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We generalize the notion of the Franhoufer diffraction from a single slit and a circular aperture to the case
of partially temporal coherent and quasimonochromatic light. The problem is studied analytically and the
effect of coherence length on the diffraction pattern is investigated. In this case the far-field distribution of the
irradiance depends on the newly introduced parameter 5 “decoherence parameter” which governs the deviation
of the diffraction pattern from the usual one. The n-dependent corrections due to temporal decoherency on the

irradiance distribution in the far field is obtained. Numerical study of the effect of decoherence parameter on
the Far-field diffraction pattern is performed. In the case of a single slit, there is no noticeable deviation in the
central peak, but in the higher orders of diffraction, deviation become apparent. For circular apertures, as long
asn > 1, the beam decoherency affects the distribution profile and the first order diffraction pattern decreases
and by increasing the decoherence parameter, the first order of diffraction pattern gradually disappears.

1. Introduction

Diffraction of partial spatial coherent illumination has been studied
in several works. Parrent and Skinner discussed the one-dimensional
problem in some detail [1]. They assumed that the quasi-monochromatic
illumination across the diffracting aperture was of uniform intensity
and they obtained the degree of coherency as a function of ratio of
vector positions on the aperture to the coherence interval. Their model
takes a general solution for the far-field intensity. Bakos and Kantor used
the Young-Rubinovicz theory of diffraction, in which diffraction arises
from interference of the incident wave with secondary waves emerging
from the diffracting edge to obtain the resultant intensity distribution in
the diffraction pattern [2]. They studied the one-dimensional problem
both experimentally and theoretically. Cathey discussed diffraction by
an odd slit and exponential correlation function was assumed in the
integration [3]. Thompson experiments showed that previous models
should be refined [4]. Shore, Thompson and Whitney presented other
correlation forms for degree of coherence that satisfied experiments [3].
Extensive theoretical and numerical efforts have been made by Shore [5]
and Asakura [6], to develop Fraunhofer diffraction with partial spatial
coherent light.

On the other hand, multiple-beam interference pattern under partial
spatial coherent illumination has been studied in several works. Both
one- and two-dimensional regular and irregular arrays of apertures are
treated for interference with partial coherent light by Thompson [7]. In-
vestigation of three- and four-beam interference under partial coherent
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illumination from theoretical and experimental points of views has been
carried out by Nawata and Suzuki [8-10]. The general formula for the
intensity distribution in the multiple-beam interference pattern under
the partial spatial coherent illumination is derived in [11].

Gbur et al. studied the interference of three point sources which
are mutually partial coherent and they shown that complete destructive
interference can occur even if the fields coming out from the pinholes
are not fully coherent with respect to each other [12]. Experimental
verification of this model was made by Ambrosini et al. [13].

Optical models of slit diffraction experiments have been developed
to particles like electrons and neutrons [14,15] and also X-ray experi-
ments [16,17] to explain the behavior of the empirical data.

In contrast to the diffraction of partial spatial case, the problem of
diffraction of partial temporal coherence has not been widely studied in
the literature. The interaction of light with different devices may change
the time coherence, so it is interesting and also of practical importance to
study temporal coherent beam. The laser beam is almost perfect spatial
coherent at the laser output, but transferring through optoelectronic,
switcher, modulator devices and choppers change the temporal coher-
ence [18-21]. Therefore, in the situations that the temporal coherence
is important for the system performance, the effect of change of the
temporal coherence time must take into account. For instance, in optical
communications, temporal coherence properties of ultra-short pulses
are studied to select an appropriate laser structure in order to system
performance [22-25]. On the other hand, diffraction phenomena in
optical communications have a key role in communication network
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system. Advantages of diffraction devices and gratings make them good
candidates for applications in many cases in optical communications
including, complex filtering, pulse shaping, processing and precise
chromatic dispersion compensation [26-28]. So, the study of effects
of the temporal coherence on diffraction phenomena is unavoidable in
optical communications.

In this paper we study Fraunhofer diffraction from a single slit
illuminated by a partial temporal coherent beam which is perfect spatial
coherent over all the points on the slit. This assumption is satisfactory for
an enough thin slit and also for laser beams. A general formula is derived
to describe the intensity distribution of the Fresnel diffraction pattern
of a slit aperture illuminated with partial temporal coherent light.

