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Nonlinear Bessel beams
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Abstract

The effect of the Kerr nonlinearity on linear non-diffractive Bessel beams is investigated analytically and numerically

using the nonlinear Schr€oodinger equation. The nonlinearity is shown to primarily affect the central parts of the Bessel

beam, giving rise to radial compression or decompression depending on whether the nonlinearity is focusing or defo-

cusing, respectively. The dynamical properties of Gaussian-truncated Bessel beams are also analysed in the presence of a

Kerr nonlinearity. It is found that although a condition for width balance in the root-mean-square sense exists, the beam

profile becomes strongly deformed during propagation and may exhibit the phenomena of global and partial collapse.
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1. Introduction

Diffractive spreading of waves is a classical
phenomenon in wave dynamics and an inherent

feature of beam propagation. Much attention has

been devoted to the possibility of counteracting

the dispersive spreading by focusing effects due to

medium nonlinearities, e.g. the Kerr effect [1].

However, it has also been pointed out, [2], that

non-diffracting beams are possible also in linear

media. In particular, the Helmholz equation that
governs the linear diffractive dynamics of a wave
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beam allows classes of diffraction-free solutions. In

addition to the plane wave solutions, the two-di-

mensional counterparts, the cylindrically symmet-
ric Bessel solutions, also propagate with preserved

form, while also allowing for a concentrated beam

profile. The drawback from an application point

of view is the fact that these beams have infinite

energy, and consequently cannot be realized

physically. Various ways to circumvent this prob-

lem have been suggested, the most obvious being

to truncate the Bessel beam at some radius, e.g. by
a Gaussian truncation, forming the so-called Bes-

sel–Gauss beams [3]. While such a truncation

clearly reintroduces diffraction, the beam broad-

ening could be made small if the propagation

length is kept smaller than the corresponding dif-

fraction length of the Bessel–Gauss beam. In
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particular, since the Bessel beam diffracts sequen-

tially, starting with the outer lobes [4], the central

part of the beam remains intact for a certain dis-

tance of propagation.

Recently, there has been growing interest in

nonlinear effects in connection with Bessel and
Bessel–Gauss beams [5–8]. Of special interest for

the present investigation is the attention given to

media with an intensity dependent refractive index,

i.e., Kerr media, see e.g. [7]. The work carried out

in [7] considers the limit of weak nonlinearity,

which makes it possible to use a perturbation ap-

proach involving an expansion around the lowest

order linear (stationary) Bessel solution for solving
the evolution equation, being the nonlinear

Schr€oodinger equation.
In the present paper, we investigate in more de-

tail the nonlinear generalisation of the linear dif-

fraction-less Bessel beam solutions as well as the

nonlinear dynamics of Bessel–Gauss beams. Sta-

tionary solutions in two dimensions are determined

by the Bessel equation modified by a nonlinear
term, i.e., the radially symmetric nonlinear

Schr€oodinger equation. The modified Bessel solu-

tions, the ‘‘nonlinear Bessel beams’’, are studied

using approximate analytical and numerical meth-

ods. The results show that the nonlinearity pri-

marily affects the central high intensity parts of the

beam profile, which become radially compressed or

decompressed depending on whether the nonlin-
earity is focusing or defocusing, respectively. The

beam profile for large radii remains a Bessel func-

tion with a phase shift being the only remaining

effect of the nonlinearity. However, for the defo-

cusing nonlinearity an amplitude threshold exists,

above which no solutions decaying to zero exist.

The dynamical properties of Gaussian-trun-

cated Bessel beams in the presence of a Kerr
nonlinearity are also studied. An exact analytical

solution was previously found for the linear dy-

namics of the Bessel–Gauss beams [3]. Based on

the virial theorem, which gives an exact analytical

description of the variation of the beam width in

the root-mean-square (RMS) sense, important in-

formation about the effect of the nonlinearity on

the beam dynamics can be obtained. In particular,
it is found that a focusing nonlinearity tends to

cause an evolution stage where the central parts of
the Bessel beams are initially compressed. De-

pending on the strength of the nonlinearity, dif-

ferent scenarios are possible, e.g. the subsequent

evolution may involve an essentially diffraction-

dominated behaviour, but for increasing nonlin-

earity, two forms of collapse may appear. Either a
part of the beam collapses, while the RMS width

