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A B S T R A C T

Taking advantage of the analogy that can be drawn between the spatial and temporal propagations, we explore
two-wave temporal interference in textbook cases such as Young's double slits, Fresnel's biprism and Billet's
bilens. We illustrate our approach by numerical simulations for short pulses propagating in dispersive optical
fibers with parameters typical of those found in modern optical telecommunications.

1. Introduction

Interferences of two optical waves are among the key effects used in
modern optics with applications spanning from sensors development,
detection of gravitational waves [1], navigation systems [2] or phase-
encoded ultrafast communications [3] to cite a few. The observation of
interferences has been central in the discovery of the wave nature of
light [4] and famous experiments such as Thomas Young's double slits
paved the debates and advances of XIXth century physics [5,6]. Young's
slits are still the most famous textbook example found in physical
optics courses [7,8] although other devices involving two virtual
sources of lights have also been developed during the XIXth century,
to confirm Young's conclusions and to increase the brightness of the
resulting spatial interference pattern. In France, Augustin Fresnel
(1788–1827) proposed to take advantage of a biprism [9,10] whereas
later, Felix Billet (1808–1882) and his assistant Jean-Baptiste-Victor
Nodot, from the University of Dijon, imagined a setup made of a lens
split into two parts that are slightly transversally offset [11,12].

All those seminal experiments are essentially described in terms of
space optics involving two optical waves. However, it is possible to find
time domain counterparts using the well-known analogy between

spatial diffraction and temporal dispersion [13–17]. This space/time
duality has already been extremely fruitful and has stimulated numer-
ous new concepts or interpretation in ultrafast optics such as temporal
or spectral lenses [18–21], Talbot effect used for ultrafast sources [22],
Fresnel lens [23], temporal telescope [24] or microscope [25], temporal
pinhole camera [26]. Recently we used the space/time duality to
demonstrate lenticular lenses [27] and to show that the Gouy phase
shift has its spectral analog [20].

We propose here to explore this fascinating analogy by investigating
the possibility of two-wave temporal interferences as found in famous
XIXth century experiments such as Young's double slits, Fresnel's
biprism and Billet's bilens. Going through these three experiments and
their temporal counter parts we will highlight the physics at work, their
similarity and their differences using temporal-frequency analysis.

2. Young's double slits

Let us first consider the simple case where a monochromatic plane wave
with wavelength λ illuminates two identical 1D slits with aperture AS and
separated by SS [see Fig. 1(a)]. In the context of Fresnel's diffraction the
resulting interference pattern IS(x) at distance D, can be easily derived as:
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where T(x) is the complex transmission function that affects the input wave
Uini, x is the transverse coordinate and kx the spatial frequency, k being the
wave vector. F and F−1 are the direct and reciprocal Fourier transforms. The
diffraction imprints a quadratic phase term in the momentum domain. For
the sake of simplicity, we consider in the present manuscript Uini(x)=1, i.e.
the case of an illumination with a plane wavefront that is parallel to the
optical axis (z) of the problem under analysis. Note that other values of Uini
can be equally taken to extend the present discussion such as, for instance,
the case of punctual sources.

In the context of Young's double slits, T(x) can be expressed as
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where rect(x) is the gate function. For a sufficiently large distance D (D
> > λ), a non-localized spatial interference pattern appears with a
typical interfringe distance ΛS that linearly depends on D and can be
calculated from a usual optical path length difference [8]:

Λ D λ
S

=S
S (3)

Let us now consider a similar situation in the time domain. Thanks
to advances in phase and intensity modulators (Fig. 1(b1)), an initial
continuous wave can be temporally shaped with a transmission
function T(t) into a sequence of two pulses of duration AT separated
by ST. As the counterpart of spatial diffraction found in Young's double
slits experiment, we consider here temporal dispersion brought by a
piece of single mode fiber with second order dispersion coefficient β2.
The dispersion occurring in the fiber leads to a temporal broadening of
the pulses so that the temporal intensity profile can be predicted by
[28]:

Fig. 1. (a) Usual interferometric experiments and the location of the interferences
fringes: Young's double-slit experiment, Fresnel's biprism and Billet's bilens (panels 1, 2
and 3 respectively). (b) Standard telecommunication setups that may be used to create
temporal interferences based on a single continuous wave that is intensity and phase
modulated (b1) or using a coherent sliced continuum (b2).