2. Theoretical analysis

In Fig. 1, Interference at point P due to three waves from the source
traveling along different paths is shown. The electric field at point P
despite a constant factor ¢ could be written as follows:

2
E (1) = E\(0+E,(t+1)+E3(t14217) = Eq e + Egpe 0+ 4 E 7420
@

where 7 is the constant time difference (time dilation) between two
neighboring paths. The irradiance at P is given by:

I,= (Epf;) =((E, + E, + E3).(E{ + E; + E)
=(|E\|* +|E|* + |Es|* + (E\.E; + E\ E% + E,.E; + E.E} ©))
+EE 4 EE))
which can be written as:
I, =1, + I + I + 2[Re(E, E}) + Re(E, E) + Re(E, E})]
= I, + I + I + 2y/T LRe(y,(0)) + 2/ T, I5Re(3(7))
+ 24/T, I;Re(y,5(27))

where the angle brackets represent time averages. If I} = I, = I3 =
|E0|2 = I,, where Is is the self-product intensity of each individual
segment, then the normalized correlation function (the degree of co-
herence) y; () is:

3)

(EME*(t + 1))
712(7) = I—
(E(t+ 7)E*(t + 27))
723(7) = — 7
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Considering the electric field with harmonic frequency » and the phase
(1), E(t) = Eje"@=#") the product of the fields would be:

E(t + 1)E*(1 + 27) = EJe" ¢lo(+0)0(120)] (5)
so that
Y12(7) = eiw(7)<ei[¢(1)—¢(t+r)]>
72’;(1') — eiwr<ei[w(t+‘r)ftp(t+2r)]>. (6)
By the same way:
71327) = eiw(ZT)<ei[¢(f)f<ﬂ(r+27)]>. @
After some calculations [29,30], one could write:
712(7) = 123(0) = (1 = 2)e®
7o
713(22) = (1 = D)o, ®
To
where 7, is the coherence time. So the Eq. (3), can be written as:
I, =31, +2I[2(1 - i)cos(a)r) +(1 - 2—T)cos(Zan')] 9
To 7o
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Fig. 1. Interference of three waves from a source.

where I, = \/I|1, = \/I, I3 = /I 1; is the cross-product intensity due
to the contribution of two mutual intensities.

The first term in the bracket is due to the interference of the waves
from two pairs paths (1, 2) and (2, 3), for which the relative time dilation
is 7. The second term refers to the interference of the waves from two
paths (1, 3) for which the relative time dilation is 2z.

For N paths with the same irradiances I(= I, = I,) and constant
relative time dilation r between adjacent paths, we can generalize
Eq. (9) as follows (see Appendix):

Ip=NI +2I[(N -1 - i)cos(cor) + (N -2)1 - 2—T)cos(2cor)
To To

+ (N -3)(1 - 3;—T)cos(3cof) + (10)
0

u)cc>S((N - D(w7))].
To

+ (N-(N-1)1-

This equation shows that for different N paths with consecutive time
dilation 7, there are N — 1 contribution terms with time dilation 7, N —2
contribution terms with time dilation 2z and finally one contribution
terms with time dilation (N — 1)r which comes from the interference
between the first and the last paths.
Eq. (10) may be rewritten as:
N-1
Ip=NI +21, 3 (N = j)1-
j=1

jl—Tl) cos(jor).
)

an
As mentioned earlier, 7 is the relative time dilation which can be both
negative or positive but we are dealing with the absolute value of it,
so we have used |z| in Eq. (11). For 7, — oo, it gives the diffraction
distribution for the perfect coherence case [29]:
N-1
Ip=NI, +2I. Z (N = j)cos(jowr).
j=1

(12)

This result is appropriate for discrete wave sources. Now we consider
the single slit as a continuous series of spot sources. We suppose the slit
width is » which contains N’ spot sources and is divided into N equal
segments as shown in Fig. 2. We define E; as the amplitude per unit
width of slit at unit distance away which is given by [29,30]:

E, = % Jim (5N 13)
where ¢ is the electric field due to each spot source. This definition
avoids the irradiation of infinite number of sources to become divergent.
The electric field of jth segment with width Ay; at distance r is
# limy/_, (69 N")4y;. In this case the second term of Eq. (11) changes

to the following form:

N-1
. . 1 2 . Jlzl o
2 lim lim le G €N (N = )1 = ) cos(jor). 14
Using Eq. (13) it can be rewritten as;
& E jlrl
2 lim ) (=£4y)*(N = j)(1 = =) cos(jor). (15)
N—o0 il rj k)
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Fig. 2. Schematically description of a single slit divided to N’ spot sources and N segments.

By using |z| = %

it can be transformed into the following form:
N-1

E,
2 lim Z(—Ay/)zN(l
l

jb|sin | jwbsin 6
b )(1 - ) cos( ).
ToN¢ Nc

(16)
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In the limit of N — oo, we have, LA ij, i s

=V %

N-1 : :
Y y; |sin @] wy; sin 6
2 J J Y
2 11_13(1)o E (—) ijij —yj (1- > )1 - e ) cos( .

