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The theory of selective reflection for a Fabry-Perot

interferometer

Davit N. Khachatryan

Institute for Physical Research, NAS of Armenia, Ashtarak-2, 0203 Armenia

Abstract

In this paper we revisit the theory of selective reflection from a dilute va-
por cell. A self-consistent theory is developed for reflection spectrum for
Fabry-Perot interferometer. Formulas for single and multiple reflections are
obtained. We also obtain the effective refractive index for a single selective
reflection. The results of the paper are in a good agreement with existing
experimental results.

Keywords: Laser spectroscopy, Reflection and refraction, Line shapes,
widths, and shifts, Interference
PACS: 42.62.Fi, 42.25.Gy, 32.70.Jz, 42.25.Hz

1. Introduction

Reflection of radiation from the boundary between a dielectric and atomic
vapor, when laser field is detuned in the vicinity of atomic transition frequen-
cies, is termed selective reflection (SR) [1–3]. SR has many applications, such
as locking a diode laser frequency to atomic resonance lines [4–6], retrieval of
group refractive index [7], marking atomic transition resonance lines [8, 9],
study of the van der Waals interaction of atoms with a dielectric surface
[10–12], determination of the homogeneous width and the shift of resonance
lines [12–15] and cross-sections of resonant collisions [16], study of coherent
and magneto-optical processes [17–22].

Since many decades, and until now, the theory of SR is investigated by
many authors [3, 23–30]. Schuurmans in his paper [3] developed a theory,
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where he obtained the spectral narrowing of a SR signal. In [24] a theory of
frequency modulated SR was developed, that allows one to obtain Doppler
free spectral lines. The problem of different frequency shifts existing in a
SR signal was discussed by [25–27] (e.g. caused by local-field correction,
atom-wall interaction and etc.) while in [28–30] theories are developed for
the dilute thin vapor cells.

The sub-Doppler reflection spectrum in a SR signal is due to atom-wall
collisions. After a collision atoms leave the wall in the ground state. This
creates a spatial transient region, where the polarization has dependence on
the spatial coordinate. The existence of this transient region was experi-
mentally demonstrated by several authors [31, 32] by using evanescent wave
fluorescence spectrum from the atoms that are near the dielectric wall.

In [33] it was shown that by changing the thickness of the cell’s sapphire
window with highly parallel surfaces one can change the SR signal shape,
because of the Fabry-Perot interferometer effect. Also, one can change the
SR signal shape by changing the length of the thin (nanometric) vapor cell
[9]. In the present paper we will demonstrate that the SR line shape can be
changed also for a thicker (cm order) cell.

The present paper is an extension of the theoretical model discussed in [7].
We develop a self-consistent theory by using the density matrix formalism. In
the calculations we use Laplace transformation that let us obtain formulas for
single and multiple selective reflections. Also, the effective complex refractive
index for a single selective reflection was obtained. We assume that after
atom-wall collisions all atoms lose their polarization [28, 30]. Since light
is directed normally to the cell boundary, it is enough to consider a one-
dimensional problem.

In the next section, after recalling elements of our study concerning the re-
flection from a Fabry-Perot interferometer by taking into account the steady-
state solution, then we will take into account the transient behavior of polar-
ization of a dilute vapor cell. We obtain new formulas for single and multiple
reflection spectra and discuss the considered approximations. Additionally,
we will compare the new formulas with the classical ones. In section 4 we
will present the effective refractive index and discuss its properties. In the
last section, we compare our results with existing experimental ones.
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2. Basic concepts

In this section we are going to focus mainly on basic concepts and classical
formulas in order to compare them with our obtained results. Firstly, we
recall the interaction properties between light and a vapor modeled by a
two-level system. The cell consists of three layers (glass, vapor, glass). All
boundaries are parallel to each other and light is directed normally to the
first boundary. The magnetic field is set to zero and the cw laser field is
assumed to be weak enough to neglect the associated nonlinear effects.