of the beam still increases, or above a certain

threshold, the RMS width goes to zero in a finite

distance. Numerical simulations of the dynamics

illustrate the different scenarios.
2. The nonlinear Schr€oodinger equation

The propagation of an optical wave in a non-

linear Kerr medium is described by the nonlinear

Schr€oodinger equation. This implies that the slowly

varying wave envelope, wðz; rÞ, of a cylindrically

symmetric beam satisfies the following equation

i
ow
oz

¼ 1

2k0

o2w
or2

�
þ 1

r
ow
or

�
þ jjwj2w; ð1Þ

where z is the distance of propagation, k0 is the

wave number in vacuum, and j is the nonlinear
parameter. Additional physical effects, e.g. atten-

uation and gain, can be modelled by using com-

plex coefficients in Eq. (1). The obtained complex

equation, which in one dimension has analytical

soliton solutions [9], is the cylindrical generalisa-

tion of the Pereira–Stenflo equation. It has been

investigated using a variational approach [10], but

further work is needed to fully describe the com-
plex case. In the present work, the coefficients are

assumed to be real. It is convenient to introduce

the normalisation ~rr ¼ r=a0, where a0 is a charac-

teristic width of the beam, and ~zz ¼ z=LD, where

LD � 2k0a20 is the Rayleigh length. Eq. (1) then

takes the form

i
ow
o~zz

¼ o2w
o~rr2

þ 1

~rr
ow
o~rr

þ ~jjjwj2w; ð2Þ

where ~jj ¼ LDj. For simplicity we will suppress the

tilde in the subsequent expressions.

We begin the analysis by looking for stationary

solutions of Eq. (2). For this purpose we write

w ¼ wðz; rÞ ¼ AðrÞeidz, which leads to the eigen-
value equation
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d2A
dr2

þ 1

r
dA
dr

þ dAþ jA3 ¼ 0: ð3Þ

This equation is to be solved subject to the

boundary conditions that the solution should be

finite when r ¼ 0 and go to zero as r ! 1. The
lowest order solution in the physical situation

when the nonlinearity balances the diffraction, i.e.,

the focusing case with j > 0, corresponds to the so

called Townes soliton [11], which has essentially

the same properties and sech-shaped form as the

one-dimensional soliton solution [12]. In particu-

lar, this solution only exists for negative eigen-

values, which are uniquely related to the maximum
amplitude.

The Bessel beams are the solutions of the lin-

ear Schr€oodinger equation (j ¼ 0) and are given by

AðrÞ ¼ A0J0ð
ffiffiffi
d

p
rÞ. Clearly, well-behaved solutions

exist only for positive eigenvalues d. In contrast to

the nonlinear case, the linear eigenvalue problem

has a continuous set of (positive) eigenvalues,

which are independent of the amplitude of the
beam profile. The first task of the present analysis

is to analyse the nonlinear Bessel beams, being the

solutions of Eq. (3) for positive d and j 6¼ 0. We

note that by introducing

�rr ¼
ffiffiffiffiffiffi
jdj

p
r; �AA ¼

ffiffiffiffiffiffiffiffiffiffiffi
jj=dj

p
A; ð4Þ

only the signs of d and j remain in Eq. (3). Thus,

without loss of generality, it will be assumed that
d ¼ 1 and j ¼ �1.
3. Nonlinear Bessel beams

In order to analyse the properties of the non-

linear Bessel beams analytically it is instructive to

start by examining the central part of the pulse,
which is determined by

ffiffiffi
d

p
r � 1. Since the initial

derivative of AðrÞ must be zero, we have the ap-

proximation AðrÞ ¼ A0 þOðr2Þ, which implies that

to second order in r, Eq. (3) can be approximated

by the linear equation

d2A
dr2

þ 1

r
dA
dr

þ ðd þ jA2
0ÞA ¼ 0 ð5Þ

with the corresponding solution

A ¼ A0J0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d þ jA2

0

q
rÞ: ð6Þ
This solution is valid for small r only, but never-

theless gives important information about the

nonlinear modifications of the Bessel beam. In the

focusing case (j > 0), the main lobe tends to be

compressed and we expect that the amplitude of
the nonlinear Bessel beam will oscillate more

rapidly than the linear Bessel beam. On the other

hand, in the defocusing case (j < 0), the main lobe

should become wider and the nonlinear solution

should oscillate slower than the linear one. In

particular, if the amplitude is chosen to fulfil

d þ jA2
0 < 0; ð7Þ

the expression under the square root will be neg-

ative. This corresponds to the modified Bessel

function, which is growing with r. Thus the pres-

ence of a defocusing nonlinearity can qualitatively
change the behaviour of the solution.