Therefore Eq. (15) takes the form as follows:
E r= sin 0 w sin O
2b<—L)2/ (1= - AL/ WL
r y=0 7H¢ c

In Eq. (11), the first term is the summation of N self-product intensities
of different segments at the point P, so it is useful to define the intensity
per unit width of slit at unit distance away:

17

1 .. .
I, = 3 Nl}inm(tON’). (18)

Here, i, is the intensity due to each spot source. The intensity of jth
segment with width 4y, at distance r is I; = # limy,_, o (ig N")4y;. So
the first term of Eq. (11) reads as:

N

Employing Egs. (17) and (19), the total intensity distribution from a
single-slit is as follows:

y=b

1
v) = (—) dy=b(=5). a9
=0 r

1p0) = b(ZE )2+2b(

y=b ;
/ (=21 - 250 ) cos 2204y (20)
y=0

where the dimensionless parameter  which we name it “Slit decoher-
ence parameter” is defined as:

n= lﬂ and /) = ¢ty is the length of finite wave train.
0

Eq. (20) may be written as:

1p(0) = 17°(6) + AI(6) 21

where

1= = ( Ly 4 opEL -y / (1—§)cos<m)dy (22)
y=0 ¢

is the single-slit diffraction intensity of perfect coherent beam and

AL0) = )y

ya zm 6 (23)

(—)2/ ylsin @] (1 — 2) cos(
y=0 b

is the correction on single-slit intensity distribution due to temporal
decoherence diffraction. In the case of perfect coherence ( — 0)
the correction (23) vanishes and Eq. (20) gives the same results as
the Fraunhofer diffraction theory which indicates that the far-field
diffraction form a single slit is given by I(f) = (S'"ﬂ )2 where f =

wbsind
—_ [30].
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The intensity distribution as given by Eq. (20) is plotted in Egs. (3)-
(5) for different values of 5. In our numerical study the wavelength of
the partial coherent beam is 632.8 nm (He-Ne laser beam). The slit
widths in Figs. 3-5 are 5, 10 and 20 microns, respectively. As it is
observed, by increasing the slit width, the diffraction pattern is shrinking
as expected from the usual Fraunhofer diffraction theory. The deviation
of the pattern from the case of perfect coherence is negligible for small
values of . The central peak (zeroth order of diffraction) is almost the
same for different values of # which means that the zeroth order of
diffraction is not highly sensitive to temporal coherence. But obvious
difference is seen between perfect coherence and temporal coherence
cases in the first and second order of diffractions. For n =~ 1 clear
destructive interference in the diffraction pattern appears which has
been also observed in the case of partial spatial decoherency [12,13]. By
increasing 7, reversed interference pattern occurs and the higher orders
of diffraction shift to higher angles or in other words, the diffraction
pattern is broadened.

Here, we extend the theory to the case of a circular aperture which is
of great practical importance since most optical elements have circular
shape. Consider a circular aperture with the radius r, is placed at the
distance z from the waist of a Gaussian laser beam. The electric field of
a Gaussian beam could be written as [31]:

1
w?(z) 2R(Z)

E, Yo exp{—i(kz—arctan(z/z))}. exp{—r*( )} (24)

w(z)
where r , w, and k are the radial coordinate, the beam waist radius, and
kw?

the wave number, respectively Also, w(z) = wyV/ 1+ (#/2)?, zg = TO

E(z,r)=

and R(z) = z(1 + 0) are the beam radius at z, the diffraction length of
the beam and the radius of the wave front at z, respectively.

The diffraction pattern in the far-field (at the distance D), in the case
of temporal coherence beam is given by:

l r=rg,

r|sin 0|
i’D r

E(p) = Jo(kOr)E(r, z)(1 — n)2xrdr (25)

a
where 7 is the “aperture decoherence parameter” and is defined as .
Also, Jy(x) and p are the zero-order Bessel function of the first kind ar(l)d
the radial coordinate in the far-field observation plane, respectively. It is
worth mentioning that in the limit  — 0, Eq. (25) reduces to the formula
for the Franhoufer diffraction pattern from a circular aperture [32]. In
the paraxial approximation, the distance from the aperture surface to
the far-field observation plane (D) is related to the radial coordinate
and the diffraction angle by p = D6.