We describe light-medium interactions by Maxwell equations using the
Liouville-von Neumann density matrix formalism,

d2E

dx2
+ k2E = −4πk2P,

dρ

dt
= − i

~
[Hρ] + Λ,

P = NTr(ρd),

(1)

where E is the amplitude of the electric field, P is the polarization of the
medium, N is the density of atoms, d is the dipole moment of resonant
atoms, H is the Hamiltonian of the system, and Λ is the dissipation matrix,
which describes all the relaxation processes, as well as the laser radiation
linewidth. In the presence of spatial dispersion, P also is a function of the
spatial coordinate x. This case will be discussed in the next section.

The continuity of the electromagnetic field at the borders x = 0 and
x = L of the medium reads

E(0) = EI + ER,

E ′(0) = ikn1(EI − ER),

E(L) = ET ,

E ′(L) = ikn2ET ,

(2)

where EI is the amplitude of the incident light, ER is the amplitude of the
reflected light, ET is the amplitude of the transmitted light, n1,2 are the
refractive indexes of the windows, k = ω/c is the wave vector, ω is the
frequency of the field and c is the speed of light in vacuum.

The ρ21 density matrix component of the two-level system in the linear
approximation obeys the equation

3
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u
∂ρ21
∂x

= iΩe−i(ωt−ϕ) − (Γ + iω0)ρ21, (3)

where Ω = |E||d|
~ is the Rabi frequency, Γ = γ/2+Γl+Γc+ ... is the transverse

decay rate, γ is the natural decay rate of the excited state, Γl is the laser
spectral width, Γc is a phenomenological decay rate that models the collisions,
u is the velocity of atoms, ω0 is the resonant frequency and ϕ is the phase of
the field.

For a very dense vapor, we can assume that the homogeneous width Γ ≫
kuT , where kuT is the Doppler width and uT is the most probable thermal
velocity of atoms. Therefore, the u∂ρ21

∂x
term in (3) can be neglected [28]. So,

from equations (1), (3) one obtains classical formulas for susceptibility χ and
refractive index n

χ =
iq

Γ− i∆
,

n =
√
1 + 4πχ,

(4)

where ∆ = ω−ω0 is the detuning from the resonance frequency ω0, q = N|d|2
~

is a parameter of the medium.
From (1), (2) and (4) one obtains the well known formulas for the field

within media

E(x) = EIAe
−iknx + EIBeiknx,

A =
R̃− r1

2n(n1 + n)
,

B =
1− R̃r1

2n(n1 + n)
,

(5)

with the Fabry-Peroy interferometer reflection coefficients

R̃ =
r1 − r2e

2iknL

1− r1r2e2iknL
,

r1,2 =
n1,2 − n

n1,2 + n
,

(6)

where R =
∣∣∣R̃

∣∣∣
2

is the reflection coefficient for the Fabry-Perot interferometer.

If we set n1 = n2 = n0 (and, therefore, r1 = r2 = r), we find the classic
formula for R:

4
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R =

∣∣∣∣∣
r − re2iknL

1− r2e2iknL

∣∣∣∣∣

2

. (7)

The formulas presented in (6) and (7) are well known from classical theory
of the Fabry-Perot interferometer [34]. For a more rigorous solution of (3)
one should not neglect u∂ρ21

∂x
and find a solution that takes into account the

transient behavior of the medium. This problem will be solved in the next
section. It will allow to compare the approximate solution (7) with rigorous
one.

3. Spatial Dispersion

We assume now that the atoms lose their polarization after atom-wall
collisions, thus leave the wall in the ground state. Taking this in account, the
boundary conditions for the medium polarization (see for example [28, 30]):

P (x = 0, u > 0) = 0, P (x = L, u < 0) = 0. (8)

From equations (1) and (8) one can derive

P (x) =

∫ x

0

E(y)〈χ(x− y)〉u>0dy +

∫ x

L

E(y)〈χ(x− y)〉u<0dy, (9)

where χ(x) = iq
u
e−

Γ−i∆
u

x is the linear susceptibility for the medium with a
spatial dispersion and 〈...〉u denotes averaging over velocities supposed to
verify a Maxwellian distribution. Note that when x > L then P (x) = 0
(N = 0).

