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The propagation of the arbitrarily polarized pulse of the weak probe field through the resonant medium
of Λ�type three-level atoms with degenerate levels adiabatically driven by the coherent coupling field is
considered. It is shown that such pulse is decomposed in the medium into two orthogonally polarized
dark-state polaritons propagating with different group velocities. The expressions for the polarizations
and group velocities of these two polaritons are obtained. The dependence of these polarizations and
group velocities on the values of the angular momenta of resonant levels, on the polarization of the
coupling field and on the initial atomic state is studied.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

The remarkable reduction of the group velocity of light pulses
[1,2] based on the phenomenon of the electromagnetically
induced transparency (EIT) [3,4] provided a number of applica-
tions, the most promising among them being the implementation
of quantum memory [5–7]. The recent experiments [8–10] on EIT-
based quantum memory demonstrate the continuously enhancing
memory efficiency and fidelity, bringing it close to practical
applications. Such memory is based on the concept of dark-state
polaritons in the three-level Λ�type systems, proposed in [11,12]
and soon realized in rubidium vapor in the experiment [13]. The
group velocity of such polaritons may be controlled by the
adiabatically varying intensity of the driving field to store single-
photon pulses in the resonant media or to retrieve them. The most
natural way for qubit encoding is provided by the photon two
polarization degrees of freedom, as it was implemented in the
experiments [9,10]. However the group velocity of the dark-state
polariton may depend essentially on its polarization due to the
optical anisotropy induced by the polarization of the driving field,
while for the effective storage of the photon polarization qubit its
both polarization components must be stopped in the medium
simultaneously. The objective of the present paper is to study the
polarization properties of the dark-state polaritons formed in the
three-level Λ�type systems with degenerate levels, which are in
many experiments the hyperfine structure components of alkali
atoms degenerate in the projections of the atomic total angular
momentum on the quantization axis.
ll rights reserved.
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2. Basic equations and relations

We consider the pulse of the weak probe field propagating
along the sample axis Z with the carrier frequency ω, which is in
resonance with the frequency ω0 of an optically allowed transition
Ja-Jc between the ground state Ja and the excited state Jc, while
the strong coherent coupling field propagates in the same direc-
tion with the carrier frequency ωc , which is in resonance with the
frequency ωc0 of an optically allowed transition Jb-Jc between the
long-lived state Jb and the same excited state Jc (Fig. 1). Here Ja, Jb
and Jc are the values of the angular momenta of the levels. The
electric field strength of the coupling field and that of the probe
field may be put down as follows:

Ec ¼ ecðt�z=cÞlce�iωcðt�z=cÞ þ c:c:; ð1Þ

E¼ eðt; zÞe�iωðt�z=cÞ þ c:c:; ð2Þ
where ec is the slowly varying amplitude of the coupling field and
lc is its constant unit polarization vector, while e is the slowly
varying vector amplitude of the probe pulse, which satisfies the
equation:

∂
∂t

þ c
∂
∂z

� �
e¼ iωn0jdj

2ε0
trfĝρ̂g; ð3Þ

as it follows from Maxwell equations, while the evolution of the
atomic slowly varying density matrix ρ̂ in the rotating-wave
approximation is described by the equation:

∂ρ̂
∂t

¼ i
2

V̂ ; ρ̂
h i

þ dρ̂
dt

� �
rel
; ð4Þ

V̂ ¼ 2ðΔP̂ c þ δP̂ bÞ þ D̂ þ D̂
†
; D̂ ¼Ωcĝ c þ Ĝ; ð5Þ

ĝ c ¼ ĝcl
n

c ; Ĝ ¼ ð2jdj=ℏÞĝen: ð6Þ
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Fig. 1. The level diagram.
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Here n0 is the concentration of resonant atoms, ĝ and ĝc are the
dimensionless electric dipole moment operators for the transitions
Jc-Ja and Jc-Jb, d¼ dðJaJcÞ and dc ¼ dðJbJcÞ being the reduced
matrix elements of the electric dipole moment operators for these
transitions, Δ¼ ω�ω0 and Δc ¼ ωc�ωc0 are the frequency detun-
ings from resonance of the probe and of the coupling fields, while
δ¼ Δ�Δc , P̂α is the projector on the subspace of the atomic level Jα
(α¼ a;b; c), Ωc ¼ 2jdcjec=ℏ is the reduced Rabi frequency for the
coupling field. The matrix elements of the circular components ĝq

and ĝ cq (q¼ 0; 71) of vector operators ĝ and ĝc are expressed
through Wigner 3J-symbols [14]:

ðĝqÞacmamc
¼ ð�1ÞJa�ma

Ja 1 Jc
�ma q mc

 !
; ð7Þ

ðĝ cqÞbcmbmc
¼ ð�1ÞJb�mb

Jb 1 Jc
�mb q mc

 !
: ð8Þ

Finally, the term ðdρ̂=dtÞrel in Eq. (4) describes the irreversible
relaxation. Initially the atoms are at the ground state a the atomic
density matrix being

ρ̂ð0Þ ¼ ρ̂a:

In the linear approximation for the probe field we obtain from Eqs.
(4)–(5) for the elements of the atomic density matrix the following
equations:

∂
∂t

þ γ�iΔ
� �

ρ̂ca ¼ i
2

Ωcĝ
†
c ρ̂

ba þ Ĝ
†
ρ̂a

� �
; ð9Þ

∂
∂t

þ Γ�iδ
� �

ρ̂ba ¼ i
2
Ωcĝ cρ̂

ca; ð10Þ

where

ρ̂αβ ¼ P̂αρ̂P̂ β; α; β¼ a;b; c;

while the irreversible relaxation is simply characterized by the two
real relaxation rates – γ for the optically allowed transition Ja-Jc
and Γ for the optically forbidden transition Ja-Jb:

dρ̂
dt

� �ca

rel
¼�γρ̂ca;

dρ̂
dt

� �ba

rel
¼�Γρ̂ba:

In the adiabatic approximation, when the coupling field varies
slowly:

γTb1; Ω2
c Tbγ;

T≃jΩc= _Ωcj being the characteristic time scale for the variation
(switching on or off) of the coupling field, while the relaxation at
the forbidden transition remains negligible

ΓT51;

in the case of single-photon and two-photon resonances

Δ⪯γ; δT51;
from (9)–(10) it follows:

Ωcĝ
†
c ρ̂

ba þ Ĝ
†
ρ̂a ¼ 0; ð11Þ

∂ρ̂ba

∂t
¼ i

2
Ωcĝ cρ̂

ca: ð12Þ

Eq. (11), which is the approximation of the relation

D̂
†
ρ̂ ¼ 0;

linear in the probe field, means that only the dark states contribute
to the solution of Eq. (12). In order to express ρ̂ca through ρ̂ba we
multiply both parts of Eq. (12) by the matrix ĝ†

c from the left and
consider the orthonormal set of eigenvectors jcn〉 of the hermitian
operator ĝ†

cĝ c acting at the subspace of the excited level c:

ĝ †
cĝ cjcn〉¼ s2njcn〉; n¼ 1;…;2Jc þ 1; ð13Þ

the corresponding eigenvalues being non-negative s2n≥0: Then,
after multiplying both parts of Eq. (12) from the left by the matrix

D̂c ¼∑
n

1
s2n

cn〉〈cn ;j
�� ð14Þ

we obtain

P̂
b
c ρ̂

ca ¼� 2i
Ωc

∂
∂t

D̂cĝ
†
c ρ̂

ba
� �

; ð15Þ

where

P̂
b
c ¼∑

n
jcn〉〈cnj; ð16Þ

while the summation in Eqs. (14) and (16) is carried out only over
eigenvectors jcn〉 with non-zero eigenvalues s2n40, P̂

b
c being the

projector on the subspace formed by such eigenvectors. The
eigenvectors jcn〉 with zero eigenvalues s2n ¼ 0 are not affected by
the coupling field and may be neglected under the assumed
approximation. Now let us introduce the vector field

p¼ trfĝD̂cĝ
†
c ρ̂

bag; ð17Þ
describing the induced coherence at the forbidden transition
Ja-Jb. With the two orthonormal vectors li in the polarization
plane XY (ljl

n

k ¼ δjk; j; k¼ 1;2) we obtain from (3), (15) and (11) for
the components ek ¼ elnk and pk ¼ plnk the following equations:

∂
∂t

þ c
∂
∂z

� �
ek ¼

ωn0jdj
ε0Ωc

∂pk
∂t

; ð18Þ

pk ¼� 2jdj
ℏΩc

∑
j
akjej; ð19Þ

akj ¼ trfρ̂aĝkD̂cĝ
†
j g; ĝ k ¼ ĝlnk : ð20Þ

Now let us choose the two orthonormal vectors li as the two
eigenvectors of the hermitian 2�2 matrix ajk, defined by (20).
Then

akj ¼ akδkj ; ð21Þ

where ak (k¼1,2) are the two real eigenvalues of this matrix. By
introducing via canonical transformation the field of the dark-state
polariton [12]:

Ψ k ¼ cos θkek� sin θkλkpk; ð22Þ
where

λk ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ℏωn0

2ε0ak

s
; ð23Þ

and the angle θk is determined by the equation

tan θk ¼
2jdjakλk
ℏΩc

; ð24Þ
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neglecting the retardation of the coupling field Ωcðt�z=cÞ≃ΩcðtÞ,
we obtain from (18)–(24) the following equation:

∂Ψ k

∂t
þ c cos 2 θk

∂Ψ k

∂z
¼ 0; ð25Þ

which describes the propagation of the dark-state polariton with
the group velocity

Vgr
k ¼ c cos 2 θk ¼

c
1þ ngr

k

; ð26Þ

ngr
k ¼ tan 2 θk ¼

2jdj2n0ωak
ℏΩ2

c ε0
: ð27Þ

In the case when the probe field (2) represents itself a single-
photon pulse the classical field eðt; zÞ must be replaced by the
operator êðt; zÞ [12]. All the results of the present section remain
true for such single-photon pulses with the substitution of the
photon-field function

eðt; zÞ ¼ 〈0jêðt; zÞjf 〉
instead of the classical field eðt; zÞ, where j0〉 and jf 〉 stand for the
vacuum and single-photon field states respectively.
3. Discussion

As it follows from (22)–(27), the arbitrarily polarized pulse of
the weak probe field is decomposed under the action of the strong
coupling field into two components polarized along the two
eigenvectors of tensor (20) propagating with different group
velocities, which difference is determined by the difference in
the two eigenvalues of tensor (20). So the polarization properties
of the dark-state polaritons are totally determined by the hermi-
tian 2�2 tensor ajk defined by Eq. (20). This tensor in its turn is
determined by the values of the angular momenta of resonant
levels, by the polarization of the coupling field and by the initial
atomic state.

In the experiments on the EIT-based quantum memory the
coupling field is adiabatically switched off as the photon pulse
enters the resonant medium so that the mixing angle θk, defined
by Eq. (24), varies from 0 to π=2. Then, according to Eq. (22), the
field component ek is stopped in the medium and mapped to the
atomic state pk determined by Eq. (17). To retrieve this photon-
field component from the medium the coupling field is adiabati-
cally switched on decreasing the mixing angle θk from π=2 to 0. In
order to store the qubit encoded in the polarization state of the
photon both its polarization components must be stopped in the
medium simultaneously, which implies the equality a1 ¼ a2 of the
two eigenvalues of the tensor (20).

Let us now calculate the relative difference 1�a2=a1 in the
eigenvalues a1 and a2 (a14a2) and the corresponding eigenvec-
tors l1 and l2 of the tensor ajk for some transitions Ja-Jc-Jb with
the angular momenta characteristic for the experiments on the
hyperfine structure components of atomic levels. In the case of
equilibrium initial atomic state

ρ̂a ¼
P̂ a

2Ja þ 1

we obtain:
Ja-Jc-Jb
 lc
 1�a2=a1
 l1
 l2

0-1-1
 lx
 1
 ly
 lx

1-1-2
 lx
 0.125
 lx
 ly

1-2-2
 lx
 0.25
 lx
 ly

2-2-3
 lx
 0.3
 lx
 ly

2-3-3
 lx
 0.396
 lx
 ly

3-3-4
 lx
 0.347
 lx
 ly
3-4-4
 lx
 0.439
 lx
 ly

0-1-1
 lþ1
 1
 lþ1
 l�1
1-1-2
 lþ1
 0.625
 lþ1
 l�1
1-2-2
 lþ1
 0.577
 lþ1
 l�1
2-2-3
 lþ1
 0.568
 lþ1
 l�1
2-3-3
 lþ1
 0.402
 lþ1
 l�1
3-3-4
 lþ1
 0.529
 lþ1
 l�1
3-4-4
 lþ1
 0.307
 lþ1
 l�1
Here lx and ly denote the unit vectors of the Cartesian axes, while

l71 ¼∓
lx7 ilyffiffiffi

2
p

are the two circular vectors.
As it follows from this table, the photon polarization qubit

