
as it was aforementioned, LBC are true up to the
terms of the order of f only. Consequently, to
obtain a reliable answer for the ohmic losses we
need to extract the terms of the order of f from the
expression for 1� R. And this is just the place
where the perturbation theory has to be used.

3. The result of the first-order perturbation theory

The zero-order term of our perturbation theory
corresponds to f ¼ 0. To denote it we use the su-
perscript ð0Þ. Then in accordance with Eqs. (9a)–
(9c) we have

cð0Þ2n�1 ¼
pð2n � 1Þ

2
;

uð0Þ
2n�1ðx1Þ ¼ ð�1Þn cosðpð2n � 1Þx1=2aÞ: ð16Þ

The functions uð0Þ
2n�1ðx1Þ are cosines that can be

used as basic functions for the standard Fourier
analysis.

Next, from Eq. (9c) it follows that the eigen-
values c2l�1 depend not on f itself, but on the pa-
rameter e ¼ f=ðkaÞ. Since ka � 1, it is evident that
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jfj � jej � 1. With regard to Eq. (9c) we obtain
that up to the terms of the order of e:

c2l�1 ¼ cð0Þ2l�1ð1� ieÞ: ð17Þ
Moreover, the impedance f enters the matrix Eq.
(13) only through their dependence on c2l�1. Thus,
from Eq. (13) it follows that the coefficients X2n�1

depend not on all the three small parameters listed
in Eq. (7), but on the two small parameters only
which are kb and e. When e ¼ 0 the coefficients
X ð0Þ
2n�1ðkbÞ define the fields above the infinitely

conducting grating. With regard to Eq. (13) and
Eqs. (14a)–(14d) it is easy to see that the matrix
equation for X ð0Þ

2n�1ðkbÞ isX1
m¼1

X ð0Þ
2m�1D

ð0Þ
2m�1;2l�1 þ

1

l
p
2

� �2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðkbl=pð2l � 1ÞÞ2

q
X ð0Þ
2l�1

2l � 1
¼ 2

ð2l � 1Þ2
;

ð18aÞ
where

Dð0Þ
2m�1;2l�1ðkbÞ ¼

X1
q¼1

ql
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðkb=pqÞ2

q
Dð0Þ

2m�1;2l�1ðqÞ

� i
l
p
ðkbÞ 1

ð2m� 1Þ2ð2l � 1Þ2
; ð18bÞ

and

Dð0Þ
2m�1;2l�1ðqÞ ¼

1þ cos 2xq

dmðqÞdlðqÞ
;

dmðqÞ ¼ ðqlÞ2 � ð2m � 1Þ2; ð18cÞ

xq is defined in Eq. (14d).
Suppose that we know the solution of Eq. (18a).

To take into account the finite conductivity of the
metal, we need to make use of the perturbation
theory when solving the matrix Eq. (13) and cal-
culate the first corrections to X ð0Þ

2n�1ðkbÞ in the small
parameter e.

According to Eq. (11) and the definition of the
coefficients X2n�1, Eq. (12), the same corrections
provide the electric field E� up to the terms of the
order of f. Since LBC do not allow us to calculate
the fields up to the terms higher than jfj, when
calculating the coefficients X2n�1 the terms of the
order higher than e (for example, of the order of f)
must be omitted.

With the aid of Eq. (17) we expand all the co-
efficients in Eq. (13) up to the terms of the order of
e. Then with regard to Eqs. (18a)–(18c) after te-
dious, but straightforward algebra we obtain that
up to the terms of the order of e the solution of Eq.
(13) has the form

X2n�1ðkb; eÞ ¼ X ð0Þ
2n�1ðkbÞ þ 2ie X ð0Þ

2n�1ð0Þ
�

� V2n�1

�
;

ð19Þ

where the coefficients V2n�1 satisfy the matrix
equation

X1
m¼1

V2m�1D
ð0Þ
2m�1;2l�1ð0Þ þ

1

l
p
2

� �2 V2l�1

2l � 1

¼
X1
m¼1

X ð0Þ
2m�1ð0ÞS2m�1;2l�1: ð20aÞ

Here the matrix Dð0Þ
2m�1;2l�1ð0Þ is defined by Eq.