We dont need to solve (1) with the polarization (9) because it is sufficient
to find only the asymptotic solution when x → L. Obviously, the second
integral vanishes when x → L. It results the differential equation

d2E(x)

dx2
+ k2E(x) = −4πk2

∫ x

0

E(y)〈χ(x− y)〉u>0dy. (10)

Denoting χ̃(s) and Ẽ(s) the Laplace transforms of 〈χ(x − y)〉u>0 and
E(x), equation (10) leads to

Ẽ(s) =
sE(0) + E ′(0)

s2 + k2(1 + 4πχ̃(s))
, (11)

5
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χ̃(s) = 〈 iq

Γ + su− i∆
〉u>0, (12)

where we have used the property of the Laplace transformation from the
convolution of object functions.

Here we will do the following approximation. We will assume that the
denominator of (11) admit two roots s1 and s2, thus

s2 + k2(1 + 4πχ̃(s)) = (s− s1)(s− s2), (13)

where s1 and s2 are given by the following iteration procedure (s
(0)
1 and s

(0)
2

are the roots of denominator of (11) when χ̃(s) = 0)

s
(0)
1 = −ik, s

(0)
2 = ik,

s
(n)
1 = −ik(1 + 2πχ̃(s

(n−1)
1 )) = −ikn(s

(n−1)
1 ),

s
(n)
2 = ik(1 + 2πχ̃(s

(n−1)
2 ))) = ikn(s

(n−1)
2 ),

(14)

here n is the iteration step. At each step of iteration we will obtain more
precise values for s1,2. The procedure converges when 4π

∣∣χ̃(s1,2)
∣∣ ≪ 1 and

gives the approximate roots of the denominator of (11). The convergence of
the iteration procedure is demonstrated in Fig.1.

From Fig.1 one can see that only three iterations are needed in order to
find s1 and s2. We should note that for densities N > 1015cm−3 the iteration
procedure doesn’t work, because 4π

∣∣χ̃(s1,2)
∣∣ ≪ 1 relation is not true for these

densities. The dependence of 4π
∣∣χ̃(s1,2))

∣∣ on the density of atoms is shown
in Fig.2.

With the expression (13), we can rewrite (11) as follows:

Ẽ(s) =
sE(0) + E ′(0)

(s− s1)(s− s2)
. (15)

Inverse Laplace transformation leads to:

E(x) =
s1E(0) + E ′(0)

s1 − s2
es1x − s2E(0) + E ′(0)

s1 − s2
es2x. (16)

Here we should remember that (16) is an approximative solution, hence,
it is correct only for x → L. With the use of (16), we get E(L) and E ′(L):

6
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a) b)

c) d)

Figure 1: The convergence of the iteration procedure. a) and b) correspond to real and
imaginary parts of s1 and c) and d) correspond to real and imaginary parts of s2. In all
four plots the red solid lines correspond to 10th iteration from (14), blue solid horizontal
lines correspond to n = 0 iteration step, and the rest blue solid lines correspond to n = 1, 2
iterations. The density of atoms is N = 1015cm−3 and Γc = 2π · 53MHz.

E(L) =
s1E(0) + E ′(0)

s1 − s2
es1L − s2E(0) + E ′(0)

s1 − s2
es2L,

E ′(L) =
s1

2E(0) + s1E
′(0)

s1 − s2
es1L − s2

2E(0) + s2E
′(0)

s1 − s2
es2L.