Fig. 2. (a) Temporal Young's double slits: transmission function of the intensity
modulator in the case of the generation of quasi-rectangular pulses or Gaussian pulses
(solid black and grey dashed lines respectively). (b) Longitudinal evolution of the
temporal intensity profile in the case of rectangular temporal slits (b1) or Gaussian
profiles (b2). The evolution of the temporal width a single Gaussian pulse (at −20 dB) is
plotted with dashed blue line. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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where t and f are the temporal and spectral variables respectively and D
the propagation length in the fiber. Eq. (4) is formally equivalent to Eq.
(1) and, for a sufficiently long propagation distance D (D> > LD=At

2/
|β2|) non-localized interference fringes appear in the time domain.

To perform simulations that correspond to a realistic situation, we
consider two rectangular pulses with a duration AT=25 ps being
temporally spaced by ST=200 ps [see Fig. 2(a)], such performance
can be achieved using 40 GHz transmission optoelectronics.
Propagation in a standard single mode fiber at 1550 nm (C-band of
telecom wavelengths) is considered with β2=−20 ps/km. We neglect
optical attenuation because of the low absorption found in telecom
fiber (0.2 dB/km typically) such that propagation in several tens of
kilometers can be studied without affecting the quality of the recorded
pattern. We also neglect the effects of third order dispersion β3 as the
ratio β3/β2 is usually small for the fiber under investigation. Note that
the km-long fiber could be replaced by a linearly chirped fiber grating
as a dispersive element [29].

Using Eq. (4), the evolution of the intensity profile of the pair of
pulse (Fig. 2a) as a function the propagation distance D is displayed on
Fig. 2(b1). The pulses temporally expand and overlap. In the over-
lapping region, sinusoidal beating appears and the period of oscillation
increases upon propagation [see also Fig. 3(b)]. In order to visualize
this process, it is beneficial to use time-frequency representation (T-F)
or spectrogram [30,31] that can be experimentally generated in a X-
FROG device [32]. This representation is provided in Fig. 3(a), the
dispersion can be easily identified as spectral quadratic phase (i.e. a
linear spectral chirp) and leads to a temporal redistribution of the
energy along the temporal axis. The T-F plot of the pulses becomes

then tilted [31] with a slope s being approximated in the far field by
s=1/(2π D β2) [see blue dotted lines in Fig. 3(a)]. Therefore, after
propagation distance D, and at a time t, two instantaneous frequencies
f- and f+ are present in the pulse overlapping time region and can be
associated in an anomalous dispersive fiber to the leading and trailing
pulses respectively:
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We can therefore deduce a temporal oscillation with a frequency Δf
=f+-f-=ST |s|=ST/(2π D |β2|) that is constant over the overlapping
region given that the T-F plots of the pulses are parallel. We can
therefore see that this temporal period of oscillation ΛT=2πD|β2|/ST is
in agreement with the usual interfringe expression taking into account
the straightforward substitutions of λ by 2π β2 and SS by ST. After
25 km of propagation (Fig. 3(a3)), temporal oscillations with a period
of 15.7 ps can be directly recorded on high speed sampling oscillo-
scopes with a currently available bandwidth of 70 GHz. Furthermore,
the optical spectrum can be easily recorded on an optical spectrum
analyser (Fig. 3c). Note that upon further propagation, the temporal
pattern will become a scaled replica of the optical spectrum [29,31,33].
The present results of temporal and intensity spectral profiles do not
depend on the regime of propagation in the fiber (normal or anom-
alous).