(18c) when kb ¼ 0, and the matrix S2m�1;2l�1 is

S2m�1;2l�1 ¼
X1
q¼1

ðqlÞT2m�1;2l�1ðqÞ

þ 1

l
p
2

� �2 1

2l � 1
dm;l; ð20bÞ

T2m�1;2l�1ðqÞ¼� 1

dmðqÞdlðqÞ
ð1
"

þcos2xqÞ

� ð2m�1Þ2

dm

 
þð2l�1Þ2

dl

!
þxqsin2xq

#
:

ð20cÞ

Again xq ¼ pql=2 and dm is defined in Eq. (18c).
If in consecutive order we solve Eqs. (18a) and

(20a), we obtain the coefficients X2n�1ðkb; eÞ up to
the terms linear in the parameter e.

4. Calculation of ohmic losses

At first, let us calculate the dissipated energy Qd

with the aid of Eq. (6a). We mark the result of this
calculation with the superscript ðsurÞ. We remind
that we set f ¼ 0 at the flat parts x3 ¼ 0 of our
surface. Then in Eq. (6a) the integration is per-
formed over the vertical facets of the central
groove, where the tangential magnetic vector is
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H ð0Þ
3 ð�a; x3Þ (x3 < 0). Now we can rewrite Eq. (6a)

as

QðsurÞ
d ¼ c

4p
Ref

Z 0

�1
jH ð0Þ

3 ða; x3Þj2 dx3: ð21Þ

We take into account that since the right-hand side
of Eq. (21) is proportional to f, within the accu-
racy of our approach the field H ð0Þ

3 ða; x3Þ in the
integrand has to be known only up to the terms
independent of the small parameter kb. Then with
regard to the Maxwell equations, Eq. (11)
(B2n ¼ 0), and Eq. (12) we have

H ð0Þ
3 ða; x3Þjkb¼0 ¼ � p

l
E0

X1
l¼1

X ð0Þ
2l�1ð0Þ

� exp½pð2l � 1Þx3=2a�; ð22Þ

and, consequently,

QðsurÞ
d ¼ cbjE0j2

Ref
8l

X1
l;m¼1

X ð0Þ
2l�1ð0ÞX

ð0Þ
2m�1ð0Þ

l þ m � 1
: ð23Þ

Now let us calculate the energy Qd with the aid of
Eq. (6b). We mark this result with the superscript
ð1Þ. Since the reflection coefficient R ¼ jeþ0 j

2
, to

calculate Qð1Þ
d we use Eq. (15). Then

Qð1Þ
d ¼ � cbjE0j2

4p
Q;

Q ¼ iðkbÞ l
p

X1
l¼1

X2l�1W2l�1

�
� X �

2l�1W
�
2l�1

�

þðkbÞ2 l
p

� �2X1
l;m¼1

X �
2l�1X2m�1W �

2l�1W2m�1: ð24Þ

When calculating Qð1Þ
d it is necessary to have in

mind, that the dissipated energy has to be equal to
zero for a perfectly conducting surface. In other
words, when f ¼ 0 and, consequently, X2l�1 ¼
X ð0Þ
2l�1ðkbÞ, Qð1Þ

d vanishes for an arbitrary value of
kb < 1. In Appendix A we show that this equality
is fulfilled for X ð0Þ

2l�1ðkbÞ that are solutions of Eq.
(18a).

As a result, substituting the expression (19) in
Eq. (24) we obtain Qð1Þ

d in terms of the coefficients
X ð0Þ
2l�1ð0Þ and V2l�1.

Qð1Þ
d ¼ 2cbjE0j2

p2
Ref

X1
l¼1

2X ð0Þ
2l�1ð0Þ � V2l�1

ð2l � 1Þ2
: ð25Þ

This equation is valid up to the terms of the order
of f.

Our next step was numerical calculation of
the coefficients 2 X ð0Þ

2l�1ð0Þ. With this result in hand
we evaluated the right-hand side of the matrix Eq.
(20a) and calculated the coefficients V2l�1. Finally,
we calculated numerically QðsurÞ

d and Qð1Þ
d with the

aid of Eqs. (23) and (25), respectively.
In Fig. 2 we plot the calculated dimensionless

values qi ¼ ðpQð1Þ
d =cbjE0j2ÞRef and qs ¼ ðpQðsurÞ

d =
cbjE0j2ÞRef as functions of the ratio a=b. We see
that for all a=b the results for qi and qs differ no-
ticeably.