(17)

From (17) together with the conditions from (2), one deduces an expres-

sion for R̃ = ER/EI :

7
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0
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0.3

0.5
4

 |
(s

1)|

Iteration approximation
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Density  1014 (cm-3)

0

0.1

0.3

0.5

4
 |

(s
2)|

b)

a)

Figure 2: Dependence of 4π
∣∣χ̃(sk))

∣∣ (where k = 1, 2 corresponds respectfully to sub-figures
a) and b) on the density of atoms. The red lines correspond to ∆ = 0, the yellow lines to
∆ = 0.5GHz and the blue ones to ∆ = −0.5GHz.

R̃ =
r1(s1)−Dr2(s2)e

φ

1−Dr1(s2)r2(s2)eφ
,

D =
(n1 + n(s2))(n2 + n(s2)

(n1 + n(s1))(n2 + n(s1))
,

rl(sm) =
nl − n(sm)

nl + n(sm)
,

φ = 2iknavgL,

(18)

where l, m = 1, 2 are integers and navg = (n(s1) + n(s2))/2.
In (16) one can notice two exponential expressions, one of which is in-

creasing (Re(s1) > 0) and the other one is decreasing (Re(s2) < 0), when
x → ∞. So, a natural question arises: when L → ∞ and, consequently, x

8
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can increase to infinity, can the first term become infinite? If so, this solution
will be non physical (the field should be zero at infinity). To show that there
is no problem with the first term, we rewrite (16) by using the conditions
from (2) in the following way:

E(x) = EIAe
s1x + EIBes2x,

A =
R̃− r1(s1)

(n(s1) + n(s2))(n1 + n(s1))
,

B =
1− R̃r1(s2)

(n(s1) + n(s2))(n1 + n(s2))
.

(19)

By substituting the expression of R̃ from (18) into the first term of (19)
we obtain the behavior

EIAe
s1x ∝ es2L−s1(L−x). (20)

From (20) one notices that when L → ∞ it tends to zero for every x ∈ (0, L).
So, when we have only the first border (or the second border is far enough)
we can neglect the exponentially increasing term in (19). Therefore, there
are no problems with infinities.

If we set n1 = n2 = n0 in the expression for R̃ from (18) we get a more

simpler expression for the reflection coefficient R =
∣∣∣R̃

∣∣∣
2

:

R =

∣∣∣∣∣
r(s1)−Dr(s2)e

φ

1−Dr2(s2)eφ

∣∣∣∣∣

2

. (21)

In the next section we compare this result with the classical formula (7)
and we discuss physical meaning of n(s1) and navg . Note that all our previous
calculations do not imply any restriction on the length, thus equation (21)
can be used for higher thicknesses than those discussed in [28–30] (see, Fig.8
here after).

4. Effective refractive index

Diffusive atom collisions with the wall create a transient spatial region
near the boundaries of the cell. In this transient region we do not have
one uniform vapor, thus, we can not describe our medium with a “simple”
linear refractive index [35]. From (9) one observes nonlocal dependence of the

9
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polarization on the spatial coordinate x. Thus, the refractive index should
depend on x. Although, it is difficult to derive the expression of the refractive
index for this kind of medium, we are able to attribute the concept of effective
refractive index to the medium.

First of all, let us compare our formula (21) with the classical formula
(7) for the reflection coefficient. In (21), instead of r we have r(s1) and
r(s2) and we have an additional term D. D like all other terms of (21)
have a dependence on the detuning ∆, but D is always close to one and can
be neglected. Notice that the refractive index n in (7) and navg from (21)
appear both in the phase of exponents in the corresponding formulas. So,
navg in (21) plays the same role as n in (7). This comparison can lead to an
assumption that navg can play the role of the refractive index in our medium.
The real and imaginary parts of navg are presented in Fig.3.

0.9996

1.0000

1.0004
The real and imaginary parts of n

avg

R
e(

n av
g)

-1 -0.5 0 0.5 1

Detuning (GHz)

0

3.5

7

Im
(n

av
g)

10
-4

b)

a)

Figure 3: The spectra of a) real and b) imaginary parts of navg. The density of atoms is
N = 4 · 1012cm−3.