In order to do numerical simulation, we consider a He—Ne laser beam
(4 = 632.8 nm) with the beam waist radius of 1 mm and the output power
of 5mW incident to a circular aperture with the radius of r, = 2 pm
placed at z=0.1 cm. The output beam is became temporally decoherent
using a modulator or chopper with any arbitrary coherence time 7.
Fig. 6 shows the intensity versus the radial coordinate on the far-field
screen located at 3m far from the aperture. Curves have been plotted for
different values of 7, and 5. As shown, for n < 1(r, < I;), no deviation
is observed in comparison with the perfect coherency (3 — 0). But, for
n > 1, the beam decoherence affects the distribution profile and the first
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Intensity distribution versus diffraction angle for b = 5 micron and for different values of #: (a) n = 0.0005, 0.005, 0.05, 0.1, 0.5,1 (b) 7 =5 (c) n=10.
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Fig. 4. Intensity distribution versus diffraction angle for b = 10 micron: (a) n = 0.001, 0.01, 0.1, 0.2, 1 (b) n = 10 (c) #=20.
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Fig. 5. Intensity distribution versus diffraction angle for » = 20 micron and for different values of »: (a) n = 0.002, 0.02, 0.2, 2, 4 (b) n = 20 (c) #=200.

order diffraction patterns decreases. In Fig. 7 the diffraction patterns are
simulated. As it is observed, by increasing the decoherence parameter,
the first order of diffraction patterns gradually disappears.

3. Conclusion

Temporal coherence is one of the most important issues in modern
optics. In contrast to the partial spatial case, the problem of diffraction
of partial temporal coherence has not been widely studied in the
literature. There are several reasons to study temporal coherent beam,
because interaction with different devices may change the perfect time
coherence. For instance, it is well-known that in modern laser sciences
and optical communications, the laser beam is almost perfect spatial
coherent at the laser output, but transferring through optoelectronic
and modulator devices change temporal coherency. In this paper we
have studied the diffraction of a partial temporal coherent beam from
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a single-slit. A general formula has been derived for the intensity dis-
tribution of the Fresnel diffraction pattern of a slit aperture illuminated
with partial temporal coherent light. The corrections due to temporal
coherency on the irradiance distribution in the far field are obtained.
We introduced the “slit decoherence parameter” 5 which governs the
deviation of diffraction pattern from the usual one (perfect coherent
beam). Numerical study of the effect of the slit decoherence parameter
on the Far-field diffraction pattern is performed and the range in which
the role of parameter # is important is discussed. There is no noticeable
deviation in the central peak, but in the higher orders of diffraction,
deviation become apparent. For the case of diffraction from a circular
aperture, analytical and numerical analyses have been done and the
effect of aperture decoherence parameter was studied. It was found that
by increasing the decoherence parameter, the first order of diffraction
patterns disappears. The calculations can be generalized to optical
grating technology and X-ray diffraction measurements.
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Fig. 6. Diffraction pattern of a He-Ne Laser beam incident to a circular aperture. The
below curve is the magnification on the first order diffraction. a- The case of complete
temporal coherency n — 0. b- The case with [, = 10 cm (3 = 2 x 107). No difference
is appeared in comparison with the case (a) c- The case with /; = 2 pm (y = 1). First
order diffraction begins to disappear. d- The case with /, = 1 pm (y = 2). The first order
diffraction is disappeared.

Appendix

We use mathematical induction to prove Eq. (11). We assume that
Eq. (11) is valid for N spot sources, then we prove that it holds for N +1.
The irradiance for N + 1 paths is:

N
Ing =(N+DI+21 Z(N +1-7)1-
j=1

J—T) cos(jwr)
To

We separate the contribution of N paths, so:

N-1 .
Iny =4 NI+21 Y (N - )1 - £ cos(joor)

j=1 0

N .
+ 9 1+21 Y (1 - E)cos(jar)

=R
The over index in the second term of the first bracket has been changed
from N to N — 1 because its contribution vanishes for j = N.

The first bracket is the irradiance of the N paths while the second is
the contribution of (N + 1)th path. The contribution of the (N + 1)th
path include two terms. The first is the direct irradiance of the (N + 1)th
path and the second is the due to the interference of (N + 1)th path with
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a . .
c I d l

Fig. 7. Simulation of diffraction pattern of a He-Ne Laser beam incident to a circular
aperture: a- Complete temporal coherency  — 0. b- 4 = 2x10~°. No difference is appeared

in comparison with the case (a) c- n = 1. The light halo (first order diffraction) begins to
disappear. d- # = 2. The light halo (first order diffraction) is disappeared.

all other individual paths. Thus one could write:
Ing =In+1'

where I’ is the total contribution of the (N + 1)th path. This mathemati-
cally deduced equation is completely correct and expected from physical
point of view, so Eq. (11) is proved using mathematical induction.
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