In Fig. 2 we also display the results for the
ohmic losses obtained by Vainshtein et al. [9]. As it
was mentioned in Section 1, they examined the
same grating formed from thin plates
(ðb � aÞ=b � 1). In [9] the way of calculation was
much alike the one used in the present work when
calculating Qð1Þ

d , however some other modal
functions were used, and the problem was reduced
to solution of the Wiener–Hopf equation. Sup-
posing that the impedance of the flat parts x3 ¼ 0
of the metallic surface was equal to zero, the au-
thors of [9] obtained an elegant analytic formulae
for the leading term of the ohmic losses

QðV Þ
d ¼ cbjE0j2

p2
Ref ln

2a
b � a


 �
; ðb � aÞ=b � 1:

ð26Þ
(The superscript ðV Þ indicates that this is the result
of [9].)

We see, that our results for Qð1Þ
d are in good

agreement with the values QðV Þ
d . This confirms our

calculations made in the framework of the per-
turbation theory. However, neither QðV Þ

d , nor Qð1Þ
d

coincide with QðsurÞ
d that is the true energy flux

penetrating through metallic surface. Conse-
quently, we conclude that the obtained result for
Qð1Þ

d (the same as QðV Þ
d ) is improper, since it leads

to violation of the energy conservation law.

2 The computational procedure used in the present work

when calculating the coefficients X ð0Þ
2l�1ð0Þ is just the same as the

one used in [8]. So we refer the readers to the work [8].
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4.1. Inefficiency of the standard perturbation theory

We think that the source of this discrepancy is
application of the standard perturbation theory.
The point is that if f 6¼ 0 the set of modal func-
tions /2n�1ðx1; x3Þ (see Eqs. (9a)–(9c)), used when
calculating the reflection coefficient, being com-
plete and minimal still does not form a stable
basis. As a result, expansions in this set can be
very sensitive to perturbations (see, for example,
[10]).

To show this, let us note that according to Eq.
(16) the zero-order eigenvalues cð0Þ2n�1 are equidis-
tant numbers: cð0Þ2nþ1 � cð0Þ2n�1 ¼ p. However, the
distance between c2n�1 defined by Eq. (17) and
cð0Þ2n�1 increases linearly when n increases. If, for
example, f ¼ f0ð1� iÞ (that is true for homoge-
neous solids under the conditions of normal skin
effect), we have

jc2n�1 � cð0Þ2n�1j
b

¼ pffiffiffi
2

p ð2n � 1Þ; b ¼ f0=ka: ð27Þ

Now let us calculate the eigenfunctions u2n�1ðx1Þ
substituting c2n�1 from Eq. (17) in Eq. (9b). The
result of this calculation is

u2n�1ðx1Þ¼ ð�1Þn� coshbcð0Þ2n�1

x1
a
cosð1

n
þbÞcð0Þ2n�1

� x1
a
� i sinhbcð0Þ2n�1

x1
a
sinð1þbÞcð0Þ2n�1

x1
a

o
.

cosbcð0Þ2n�1 coshbcð0Þ2n�1

n
� i sinbcð0Þ2n�1 sinhbcð0Þ2n�1

o
: ð28Þ

We see, that u2n�1ðx1Þ is a complex function, whose
real and imaginary parts are of the same order.
The difference between u2n�1ðx1Þ and uð0Þ

2n�1ðx1Þ is
small only if n � 1=pb. When n 
 1=pb the ei-
genfunctions u2n�1ðx1Þ do not resemble the non-
perturbed eigenfunctions uð0Þ

2n�1ðx1Þ at all. In Fig. 3
for x1 ¼ 0 we plot the ratios Reu2n�1ð0Þ=u

ð0Þ
2n�1ð0Þ

and Imu2n�1ð0Þ=u
ð0Þ
2n�1ð0Þ for two values of b:

b ¼ 0:05 and b ¼ 0:01.
We must also take into account that in the s-

polarization state the strength of the magnetic field
in the immediate vicinity of a rectangular two-di-
mensional wedge increases significantly (see, for
example, [7]). When the fields are represented by
the expressions of the type (11), to describe the

fields near the corner points correctly we need to
provide a special asymptotic behavior of the co-
efficients X2n�1 when n ! 1 (see [7]). For f ¼ 0 the
coefficients X 0

2n�1 	 1=ð2n � 1Þ2=3 when n ! 1 (see
[8]).