It is clear that if the second derivative of A is

positive initially, it will remain positive. This can

be seen by rewriting the equation as

d2A
dr2

þ 1

r
dA
dr

þ deffA ¼ 0; ð8Þ

where deff � d þ jA2. If deff is negative at r ¼ 0, the

solution will be growing for small r and deff will be
further decreased. This increases the derivative of

the solution, and implies that a sufficiently strong

defocusing nonlinear term will give rise to a

monotonically growing solution, which is not

compatible with the condition at infinity.

A more accurate description of the main lobe of

the solution can be obtained using variational

analysis and Ritz optimisation [12]. When using
variational analysis, it is important to find a good

set of trial functions that gives tractable calcula-

tions while maintaining sufficient accuracy. A trial

function that should approximate the main lobe of

the nonlinear Bessel beam reasonably well is

AT ¼ A0J0 j0
r
r0

� �
; ð9Þ

where j0 is the first zero of the Bessel function.

This also has the advantage that the exact linear

result is recovered in the limit j ! 0. In the vari-

ational procedure, we assume r0 to be given and

consider A0 as a free parameter. The Lagrangian

corresponding to Eq. (3) is



Fig. 1. Comparison of the variational results (solid lines) to the

numerical ones (dashed lines) for a focusing nonlinearity.

Fig. 2. Comparison of the variational results (solid lines) to the

numerical ones (dashed lines) for a defocusing nonlinearity.
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L � hLi ¼
Z r0

0

L½AT �dr; ð10Þ

where

L½A� ¼ r
2

dA
dr

� �2

� rdA2

2
� rjA4

4
: ð11Þ

Using the ansatz (9) we obtain

L ¼ 1

4
j20A

2
0J

2
1 ðj0Þ

�
� r20dA

2
0J

2
1 ðj0Þ � C1r20jA

4
0

�
; ð12Þ

where

C1 ¼
Z 1

0

J 4
0 ðj0xÞxdx � 7:62� 10�2: ð13Þ

The variation with respect to A0, i.e., oL=oA0 ¼ 0

yields

A2
0 ¼

ðj20 � r20dÞJ 2
1 ðj0Þ

2C1r20j
() r20 ¼

j20J
2
1 ðj0Þ

dJ 2
1 ðj0Þ þ 2C1jA2

0

:

ð14Þ

By setting j ¼ 0, the linear result
ffiffiffi
d

p
r0 ¼ j0 is re-

covered. If j is positive the value of r20 is decreased,
which corresponds to compression of the main
lobe. A negative j gives the opposite effect. This

result confirms the previously obtained picture of

the effects of the nonlinearity on the main lobe of

the linear Bessel solution.

The result of the variational analysis is com-

pared with numerical solutions in Figs. 1 and 2.

Different r0 values have been used, and they are

easily identified in the figures, since the varia-
tional approximation is zero when r ¼ r0. For

clarity the plotted curves have been normalised

with respect to their amplitudes at r ¼ 0. It is

seen that the Bessel ansatz represents a rather

good approximation in the focusing case, but

that the presence of the nonlinearity changes the

shape for small r, making it more peaked than

the Bessel profile. In the defocusing case, the
nonlinear solution instead has a flatter form than

the linear Bessel function Fig. 2. It is also seen

that for increasing r0, or equivalently increasing

A0, the approximation deteriorates. This is due to

the fact that in this case there exists a threshold

value for the amplitude in order to have well-

behaved solutions (7). The critical value for the

amplitude is A0 ¼ 1. The variational result also
predicts this behaviour, although, as is inferred
from Eq. (14), the critical value is found to be

slightly different

A0 >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�dJ 2

1 ðj0Þ=ð2C1jÞ
q

� 1:33: ð15Þ

Clearly, as Að0Þ approaches the threshold value,

which is unity, we expect the accuracy of the var-

iational approximation to deteriorate.