As one can see from Fig.3, the curve of the real part of navg has an
dispersive profile and the curve of the imaginary part of navg has a absorptive
profile, like the refractive index in the conventional theory [36]. This is

10
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another argument that navg has the physical meaning of the refractive index
inside the medium.

From (21) we can derive another interesting relation, if we assume that
the cell is long enough (L → ∞). Notice that eφ → 0, when L → ∞
(Im(navg) > 0) and we deduce the following formula:

Rs =
∣∣r(s1)

∣∣2 =
∣∣∣∣
n0 − n(s1)

n0 + n(s1)

∣∣∣∣
2

. (22)

In this relation only the first reflection from the cell is taken into account,
thus, it represents the formula for the single selective reflection. Notice that
(22) is similar to the Fresnel equation for normal incidence. Therefore, we can
say that n(s1) plays the role of the refractive index. So, we will call n(s1) the
effective complex refractive index for a single reflection. Also, by analogy to
the Fresnel equation, we will attribute Im(n(s1)) as the effective absorption,
and Re(n(s1)) as the effective real refractive index. Moreover, n(s1) can also
be referred to as the surface admittance M = E ′(0)/(ikE(0)) as defined in
[3]. In Fig.4 we show the dependence of Im(n(s1)) and Re(n(s1)) on the
detuning from the resonance line.

In the effective absorption curve in Fig.4b one can see that the absorption
curve is red-shifted. This means that the atoms with positive velocities have
dominant contribution in the absorption curve. It is interesting to recall the
experimental results obtained by Burgmans et al. [31], where the authors
observed fluorescence radiation from the transient region of the Na vapor.
They showed that the spectrum of fluorescence of atoms near the wall has
a decrease in the blue-shifted sides of resonance lines. The reason is the
possibility for the atoms being polarized and moving towards the boundary to
lose their polarization non-radiatively by quenching to the wall. In Fig.4 one
can notice that the effective absorption curve is different from the absorption
curve described by the conventional theory [36]. The difference, like in [31]
experiment, is in the blue-shifted side from the resonance line. So, in this
sense, we can claim that our result is consistent with that experiment. The
steep drop of the line in the effective absorption profile is due to the conditions
given by (8), where we stated in first approximation that all atoms after
collision lose their polarization non-radiatively.
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Figure 4: The spectra for a) the effective real refractive index and b) the effective absorp-
tion. The density of atoms is N = 4 · 1012cm−3.

5. Selective reflection

In Fig.5 we show the dispersion of the single selective reflection calculated
from (22).

The result presented in Fig.5 is similar to the well known profile of the
selective reflection (for instance, see Fig. 8 in [37]). Of course, it is a rough
simplification to assume that we have only a single resonance line. In real
experiments multilevel systems are considered. Thus if one wants to gen-
eralize to multilevel systems, one need to make the assumption that the
light-medium interaction is linear. In this case, all the previous calculations
remain unchanged, but we need to change the expression for χ̃(s) presented
in (12). For instance, the susceptibility of the D1 line of rubidium vapor will
be as following:

χ̃(s) =

8∑

k=1

〈 iqk
su+ Γk − i∆k

〉u>0, (23)
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Figure 5: The selective reflection spectrum in the vicinity of the resonance line. The
density of atoms is N = 1013cm−3.

where qk = N |dk|2 /~ is a parameter, dk are the dipole moments, ∆k = ω−ωk

are the detunings from the corresponding resonance frequencies ωk, Γk are
the homogeneous widths of the corresponding F → F ′ hyperfine transitions
for rubidium atomic vapor. The constants (e.g. dipole moment, resonance
frequency) that we use here are taken from [38, 39]. The calculated spectrum
of the rubidium D1 line is shown in Fig.6.
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R
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Figure 6: The selective reflection spectra from all Rb’s D1 lines (including both 85Rb and
87Rb). The density of atoms is N = 1013cm−3.