With regard to all the aforementioned argu-
ments we take for granted that in the s-polariza-
tion state the perturbation theory presented in
Section 3 is not applicable when LBC are used to
calculate the fields above one-dimensional periodic
rectangular metallic gratings.

5. Conclusions

In this section we summarize the results of our
analysis. We would like to remind that here we
examined the case of the s-polarization only. We
put aside the p-polarization state. In the end of this
section we’ll add some remarks relating to the p-
polarization state.

From our point of view, the main result of this
publication is the demonstration of the fact that
the standard perturbation theory can fail if in the
framework of LBC one try to use it when calcu-
lating the electromagnetic fields above periodic
metallic gratings. We examined the case of rect-
angular infinitely deep grooves. However, it is
quite possible that the same problems arise when
the shape of the grooves is, for example, a trian-
gular one, or, more general, when the surface
profile has sharp edges.

Our calculations showed that for rough surfaces
the results for the reflection coefficients obtained
with the aid of the perturbation theory (the im-
pedance f is a small parameter) are not always
reliable. On the other hand, there are no doubts
that the dissipated energy calculated with the aid
of Eq. (6a) defines the ohmic losses accurately.
Thus, we can define the reflection coefficient
comparing Eqs. (6a) and (6b). Then

R ¼ 1� Ref

2bjE0j2
Z

L
jHð0Þ

t j2 dl; ð29Þ

where the tangential magnetic field H
ð0Þ
t is calcu-

lated up to the terms independent of kb. This result
is true in the frequency region consistent with the
inequalities (1).
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On the other hand, this approach allows us to
calculate the reflection coefficient only. The fields
in the close vicinity of a rough metallic surface (at
the distances d that are of the order of the period
of the surface structure, where the evanescent
waves are significant) cannot be calculated, if we
know the expression for H

ð0Þ
t only. To calculate

this field one or another version of the perturba-
tion theory must be used. We suggest to use Eq.
(29) as a verification that the applied perturbation
theory is accurate.

In some sense the calculation of the ohmic
losses in the p-polarization state is much more
simple. The point is that if the grooves have a
finite depth consistent with inequalities (1), the
magnetic field penetrates into the grooves on the
surface. In this case in the main approximation
the magnetic field in the vicinity of the grooves is
the same as near a flat surface of the perfect
conductor. Thus the entire inner surface of the
grooves absorbs the electromagnetic wave. In [8]
for an arbitrary one-dimensional periodic surface
this argumentation allowed us to obtain rather
simple expression for the leading terms of the
effective surface impedance fpef in the p-polariza-
tion state:

fpef ¼ Ref
L
2b

� i
kS
2b

: ð30Þ

In Eq. (30) 2b is the period of the surface structure,
L is the length of the surface profile per one period
and S is the area of the groove in the plane x1x3. If

the effective impedance is known, there are no
problems with calculation of the ohmic losses:

Qp
d ¼

cb
4p

jH0j2 Refpef : ð31Þ

However, some difficulties can arise when the
perturbation theory is applied to calculate the ev-
anescent waves near rough surface in the p-po-
larization state. In the present publication we do
not examine this question.
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Appendix A

Let us demonstrate that the solution X ð0Þ
2l�1ðkbÞ

(l ¼ 1; 2; . . .) of Eqs. (18a)–(18c) guarantees the
fulfillment of the energy conservation law for an
arbitrary value of kb < 1. We also hope that the
formulae of the section can be useful when calcu-
lating the fields above the infinitely conducting
grating for an arbitrary value of kb < 1.