We now turn to an investigation of the overall

behaviour of the nonlinear Bessel beam profiles.
The fact that the main influence of the nonlinear
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term is a rescaling of the radial coordinate makes it

reasonable to look for an approximate solution of

the form

AðrÞ � A0J0ðf ðrÞÞ; ð16Þ
where f ðrÞ is a function of r, d, j, and A0. It is

difficult to determine f using analytical methods,

but by noticing that the linear solution can be

written as

A ¼ A0J0

Z r

0

ffiffiffi
d

p
dr0

� �
; ð17Þ

and by comparing with Eq. (5) it seems reasonable

that a good approximation should be obtained by

the implicit expression

A ¼ A0J0

Z r

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d þ jA2ðr0Þ

p
dr0

� �
: ð18Þ

Although this is, in fact, an integral equation for

AðrÞ, it nevertheless provides a very simple formula

for finding A numerically. The corresponding ap-

proximate solution is compared to the numerical

solution of the full equation in Fig. 3. When the

amplitude is low the two curves are identical, since

the ansatz then reduces to the Bessel function. In

the case of a focusing nonlinearity, there is good
Fig. 3. The implicit analytical solution given by Eq. (18) (solid

lines) together with the numerical result (dashed lines). The

different initial amplitudes are indicated in the graph. A defo-

cusing nonlinearity is used in the fourth plot.
agreement between the two approaches, but it is

also seen that a phase shift appears between the

curves for increasing A0. Quite good agreement is

seen also in the defocusing case. In particular, the

initial flattening is well modelled. The phase shift is
now of the opposite sign.

This approximate solution implies that the ar-

gument of the Bessel function increases approxi-

mately as
R r
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d þ jA2

p
dr0, which is a nonlinear

generalisation of the linear case. Thus the main

effect of a focusing nonlinearity is to increase the

curvature of the peaks by increasing the growth

rate of the argument, making the solution radially
compressed. In the defocusing case the curvature is

decreased, which is most clearly seen in the main

lobe.

Finally, Figs. 4 and 5 further illustrate the

nonlinear deformations of the linear diffraction-

less Bessel solutions. The numerically obtained

curves clearly show the features discussed above;

the radial compression of the central lobe in the
focusing case and the radial expansion in the de-

focusing case. The expansion effect in the latter

case rapidly increases as the amplitude approaches

the critical value A0 ¼ 1, above which no station-

ary solutions are possible. The phase shifting effect

of the nonlinearity on the Bessel-like oscillations is

also seen, the shift changing sign with the sign of

the nonlinearity.
Fig. 4. A focusing nonlinear term gives rise to a radial com-

pression, which is illustrated using numerical simulations.



Fig. 5. Numerical solutions showing the influence from a de-

focusing nonlinear term.
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4. Analysis of nonlinear Bessel–Gauss beams

The linear diffraction properties of Bessel–

Gauss beams have been analysed and solved

analytically, see [3]. In the present section we will
analyse the nonlinear dynamics of beams, which

initially have a profile in the form of a Bessel

function truncated by a Gaussian. Since a

general solution of this problem cannot be given,

we will use the virial theorem to obtain analyt-

ical information and numerical simulations

for determining the evolution of the beam

profile.
The virial theorem, see e.g. [13–15], provides

exact and explicit information about the dynamic

variation of the width of the beam, r, defined in

the RMS sense as r2 � hr2i, where

hf ðrÞi �
R1
0

f ðrÞjwðz; rÞj2rdrR1
0

jwðz; rÞj2rdr
: ð19Þ

The virial theorem asserts that

d2r2

dz2
¼ 8

H
I
¼ constant; ð20Þ

where I and H are invariants of the two-dimen-

sional nonlinear Schr€oodinger equation, Eq. (1),

and are defined as follows:

I ¼
Z 1

0

jwðz; rÞj2rdr; ð21Þ
H ¼
Z 1

0

owðz; rÞ
or











2

"
� j

2
jwðz; rÞj4

#
rdr: ð22Þ

This means the invariants correspond to the (in-

tegrated) beam intensity and the Hamiltonian.