From experimental perspectives, it can also be interesting to
evaluate the case where the initial pulses obtained after amplitude
modulation are not exactly rectangular but present a smoother raise
and fall edges. In Fig. 2(b2), we have considered initial Fourier
transform Gaussian pulses with the same full width at half maximum
(fwhm) duration as the previous rectangular waveforms. In this case,
temporal ripples that appear between 5 and 10 km for the rectangular

Fig. 3. Temporal Young's double slits: pulse characteristics viewed at different stages of propagation in the dispersive fiber: just after the modulation by the temporal double slits,
after 12.5 km of propagation and after 25 km of propagation (subplots 1,2 and 3 respectively). (a) Time-Frequency representation of the signal. Dashed blue lines represent the
predictions of Eq. (4). (b) Temporal intensity profile. (c) Optical spectrum. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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case are not present as there are related to the sidelobes of the sinc
spectrum of the rectangular case that translate, through dispersion,
into temporal pedestals. We also note that whereas the rectangular
waveform slightly compresses in the early stage of propagation, the

Gaussian pulse undergoes a uniform temporal broadening conserving
its shape. The evolution of its width can therefore be analytically
calculated and evolves according to a (1+|β2|z/T0

2)1/2 law where T0 is
the 1/e half duration of the pulse intensity profile [28].

Let us also mention that, compared to spatial diffraction, fiber
optics offers an additional degree of freedom: the dispersion can indeed
be tuned and propagation in normal dispersion regime can erase the
pattern resulting from propagation in the anomalous regime so that the
initial waveform can be fully recovered. This forms the basis of optical
dispersion-managed high speed transmissions [28]. From the practical
point of view, variants of this temporal Young's double-slit experiment
has found applications in microscopy with the use of spectral focusing
of two coherent pulses that are frequency shifted to enable the
exploration of well-defined frequencies [34]. In the presence of Kerr
media, interference patterns resulting from two sources have also been
investigated in the spatial domain [35], similarly to studies carried out
in the temporal domain with interference and formation of shock waves
[36,37].

3. Fresnel's biprism

Let us now investigate the temporal equivalent of a Fresnel's
biprism. The Fresnel's biprism consists of two thin prisms joint at
their bases to form an isosceles triangle. A single wavefront impinges
on both prisms; the left portion of the wavefront is refracted right while
the right segment is refracted left [see Fig. 1(a2)]. In the region of
superposition, interference occurs since two virtual sources overlap.
The Fresnel's biprism can be modeled by use of the following
transmission function:
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where AS is the length of the basis of the biprism, HS its height, and n
the optical index of the material. tri is the triangular function with a
fwhm of AS/2. The temporal equivalent of this transmission function is
a combination of phase and amplitude modulation [see Fig. 4(a)]:
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We consider here a large pulse (AT=200 ps) in order to limit the
impact of temporal broadening upon propagation and a maximum
phase amplitude HT=10 π. The triangular phase can be generated
either through RF waveform generators and phase modulators or
photonic generators combined with cross-phase modulation experi-
enced during propagation in a highly nonlinear fiber [38].

Results of the dispersive propagation of the wave are provided in
Fig. 4(b1) where we observe the resulting temporal interference
pattern. Contrary to the Young's case, interferences are here localized
(considering the propagation distance D). Spectrogram of Fig. 5 helps
to understand the impact of the temporal biprism. The linear temporal
phase modulation creates a constant frequency shift on each half of the
pulse: the first half of the pulse is shifted towards f-=-HT/π AT whereas
the other half is shifted towards the opposite frequency f+=HT/πAT.
Such property has already been exploited in ultrafast pulse processing
for pulse doubling operation or frequency translation of a pulse [38–
40]. Each part then travels with opposite relative speeds, the leading
part travelling at a lower speed than the trailing one. This leads to a
temporal overlap and the sinusoidal beating of the intensity profile