Eqs. (18a)–(18c) correspond to the infinitely
conducting grating (f ¼ 0), and, consequently, the

Fig. 3. The ratios NR ¼ Reu2n�1ð0Þ=u
ð0Þ
2n�1ð0Þ (solid lines) and NI ¼ Imu2n�1ð0Þ=u

ð0Þ
2n�1ð0Þ (dashed line) in the point x1 ¼ 0 for two

values of b: b ¼ 0:05 (a) and b ¼ 0:01 (b).
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reflection coefficient has to be equal to 1. With
regard to our notations this means that after
substituting X ð0Þ

2l�1ðkbÞ in Eq. (15), we have to verify
that 1� R ¼ 1� jeþ0 j

2 ¼ 0. When f ¼ 0, the ex-
plicit form of 1� R is

1� R ¼ � iðkbÞ l
p

X1
l¼1

X ð0Þ
2l�1 � X ð0Þ

2l�1

� ��� �
ð2l � 1Þ2

� ðkbÞ2 l
p

� �2 X1
l;m¼1

X ð0Þ
2l�1

� ��
X ð0Þ
2m�1

ð2l � 1Þ2ð2m� 1Þ2

ðA:1Þ

(compare with Eq. (24); l ¼ 2a=b). When writing
Eq. (A.1) we take into account that W ð0Þ

2l�1 ¼
1=ð2l � 1Þ2 (see Eq. (14b)).

We seek X ð0Þ
2m�1ðkbÞ as a power series

X ð0Þ
2m�1 ¼

X1
q¼0

Y ðqÞ
2m�1ðkbÞ

q: ðA:2Þ

Then it is convenient to rewrite Eq. (18a) in the
formX1
r¼1

U2r�1;2m�1X
ð0Þ
2r�1

¼ 1

ð2m�1Þ 2

(
þ iðkbÞl

p

X1
r¼1

X ð0Þ
2r�1

ð2r�1Þ2

)
: ðA:3aÞ

The elements of the matrix U2r�1;2m�1 depend on
ðkbÞ2 only,
U2r�1;2m�1

¼ ð2m � 1Þ
X1
q¼1

ql
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðkb=pqÞ2

q
Dð0Þ

2r�1;2m�1

þ 1

l
p
2

� �2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� lkb

pð2r � 1Þ


 �2
s

drm; ðA:3bÞ

where Dð0Þ
2r�1;2m�1 is defined by Eq. (18c).

Let us also present U2r�1;2m�1 as a series
expansion

U2r�1;2m�1 ¼
X1
p¼0

Uð2pÞ
2r�1;2m�1ðkbÞ

2p
: ðA:4Þ

When we substitute Eq. (A.2) in Eq. (A.3a) and set
equal the terms, corresponding to the same powers
of ðkbÞ, we obtain a set of equations relating the

coefficients Y ðqÞ
2m�1 with different superscripts. Let us

examine the obtained equations in the consecutive
order. For q ¼ 0 (the term independent of kb) we
haveX1
r¼1

Uð0Þ
2r�1;2m�1Y

ð0Þ
2r�1 ¼

2

2m� 1
: ðA:5aÞ

Evidently, Y ð0Þ
2r�1 ¼ X ð0Þ

2r�1ð0Þ. Note, the coefficients
Y ð0Þ
2r�1 being solutions of the linear set of equations

with real coefficients and real right-hand sides, are
real numbers.

Next, for q > 1 we have

Xsq
p¼0

X1
r¼1

Uð2pÞ
2r�1;2m�1Y

ðq�2pÞ
2r�1 ¼ 2

ð2m � 1Þ Tq�1;

Tq ¼ i
l
2p

X1
s¼1

Y ðqÞ
2s�1

ð2s� 1Þ2
: ðA:5bÞ

The first sum in the left-hand side of Eq. (A.5b) is
taken over p6 sq, where sq ¼ s � 1, if q ¼ 2s � 1,
and sq ¼ s, if q ¼ 2s.

The structure of the right-hand side of Eq.
(A.5b) suggests to seek the coefficients Y ðqÞ

2s�1 (q > 1)
in the form

Y ðqÞ
2s�1 ¼ Y ð0Þ

2s�1Tq�1 þ ZðqÞ
2s�1: ðA:6Þ

Then for q ¼ 1 we have

Zð1Þ
2s�1 ¼ 0; Y ð1Þ

2s�1 ¼ Y ð0Þ
2s�1T0: ðA:7aÞ

We see that the coefficients Y ð1Þ
2s�1 are imaginary

numbers. At the next step (q ¼ 2) we obtain the
equation for Zð2Þ

2s�1,X1
r¼1

Uð0Þ
2r�1;2m�1Z

ð2Þ
2r�1 þ

X1
r¼1

Uð2Þ
2r�1;2m�1Y

ð0Þ
2r�1 ¼ 0:

ðA:7bÞ
With regard to Eq. (A.6) and Eqs. (A.7a) and
(A.7b) it is evident that both Zð2Þ

2r�1 and Y ð2Þ
2r�1 are

real numbers. When continuing this procedure, we
find out that all the coefficients Y ð2q�1Þ

2r�1 are imagi-
nary numbers and all the coefficients Y ð2qÞ

2r�1 are real
numbers. On the contrary, Tq is a real number
when q is odd, and Tq is an imaginary number
when q is even.