In Fig.6 we assume natural abundance for rubidium atoms (72.2% 85Rb
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and 27.8% 87Rb). Here we also should mention that in (23) we don’t take into
account the depopulation of levels by assuming that it has a small effect on
our model. The result can be compared to the experimental results obtained
by Wang et al. [14] and Badalyan et al. [40] presented in the corresponding
figures for rubidium D1 lines. Our result is consistent with the experimental
curves presented there, although in these two papers the order of the density
of the vapor is N ≈ 1014cm−3.

Another interesting spectrum can be obtained by increasing the scale of
detuning for the selective reflection. In this case we can see from Fig.7 that
we have oscillations in the ”wings” of the resonance line.

-2 -1.5 -1 -0.5 0
Detuning (GHz)

0

5

10

15

20

25

R
(%

)

Reflection

Figure 7: The multiple reflection spectrum from the Fabry-Perot interferometer in the far
wings of the resonance line. In the insert we show the zoomed image of the horizontal line
from the reflection spectrum. The density of atoms is N = 3 · 1013cm−3.

In Fig.7 the selective reflection profile presented in Fig.5 also exists. Se-
lective reflection profile is “hidden” in the region where we have a horizontal
line in Fig.7. To see this one should zoom in this region and a picture like
in Fig.5 will emerge (see the zoomed image). Fig.7 is interesting, because
from this spectrum it is easy to straightforwardly obtain the group refractive
index (see, for example [7]).

In regions near the resonance in Figs.5, 6 and in the horizontal region of
Fig.7 we have only a single reflection from the first boundary. For the multiple
reflection spectrum the light should be able to reach the second boundary, to
reflect from it and, finally, to be able to reach and to pass the first boundary of
the cell. If this doesn’t happen, because the absorption is high in the vicinity
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of the resonance line, there will be only a single reflection. To see a multiple
reflection one should either decrease the length of the cell, or decrease the
density of the vapor. In Fig.8 we show the selective reflection from the cells
with different lengths and fixed density N = 1011cm−3, calculated from (21).
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Figure 8: The selective reflection spectrum for different cell lengths. For subfigures a)-d)
respectively cell lengths are L = 0.2; 0.3; 0.6; 0.65; 0.7; 0.8 cm. The density of atoms is
N = 1011cm−3.

In Fig.8 one can see different profiles of the selective reflection that corre-
spond to different lengths of the medium. The differences arise from the fact
that reflection is not generated from a single reflection, but from multiple
reflections from the cell. Consequently, we will have interference picture due
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to all these reflections. When we vary the length of the cell, the interference
pattern changes and the profile of reflection also changes by its shape and
amplitude.

6. Conclusion

In this paper we developed a self-consistent theory for the selective re-
flection from a dilute vapor. We determined formulas for single and multiple
reflections. We obtained the spectrum for the effective refractive index that
is also known as the surface admittance. Our results are well consistent with
the above mentioned experimental results in the case of a dilute vapor. For
a dense medium, we have to take into account effects like radiation trapping,
the Dicke narrowing [41] etc.

Our developed model can be applied in a wide range of physical problems.
For example, it can be used for determination of the density of unwanted (or
desired) vapors by the selective reflection spectrum. If unwanted atoms have
high enough density, the Fabry-Perot interferometer signal will be a single
selective reflection that can be compared with the spectrum calculated from
(22) and used to find the density of unwanted atoms. In the case when Fabry-
Perot interferometer has a small length and the density of atoms is low enough
that there will be multiple reflections from the boundaries of the cell, (21)
can be used. Also, with this technique one can change the spectral profile
of radiation by manipulating the length and the density of the dilute vapor
cell, as presented in Fig.8. This theory can be generalized for multiphoton
interactions that will provide an opportunity to address problems like, for
example, selective reflection in EIT configuration [42].
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