Fig. 4. (a) Temporal Fresnel's biprism: Transmission function of the intensity and
phase modulators (panels a1 and a2 respectively). The direct temporal equivalent of the
spatial Fresnel biprism is a quasi-rectangular long pulses modulated by triangular phase
profile (solid black lines). It is compared here with a Gaussian long pulse (dash grey line)
still with a triangular phase and with two transform-limited pulses (dotted grey lines)
with different central frequencies and with a flat phase across the two pulses. (b)
Longitudinal evolution of the temporal intensity profile in the case of a rectangular pulse
with triangular phase modulation (b1), Gaussian profile with triangular phase modula-
tion (b2) or two transform limited pulses with different central frequencies (b3). The
blue dashed lines in panel (b1) and (b3) represent the analytical prediction for zL and for
the trajectory of the center of the Gaussian pulses respectively. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this
article.)
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[Fig. 5(b2)]. The beating frequency is here directly given by Δf =2HT/π
AT and contrary to temporal Young's slit case, this value does not
depend on the propagation distance D. Finally, when propagation
length exceeds zL=AT

2/(4|β2| HT), the f- and f+ structures temporally
separate and the fringes disappear. Let us note here that contrary to the
temporal Young's slit case, sign of dispersion here matters and that for
the present phase modulation, an anomalous dispersive fiber is
mandatory. A dispersion managed system or a dispersion oscillating
fiber may also provide the opportunity to observe those localized
interference patterns periodically along propagation distance.

Instead of a rectangular intensity profile, it can also be interesting
to test another pulse shape such as a Gaussian waveform with a fwhm
temporal duration of 100 ps [see Fig. 4(a1), dashed grey line]. Results
are plotted in Fig. 4(b2) and show similar trends as observed for the
rectangular time modulation. Another interesting configuration that is
experimentally accessible with fibers optics is to replace the linear
phase modulation that shifts the instantaneous frequency of the pulses
by the use of two coherent pulses with different operating wavelengths
(two WDM channels spaced by δf=100 GHz with pulses with fwhm
duration of 50 ps have been used) that are time interleaved [see
Fig. 4(a1), dotted line; in our example, the initial temporal spacing is
δT0=137.5 ps]. Such pulses can be obtained from the frequency
filtering of a continuum spectrum generated in a normally dispersive
fiber [41] or in microresonators [42]. Results are displayed in
Fig. 4(b3): a similar pattern with a localized (considering the propaga-
tion distance D) zone of interferences, where the value of the inter-
fringe, is fixed upon propagation is observed. The temporal spacing
between the two pulses evolves linearly according to δT(z)
=|δT0+2πβ2δf|. This last example grasps the physics at work and
highlights the striking analogy between the temporal interferences

between to pulses shifted in frequency (temporal Fresnel biprism) and
the spatial interferences between two beams shifted in the k-space
(spatial Fresnel biprism).

As the continuum sliced WDM sources can handle several tens of
channels [42,43], it also opens the possibility of observe the controlled
interference pattern of more than 2 sources. Similarly to the spatial
domain where interferences from two directions have been studied to
understand the nonlinear dynamics occurring in Kerr media [44], the
temporal pattern created during the collision of structures can be
significantly reshaped by self-phase modulation [41,45].

4. Billet's bilens

We finally investigate the possibility to extend Billet's bilens scheme
to temporal imaging. A Billet's bilens is a lens of aperture AS and focal
distance fS that is split into two parts that are spatially offset by a
quantity SS. The transmission function that can be associated to this
device is therefore the following:
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In the temporal domain, the impact of a spatial lens is reproduced
by a parabolic phase modulation [14] so that we can use the phase and
amplitude modulation plotted in Fig. 6(a) to mimic a Billet's bilens
with a temporal aperture of AT=200 ps, a delay ST=50 ps between the
two parts of the lens and an amplitude HT=10π rad of the phase
modulation:

Fig. 5. Temporal Fresnel biprism: Pulse characteristics taken at different stage of propagation within the dispersive fiber: after the modulation of the Fresnel's temporal biprism,
after 12.5 km of propagation and after 25 km of propagation (subplots 1, 2 and 3 respectively) (a) Time-Frequency representation of the signal. The blue dashed line represents the
frequencies f+ and f-. (b) Temporal intensity profile. (c) Optical spectrum. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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The parabolic phase modulation can be imprinted by using an
arbitrary waveform generator or by use of cross-phase modulation
induced by parabolic shaped pulses [46]. Results of the dispersive
propagation are plotted on Fig. 6(b1) where we can observe the non-

localized fringes typical of the Billet's interferences. Corresponding
spectrograms are plotted in Fig. 7 and differ from the Fresnel's biprism
case. After the initial modulation stage, a leading structure is linearly
chirped with a chirp slope of sin=HT/4πAT