cannot be recorded in a single medium sample in all the con-
sidered cases (a1≠a2Þ. However the two different polarization
components of the photon may be recorded separately in the
two different samples providing thus the entanglement between
the two spatially separated atomic ensembles. For such a purpose
the greatest difference in the group velocities of the two polariza-
tion components is preferable. The greatest difference is achieved
for the most simple transition Ja ¼ 0-Jc ¼ 1-Jb ¼ 1. On such
transitions with the coupling field linearly polarized along the
axis X (lc ¼ lx) the three states jcn〉 (n¼ 1;2;3) at the excited level c,
defined by Eq. (13), are as follows:

jc1〉¼
1ffiffiffi
2

p jmc ¼�1〉þ jmc ¼ 1〉ð Þ;

jc2〉¼ jmc ¼ 0〉;

jc3〉¼
1ffiffiffi
2

p ðjmc ¼�1〉�jmc ¼ 1〉Þ;

the corresponding eigenvalues being

s21 ¼ s22 ¼ 1
6; s23 ¼ 0:

The X-component of the probe field couples the ground state
jma ¼ 0〉 only to the state jc3〉 of the excited level, which remains
unaffected by the coupling field:

ĝ xjc1〉¼ ĝ xjc2〉¼ 0; ĝ xjc3〉≠0; ĝ cjc3〉¼ 0;

so this component passes through the medium with the group
velocity close to the vacuum light speed c (a2 ¼ ax ¼ 0). The Y-
component of the probe field couples the ground state jma ¼ 0〉
only to the state jc1〉 of the excited level, which is affected by the
coupling field:

ĝyjc2〉¼ ĝyjc3〉¼ 0; ĝyjc1〉≠0; ĝ cjc1〉≠0;
so the group velocity of this component is reduced by the coupling
field (a1 ¼ ay ¼ 2). In the case of more complex transitions both
polarization components of the probe field couple the states of the
ground level a to the states of the excited level c, which are all
affected by the coupling field, providing the reduction of the group
velocity for both components, though differently.

For the purposes of quantum memory, however, the group
velocity of the single-photon pulse must not depend on its
polarization, which cannot be achieved with the probe and
coupling fields both polarized in the same plane, as it may be
seen from the table. In the experiment [9] the coupling field was
linearly polarized in the direction of propagation of the probe
field: lc ¼ lz , while it propagated in the perpendicular direction.
With such a π�polarized coupling field (lc ¼ lzÞ and with the
diagonal initial atomic state

ρ̂a ¼ ∑
Ja

m ¼ �Ja

na
mjJa;m〉〈Ja;mj
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the tensor akj (20) is transformed to the expression

akj ¼ ∑
m;q

na
mG

m
q lk;ql

n

j;q; ð28Þ

where

Gm
q ¼

Ja 1 Jc
�m q m�q

 !2

Jb 1 Jc
q�m 0 m�q

 !2 : ð29Þ

The two eigenvectors of the tensor akj (28) are the two circular
vectors lq (q¼ 71) with the corresponding eigenvalues

aq ¼∑
m
na
mG

m
�q: ð30Þ

Since Gm
q ¼ G�m

�q , then

a�q ¼∑
m
na
�mG

m
�q;

and both polarization components of the probe pulse will propa-
gate with the same group velocity aþ1 ¼ a�1 in the case when the
Zeeman components of the ground state are initially symmetri-
cally populated:

na
m ¼ na

�m: ð31Þ
In the experiment [9] the atoms were prepared at the pure
Zeeman state with the zero projection on the quantization axis:
na
m ¼ 0, which is in compliance with the condition (31). However

the condition (31) is also fulfilled for the unprepared atoms, which
are initially in the equilibrium state with equally populated Zee-
man sublevels: na

m ¼ 1=ð2Ja þ 1Þ. So, rather a complicated stage of
preparation of the atom at the initial pure state na

m ¼ 0 may be
avoided.
4. Conclusions

In the present paper we consider the propagation of the
arbitrarily polarized pulse of the weak probe field through the
resonant medium of Λ�type three-level atoms with degenerate
levels adiabatically driven by the coherent coupling field. It is
shown that such pulse is decomposed in the medium into two
orthogonally polarized dark-state polaritons propagating with
different group velocities. The polarizations of these two polar-
itons and the difference in their group velocities are determined
by the values of the angular momenta of resonant levels, by the
polarization of the coupling field and by the initial atomic state.

For the purposes of the EIT-based quantum memory the group
velocity of the single-photon pulse must not depend on its
polarization. It is shown that in the case of the π�polarized
coupling field this condition will be fulfilled for the unprepared
atoms, which are initially in the equilibrium state with equally
populated Zeeman sublevels, enabling thus to omit rather a
complicated stage of preparation of the atoms at the initial
pure state.
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