In the consecutive order we wrote down
equations for ZðqÞ

2s�1. Examining these equations
we obtained formulae relating ZðqÞ

2s�1 with the
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coefficients ZðrÞ
2s�1 with r6 q. At the last step we

eliminated the functions ZðrÞ
2s�1 with the aid of Eq.

(A.6).
Here, omitting the intermediate calculations, we

present only the recurrence formula for the coef-
ficients Y ð2q�1Þ

2r�1 obtained with the aid of the afore-
mentioned procedure

Y ð2q�1Þ
2r�1 ¼ i

l
2p

X1
s¼1

1

ð2s � 1Þ2
X2ðq�1Þ

p¼0

Y ðpÞ
2s�1 Y ð2ðq�1Þ�pÞ

2r�1

� ��
:

ðA:8Þ

To obtain Eq. (A.8) we used the definition of the
sum Tq (see Eq. (A.5b)). We do not need the ex-
plicit form of Y ð2qÞ

2r�1 to prove that the right-hand
side of Eq. (A.1) vanishes.

Now let us write the expression for 1� R as a
series in powers of kb with mr (r P 1) being the
coefficients of this series. It is easy to see that since
the coefficients Y ð0Þ

2r�1 are real numbers, m1 ¼ 0. If
r > 1, we have

mr ¼ � i
l
p

X1
l¼1

Y ðr�1Þ
2l�1 � Y ðr�1Þ

2l�1

� ��
ð2l � 1Þ2

� l
p

� �2 X1
l;m¼1

1

ð2l � 1Þ2ð2m � 1Þ2

�
Xr�2

q¼0

Y ðr�q�2Þ
2m�1 Y ðqÞ

2l�1

� ��
: ðA:9Þ

Let us show that mr ¼ 0 for an arbitrary r. Indeed,
if r ¼ 2s� 1, taking into account that all the co-
efficients Y ð2ðs�1ÞÞ

2l�1 are real numbers, we see that the
first term in the right-hand side of Eq. (A.9) is
equal to zero. In the second term decomposing the
sum over q into two sums over odd and even
values of q, after a simple transformation we ob-
tain

m2s�1 ¼ � l
p

� �2 X1
l;m¼1

1

ð2l � 1Þ2ð2m � 1Þ2

�
Xs�2

q¼0

Y ð2qÞ
2l�1 Y ð2ðs�qÞ�3Þ

2m�1

h
þ Y ð2ðs�qÞ�3Þ

2m�1

� ��i
:

ðA:10Þ

and, consequently, m2s�1 ¼ 0.

Next, let us examine the case r ¼ 2s. If we take
into account that all the coefficients Y ð2s�1Þ

2l�1 are
imaginary numbers, from Eq. (A.9) we obtain

m2r ¼ � 2i
l
p

X1
l¼1

Y ð2r�1Þ
2l�1

ð2l � 1Þ2

� l
p

� �2 X1
l;m¼1

1

ð2l � 1Þ2ð2m� 1Þ2

�
X2ðr�1Þ

q¼0

Y ð2ðr�1Þ�qÞ
2m�1 Y ðqÞ

2l�1

� ��
: ðA:11aÞ

Now we make use of Eq. (A.8). From this equa-
tion it follows that

X1
l¼1

Y ð2s�1Þ
2l�1

ð2l � 1Þ2
¼ il

2p

X1
l;m¼1

1

ð2l � 1Þ2ð2m � 1Þ2

�
X2ðs�1Þ

q¼0

Y ðqÞ
2m�1 Y ð2ðs�1Þ�qÞ

2l�1

� ��
:

ðA:11bÞ

From the last equation we immediately have
m2s ¼ 0.

Thus we have shown that if f ¼ 0 and kb < 1,
the solution of the matrix Eq. (18a) provides the
fulfillment of the equality 1� R ¼ 0 in agreement
with the energy conservation law.
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