2 and contains only
negative instantaneous frequencies. The central frequency of this part
is shifted by -HTST /4π AT

2. On the contrary, the trailing structure
exhibit only positive instantaneous frequencies. Under the action of
anomalous dispersion, the slope of the chirp evolves upon propagation.
In a first stage of propagation, the structures temporally compress
(they are temporally focused) whereas their temporal centers also
evolve towards the same direction with opposite relative velocities.
Then the structures broaden and temporally separate. As the rate of
temporal broadening is higher than the evolution of their temporal
separation, an interference pattern is maintained. Similarly to the
Young's double slit case, the period of the oscillations of the temporal
profile depends on the propagation distance and linearly increases.

Once again, it can be interesting to see if similar dynamics can be
reproduced when considering a pair of Gaussian pulses with the same
central wavelength but delayed by 125 ps [see Fig. 6(a1) dashed line].
The same parabolic phase is applied here. We note in Fig. 6(b2) that
the same interference pattern as found in the rectangular case is
reproduced. What can also be of experimental interest is to evaluate the
possibility of replacing the parabolic phase modulation by a sinusoidal
one. Indeed, a sinusoidal modulation is much easier to achieve as it
requires less optoelectronics bandwidth and can be delivered by a
widely available electric clock. As a sinusoid can be approximated in the
vicinity of its maximum by a parabolic fit, this explains why sinusoidal
phase modulation has often been involved in temporal lenses
[18,19,27]. Results obtained with Gaussian pulses used in combination
with sinusoidal phase are summarized in Fig. 6(b3) and stress that,
despite the temporal aberrations that a non-perfect parabolic modula-
tion may induce, a similar interference pattern is observed. We can also
note here that the amplitude of the required phase modulation is
significantly reduced.

5. Conclusions

Taking advantage of the analogy that can be drawn between spatial
and temporal propagations, we have explored temporal equivalent of
the Young's double slits, Fresnel's biprism and Billet's bilens that are
three well-known two-wave interference cases. Using devices and
technologies from optical telecommunications, we have simulated
these experiments using as a key ingredient the dispersive propagation
experienced in kilometer long standard optical fibers. Taking advantage
of time-frequency representations, we have provided a clear interpreta-
tion of the temporal interference processes at work and we have
numerically demonstrated temporal interferences in Young, Fresnel
and Billet cases. For the sake of simplicity, we have based our
discussion on incident plane waves, but the proposed approach could
be readily extended to point sources by considering chirped input
conditions. We have also checked numerically that other alternative
such as Meslin experimental scheme made of longitudinally offset half-
lenses [7,47] could be reproduced in the temporal domain.

The progress of arbitrary waveform generators associated with the
increasing bandwidth of the optoelectronics detection enable the
synthesis of phase and intensity waveforms with a higher complexity
in a reconfigurable manner, similarly to the spatial light modulators for
the control of diffraction pattern. The association of these novel
optoelectronic modulation tools together with optical fibers appears
as a flexible and viable approach to extend to the temporal domain the
abundant literature dealing with the applications of two-wave inter-
ferences.

Fig. 6. Temporal Billet's bilens: (a) Transmission function of the intensity and phase
modulators (panels a1 and a2 respectively). The case of two quasi-rectangular pulses
modulated by quadratic phase (solid black lines) is compared to the use of two Gaussian
pulses (dash grey line) with a parabolic phase modulation and to the use of two Gaussian
pulses having a sinusoidal phase modulation (dotted grey lines). (b) Longitudinal
evolution of the temporal intensity profile in the case of two rectangular pulses with
parabolic phase modulation (b1), two Gaussian profiles with parabolic phase modula-
tion (b2) or two Gaussian profiles with a sinusoidal phase modulation having a peak-to-
peak amplitude of 8 rad and a frequency of 10 GHz (b3).
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