Thus, the virial theorem implies that r2 must be a

second-order polynomial in z, with coefficients

determined by the initial beam profile, wð0; rÞ. For
initial phase functions that do not depend on r, the
linear term in z vanishes, and the beam width

varies as

r2ðzÞ ¼ r2ð0Þ 1

�
þ signðHÞ z

2

L2
0

�
; ð23Þ

where L0 is a characteristic length given by

L�2
0 ¼ 4H

r2ð0ÞI












¼
4
R1
0

owðz;rÞ
or




 


2 � j
2
jwðz; rÞj4


 �
rdrR1

0
r2jwð0; rÞj2rdr




















: ð24Þ

Clearly this approach cannot be used for analy-

sing the linear, or the nonlinearly modified, sta-

tionary Bessel beam solutions of the nonlinear

Schr€oodinger equation since all integrals involved

in the virial theorem are infinite. However, for a

physical beam, with finite integral content, the

virial theorem is useful. In general it is seen that

with weak nonlinear focusing effects, the Hamil-
tonian is positive and the RMS width will increase

quadratically with a characteristic diffraction

length given by L0. When the amplitude of the

beam increases, the Hamiltonian decreases and

eventually changes sign. This implies that the

RMS width goes to zero after a finite length equal

to L0 – the well-known nonlinear collapse phe-

nomenon, where L0 now plays the role of collapse
length.

For Bessel–Gauss beams [3], the initial profile is

of the form

wð0; rÞ ¼ A0J0
r
r0

� �
exp

�
� r2

2q2
0

�
: ð25Þ

Inserting this into Eq. (24) we obtain the following

expression for the characteristic length L0:



Fig. 6. An example of the evolution of the radial intensity

profile with distance of propagation.
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r0
2L0

� �2

¼ S1ðlÞ � KS2ðlÞ
S3ðlÞ

; ð26Þ

where l ¼ r20=q
2
0, K ¼ jA2

0r
2
0, and the integrals Sn,

n ¼ 1; 2; 3, are given by

S1ðlÞ ¼
Z 1

0

½lxJ0ðxÞ þ J1ðxÞ�2 expð�lx2Þxdx;

ð27Þ

S2ðlÞ ¼
Z 1

0

J 4
0 ðxÞ expð�2lx2Þxdx; ð28Þ

S3ðlÞ ¼
Z 1

0

x2J 2
0 ðxÞ expð�lx2Þxdx: ð29Þ

Since we are primarily interested in the case when

the Gauss function truncates the outer parts of the

Bessel function, we have l ¼ r20=q
2
0 � 1. In this

limit, the asymptotic values of the integrals, Sn,
n ¼ 1; 2; 3, are obtained analytically as

S1ðlÞ �
1

2
ffiffiffi
p

p 1ffiffiffi
l

p ; ð30Þ

S2ðlÞ � D1 �
3

4p2
ln l; ð31Þ

S3ðlÞ �
1

4
ffiffiffi
p

p 1

l3=2
: ð32Þ

Since S2ðlÞ goes rather slowly towards infinity as l
becomes small, it is necessary to determine the

constant D1 in order to have good accuracy for
finite l. Using numerical evaluation of the integral

we find D1 � 0:202. This implies that the charac-

teristic length can be approximated as

r0
2L0

� �2

� 2l 1



� K

ffiffiffi
l

p
D2

�
� 3 ln l

2p3=2

��
; ð33Þ

with D2 � 0:715. In the linear case, the character-

istic length is seen to scale simply as L0 / q0, i.e.,
the diffraction is determined solely by the trunca-

tion radius and as q0 ! 1, the non-diffracting

Bessel beam is recovered. For increasing values of

the nonlinearity parameter, K, but for a fixed

truncation radius, the value of L0 increases and for

a certain critical value of K, the nonlinearity bal-

ances the diffraction to give a Bessel–Gauss beam,

which is diffraction-less in the RMS sense.
5. Dynamics of Bessel–Gauss beams

When a truncated linear Bessel–Gauss beam

propagates, the diffraction initially affects only the

outermost part of the pulse, where the truncation
has changed it from the Bessel shape. The central

parts are initially diffraction balanced and remains

so until the ‘‘diffraction front’’ propagating in-

wards from the outer parts eventually reach the

inner lobes and also these parts start to diffract

outwards. On the other hand, the nonlinear effect

is strongest at the centre of the beam, where the

intensity is highest, and with a focusing nonlinear
term, the main lobe will start to compress. In fact,

it will start to compress irrespective of the degree

of nonlinearity since the linear diffraction is al-

ready balanced. If the nonlinear effect is weak the

compression will eventually stop, and diffraction

will become the dominating effect. This evolution

is illustrated in Fig. 6, where an FDTD simulation

using A0 ¼ 1 and l ¼ 0:01 is shown. Although the
central parts initially compress, the virial theorem

predicts beam broadening in the RMS sense.

Clearly this is no contradiction since the broad-

ening of the outer parts more than compensate the

compression of the centre. In order to further il-

lustrate how the main lobe is compressed, the in-

tensity at r ¼ 0 has been plotted for different initial

amplitudes as a function of propagation distance
in Fig. 7. The curves have been normalised with

respect to their amplitudes at r ¼ 0 and l ¼ 0:01.



Fig. 7. The intensity at r ¼ 0 as a function of the propagation

distance using different initial amplitudes.
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We emphasise the oscillating behaviour for the

highest amplitudes. If the nonlinear effect is suffi-

ciently strong, the virial theorem predicts a col-

lapse of the beam to zero RMS width. According

to Eq. (33), the amplitude threshold for this type

of behaviour is A0 > Ac � 2:26 for l ¼ 0:01. It is
well known that the nonlinear evolution of two-

dimensional beams may lead to a break up of the

beam into a diffracting background profile with a

monotonously compressing filament, that col-

lapses in a finite distance of propagation. Thus, the

width of the filament goes to zero and the intensity

becomes infinite whereas the beam width in the

RMS sense still increases. The simulations for the
present case of Bessel–Gauss beams show that

when the amplitude is increased further above

A0 ¼ 1, the small second peak of Fig. 7 will start to

dominate and eventually the simulations indicate a

collapse of the second peak, although the RMS

width still tends to infinity. In fact, even if the

RMS width remains constant, the beam should

still be able to undergo partial collapse.
Much effort has been devoted to the study of

two-dimensional collapse phenomena induced by

the Kerr nonlinearity, see e.g. [13–15] and refer-

ences therein. In particular, it has been found that

the virial theorem poses a sufficient but not nec-

essary condition for the occurrence of a singularity

where the amplitude becomes infinite. Thus the

appearance of a partial collapse singularity below
the threshold for a global collapse, as predicted by
the virial theorem, is in accordance with earlier

results.
6. Conclusions

Based on the nonlinear Schr€oodinger equation in

cylindrical geometry we have studied the modifi-

cation of the diffraction-less linear Bessel beams

caused by the nonlinear Kerr effect. The stationary

as well as the dynamic properties of the solutions

to this equation have been analysed and both an-

alytical and numerical techniques have been used.

The investigation shows that the nonlinearity pri-
marily affects the main and inner lobes of the

Bessel beams. In the case of the stationary solu-

tions, the central region of the nonlinear Bessel

beam tends to become radially more narrow or

more extended depending on whether the nonlin-

earity is focusing or defocusing, respectively.

Asymptotically the solutions are still of the same

oscillating form as the diffraction-less Bessel
beams, the only remaining feature of the nonlin-

earity being a phase shift as compared to the linear

case. However, in the case of the defocusing non-

linearity, there is a finite amplitude threshold for

well-behaved solutions to exist. Above this limit

the nonlinear diffraction effect becomes larger than

the linear effect, which counteracts the diffraction,

and no solutions are possible which vanish at in-
finity.

The properties of Gaussian-truncated Bessel

beams have also been studied in the presence of the

Kerr nonlinearity. It has been shown, using the

virial theorem, that a non-diffracting situation in

the RMS sense is possible to obtain by balancing

nonlinear focusing and linear diffraction. How-

ever, this situation does not correspond to a sta-
tionary case of the beam profile. Significant

redistribution of the beam occurs and using nu-

merical simulations, the dynamic interaction be-

tween linear diffraction and nonlinear focusing has

been analysed for varying degrees of nonlinearity.

It has been found that, in particular the central

parts of the beam may become significantly dis-

torted and may even partially collapse even though
the beam width, defined in the RMS sense, re-

mains constant or even increases. This result is in
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agreement with the classical picture of dynamic

self focusing of two-dimensional beams in non-

linear Kerr media.
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